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Abstract
This paper addresses the problem of category-level 3D

object detection. Given a monocular image, our aim is to
localize the objects in 3D by enclosing them with tight ori-
ented 3D bounding boxes. We propose a novel approach
that extends the deformable part-based model [1] to reason
in 3D. Our model represents an object class as a deformable
3D cuboid composed of faces and parts, which are both al-
lowed to deform with respect to their anchors on the 3D box.
We model the appearance of each face in fronto-parallel
coordinates, thus effectively factoring out the appearance
variation induced by viewpoint. We train the cuboid model
jointly and discriminatively. In inference we slide and rotate
the box in 3D to score the object hypotheses. We evaluate
our approach in indoor and outdoor scenarios, and show
that our approach outperforms the state-of-the-art in both
2D [1] and 3D object detection [4].

1. Introduction
Estimating semantic 3D information from monocular

images is an important task in applications such as au-
tonomous driving and personal robotics [7, 6]. Let’s con-
sider for example, the case of an autonomous agent driving
around a city. In order to properly react to dynamic situa-
tions, such an agent needs to reason about which objects are
present in the scene, as well as their 3D location, orientation
and 3D extent. Likewise, a home robot requires accurate 3D
information in order to navigate in cluttered environments
as well as grasp and manipulate objects.

In this paper we extend DPM to reason in 3D. Our model
represents an object class with a deformable 3D cuboid
composed of faces and parts, which are both allowed to de-
form with respect to their anchors on the 3D box (Fig 1). We
introduce a stitching point, which enables the deformation
between the faces and the cuboid to be encoded efficiently.
We model the appearance of each face in fronto-parallel co-
ordinates, thus effectively factoring out the appearance vari-
ation due to viewpoint. We train the cuboid model jointly
and discriminatively. In inference, our model outputs 2D
along with oriented 3D bounding boxes around the objects.
This enables the estimation of object’s viewpoint which is a
continuous variable in our representation. We evaluate our

Figure 1. Our deformable 3D cuboid model.

approach in indoor [4] and outdoor scenarios [3], and show
that our approach significantly outperforms the state-of-the-
art in both 2D [1] and 3D object detection [4]. The details
of our method are in [2].

2. A Deformable 3D Cuboid Model
Given a single image, we aim to estimate the 3D loca-

tion and orientation of the objects present in the scene. We
represent an object class as a deformable 3D cuboid, which
is composed of 6 deformable faces, i.e., their locations and
scales can deviate from their anchors on the cuboid. The
model for each cuboid’s face is a 2D template that repre-
sents the appearance of the object in view-rectified coordi-
nates, i.e., where the face is frontal. Additionally, we aug-
ment each face with parts, and employ a deformation model
between the locations of the parts and the anchor points on
the face they belong to. We assume that any viewpoint of an
object in the image domain can be modeled by rotating our
cuboid in 3D, followed by perspective projection onto the
image plane. Thus inference involves sliding and rotating
the deformable cuboid in 3D and scoring the hypotheses.

For any viewpoint θ, at most 3 faces are visible in an
image. Topologically different visibility patterns define dif-
ferent aspects [5]. Our model reasons about the occurring
aspects of the object class of interest, which we estimate
from training data. Fig. 2 shows estimated aspects for beds.

In order to make the cuboid deformable, we introduce
a stitching point, which is a point on the box that is com-
mon to all visible faces for a particular aspect. We incorpo-
rate a quadratic deformation cost between the locations of
the faces and the stitching point to encourage the cuboid to
be as rigid as possible. We impose an additional deforma-
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Figure 2. Aspects (computed from train. data) for beds used in our model.

tion cost between the visible faces, ensuring that their sizes
match when we stitch them into a cuboid hypothesis. The
appearance templates and the deformation parameters in the
model are defined for each face in a canonical view where
that face is frontal. We thus score a face hypothesis in the
fronto-parallel coordinates.

Let pi be a random variable encoding the location and
scale of a box’s face in a rectified HOG pyramid, and
{pi,j}j=1,··· ,n be a set of its parts. We define the compat-
ibility score between the parts and the face as in a DPM:

scoreparts(pi, θ) =

n∑
j=1

(
wTij · φ(pi,j) +wTij,def · φd(pi, pi,j)

)
We define the score of a cuboid hypothesis to be the sum

of scores of each face and its parts, and the deformation of
each face with respect to the stitching point and the defor-
mation of the faces with respect to each other as follows

score(x, θ, s,p) =∑
i=1...6

V (i, a)
(
wTi · φ(pi, θ) + wstitcha,i · φstichd (pi, s, θ)

)
+∑

i>ref

V (i, a) · wfacei,ref · φ
face
d (pi, pref , θ) +

∑
i=1...6

V (i, a) · scoreparts(pi, θ) + ba

where V (i, a) is a binary variable encoding whether face
i is visible under aspect a. We use ref to index the first
visible face in the aspect model, and φd(pi, pi,j , θ) are the
quadratic part deformation features, computed in the rec-
tified image of face i implied by the 3D angle θ. Here,
φstichd (pi, s, θ) are the quadratic deformation features be-
tween the face pi and the stitching point s. The deformation
cost φfaced (pi, pk, θ) between the faces is a function of their
relative dimensions, enforcing the common edge between
the two faces to be of similar length.
Inference: We compute maxθ,s,p wa ·Φa(x, a,p), which
can be solved exactly via dynamic programming. We first
compute the score for each face in its rectified view as in
DPM [1]. We then use distance transforms to compute the
deformation scores for each face and the stitching point, and
the deformation scores between the faces and the reference.
Finally, we reproject the scores to the image coordinate sys-
tem and sum them to get the final score.
Learning: We assume that we have 3D box annotations
available in training. To train our model (weights w) we use
a latent SVM formulation [1].

3. Experiments
We evaluate our approach on the bed dataset of [4]. We

first evaluate our model in 2D detection. We compute the
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Figure 3. Precision-recall curves for (left) 2D overlap (right) convex hull.

Figure 4. Detection examples of beds obtained with our model.

Figure 5. KITTI: examples of car detections. (top) GT, (bottom)
Our 3D detections augmented with best fitting CAD models de-
picting inferred 3D orientations.

2D bounding boxes by fitting a 2D box around the convex
hull of the projection of the predicted 3D box. We report
average precision (AP) using the 50% IOU criteria. The
(rigid) cuboid model of Hedau et al. [4] achieves 51.3%, the
DPM [1] gets 55.6%, while our deformable cuboid achieves
59.4%. This is notable, as to the best of our knowledge, this
is the first time that a 3D approach outperforms the DPM.
Examples of detections are shown in Fig. 4. To evaluate
3D performance, we use the convex hull overlap measure
as in [4]. The precision-recall curves are shown in Fig. 3.

We also conducted preliminary tests on KITTI [3]. Ex-
amples of detections are shown in Fig.5. To show predicted
viewpoint we insert a CAD model inside each inferred 3D
box. One can see that our 3D detector is able to predict the
viewpoints of the objects well, as well as the type of car.
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