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Abstract
In this paper we are interested in how semantic seg-

mentation can help object detection. We propose a novel
deformable part-based model which exploits region-based
segmentation algorithms that compute candidate object re-
gions by bottom-up clustering followed by ranking of those
regions. Our approach allows every detection hypothesis
to select a segment (including void), and scores each box
in the image using both the traditional HOG filters as well
as a set of novel segmentation features. Thus our model
“blends” between the detector and segmentation models.
Since our features can be computed very efficiently given
the segments, we maintain the same complexity as the orig-
inal DPM [5]. We demonstrate the effectiveness of our ap-
proach in PASCAL VOC 2010, and show that we outper-
form the original DPM [5] in 19 out of 20 classes, achiev-
ing an improvement of 8% AP. Furthermore, we outperform
the previous state-of-the-art on VOC’10 test by 4%.

1. Introduction
In this paper we are interested in exploiting semantic

segmentation in order to improve object detection. While
bottom-up segmentation has often been believed to be infe-
rior to top-down object detectors due to its frequent over-
and under- segmentation, recent approaches [3, 1] have
shown impressive results on difficult datasets such as the
PASCAL VOC challenge. Here, we take advantage of
region-based segmentation approaches [2], which compute
a set of candidate object regions by bottom-up clustering,
and produce a segmentation by ranking those regions us-
ing class specific rankers. Our goal is to make use of these
candidate object segments to bias sliding window object de-
tectors to agree with these regions.

Deformable part-based models (DPM) [5] are arguably
the leading technique to object detection. However, so far,
there has not been many attempts to incorporate segmen-
tation into DPMs. In this paper we propose a novel DPM
model, which exploits region-based segmentation by allow-
ing every detection hypothesis to select a segment (includ-
ing void) from a small pool of segment candidates. We de-
rive simple features, which can capture the essential infor-
mation encoded in the segments. Our detector scores each

box in the image using both, HOG filters as well as the set
of novel segmentation features. Our model “blends” be-
tween the detector and the segmentation models by boosting
object hypotheses that overlap with the segments. Further-
more, it can recover from segmentation mistakes by exploit-
ing a powerful appearance model.

We demonstrate the effectiveness of our approach in
PASCAL VOC 2010, and show that we outperform the
original DPM [5] by 8%. Furthermore, we outperform the
previous state-of-the-art on VOC2010 by 4%. We believe
that these results will encourage new research on bottom-
up segmentation as well as hybrid segmentation-detection
approaches, as our paper clearly demonstrates the impor-
tance of segmentation for object detection. Details of our
method can be found in [6].

2. A Segmentation-Aware DPM (segDPM)
Our approach takes advantage of region-based segmenta-

tion approaches, which compute object regions by bottom-
up clustering, and rank those regions to estimate a score for
each class. We frame detection as an inference problem,
where each detection hypothesis can select a segment from
a pool of candidates (as well as void).

Following [5], let p0 be a random variable encoding the
location and scale of a bounding box in a HOG pyramid,
and {pi}i=1,··· ,P be a set of parts. Denote with h the in-
dex over the set of candidate segments returned by the seg-
mentation algorithm. We frame the detection problem as
inference in a Markov Random Field (MRF), where each
root filter hypothesis can select a segment from a pool of
candidates. We write the score of a configuration as

E(p, h) =

P∑
i=0

wT
i · φ(x, pi) +

P∑
i=1

wT
i,def · φ(x, p0, pi) +

+wT
segφ(x, h, p0) (1)

Note that h = 0 implies that no segment is selected.
We derive simple features which encourage the selected

segment to agree with the object detection hypothesis. Most
of our features employ integral images which makes them
extremely efficient, as this computation can be done in con-
stant time. We briefly summarize the features, and refer the
reader to Fig 1 for visualization.
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VOC 2010 val, no post-processing

CPMC [2] 53.3 19.5 22.8 15.7 8.1 42.7 22.1 51.3 4.3 18.9 10.5 28.1 30.5 38.3 20.9 6.0 19.2 18.6 35.4 21.1 24.4
DPM [5] 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 10.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6
segDPM 55.7 50 23.3 16.0 28.5 57.4 43.2 49.3 14.3 23.5 17.7 32.4 42.6 44.9 42.1 11.9 32.5 25.5 43.9 39.7 34.7

VOC 2010 test
segDPM 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
NLPR HOGLBP [9] 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8
MITUCLA HIERARCHY [10] 54.2 48.5 15.7 19.2 29.2 55.5 43.5 41.7 16.9 28.5 26.7 30.9 48.3 55.0 41.7 9.7 35.8 30.8 47.2 40.8 36.0
NUS HOGLBP CTX [4] 49.1 52.4 17.8 12.0 30.6 53.5 32.8 37.3 17.7 30.6 27.7 29.5 51.9 56.3 44.2 9.6 14.8 27.9 49.5 38.4 34.2
UOCTTI LSVM MDPM [8] 52.4 54.3 13.0 15.6 35.1 54.2 49.1 31.8 15.5 26.2 13.5 21.5 45.4 51.6 47.5 9.1 35.1 19.4 46.6 38.0 33.7

Table 1. AP performance (in %) on VOC 2010 val (top Table), and performance VOC 2010 test (bottom Table).
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Figure 1. The first two features encourage the box to contain as many
segment pixels as possible. This pair alone could result in boxes that
“overshoot” the segment. The second pair tries to minimize the number
of background pixels inside the box and maximize its number outside. In
synchrony, these features try to tightly place a box around the segment.

Segment-In: Given a segment S(h), our first feature
counts the percentage of pixels in S(h) that fall inside the
bounding box defined by p0. This feature encourages the
bounding box to contain the segment.
Segment-Out: This feature counts the percentage of seg-
ment pixels that are outside the bounding box. This feature
discourages boxes that do not contain all segment pixels.
Background-In: This feature counts the amount of back-
ground inside the bounding box. It captures the statistics of
how often the segments leak outside the true bounding box
vs how often they are too small.
Background-Out: This feature counts the amount of
background outside the bounding box. It tries to discourage
boxes that are too big and do not tightly fit the segments.
Overlap: This feature penalizes bounding boxes which
do not overlap well with the segment. In particular, it com-
putes IOU between the candidate bounding box p0 and a
bounding box around a segment.
Background bias: The value of all of the above features
is 0 when h = 0. We incorporate an additional feature to
learn the bias for the background segment (h = 0). This
puts the scores of the HOG filters and the segmentation po-
tentials into a common referential.
Learning and Inference We learn a different weight for
each feature using a latent structured-SVM [7]. Inference is
carried out via dynamic programming [5].
Segments We use the final segmentation output of
CPMC [2] to get the candidate segments.

3. Experimental Evaluation
We evaluate our approach on PASCAL VOC 2010 val

detection dataset in Table 1 (top). We train all methods, in-
cluding the baselines on train. We use the standard 50%
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(a) GT (b) CPMC (c) DPM (d) segDPM
Figure 2. For each method, we show top k detections for each
class, where k is the number of boxes for that class in GT.

IOU overlap criterion for detection and report average pre-
cision (AP). Our model outperforms the CPMC baseline by
10% and achieves a significant boost of 8% AP over DPM,
which is a well established and difficult baseline to beat.

We evaluate our approach on VOC 2010 test in Ta-
ble 1 (bottom). We outperform the competitors by 3.6%,
and achieve the best result in 13 out of 20 classes.
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