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Abstract

With the growing interest in object categorization vari-
ous methods have emerged that perform well in this chal-
lenging task, yet are inherently limited to only a moderate
number of object classes. In pursuit of a more general cat-
egorization system this paper proposes a way to overcome
the computational complexity encompassing the enormous
number of different object categories by exploiting the sta-
tistical properties of the highly structured visual world. Our
approach proposes a hierarchical acquisition of generic
parts of object structure, varying from simple to more com-
plex ones, which stem from the favorable statistics of natu-
ral images. The parts recovered in the individual layers of
the hierarchy can be used in a top-down manner resulting
in a robust statistical engine that could be efficiently used
within many of the current categorization systems. The pro-
posed approach has been applied to large image datasets
yielding important statistical insights into the generic parts
of object structure.

1 Introduction

Humans classify and recognize a vast number of objects
varying in shape, color, size and pose with high accuracy
and an apparent ease. It has been a common desire of vision
researchers to endow computers with a similar trait. How-
ever, the complexity underlying the categorization process
has, to a large extent, hindered the success of approaches
tackling this difficult task.

The current state-of-the-art categorization methods [11,
16, 4, 5, 25, 20] rely on classification upon a moderate
number of object specific features [11, 25, 4] or massive
codebooks of local image patches [16], therefore requiring
a computationally demanding matching of image features
against a large number of stored prototypical ones. While
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these methods give excellent results for a moderate number
of objects, they would have difficulties handling a larger
number of object categories that are in the order of tens of
thousands [7].

In pursuit of a more general categorization system many
authors emphasize the notion of parts or shared features
to achieve more compact object representations and bet-
ter generalization properties [9, 8, 15]. However, features
shared by a variety of different categories imply an ineffi-
cient verification stage with each feature evoking a large set
of object hypotheses. An adequate and generally accepted
solution to this problem is a hierarchical organization of part
combinations increasing in complexity and specificity [23].

The majority of existing hierarchical methods use static
parts in the form of feed-forward convolutions, and are con-
sequently only applicable to very specific object classes,
i.e., hand-written characters [14] or paper-clip objects [22].
In order to cope with a large variety of object categories,
parts should be learned from the masses of image data, the
idea which dates back to the seminal work of [3] emphasiz-
ing the importance of unsupervised acquisition of patterns
regularly appearing in images. Moreover, there are strong
implications that the human visual system is driven by these
principles as well [12].

However, the complexity of unsupervised learning of
patterns is known to be exponential and becomes even more
intractable at higher levels of feature combinations thus
forcing many authors to perform learning on hand-labelled
object parts [13, 6] or employ the classical Gestalt princi-
ples, which are theorized as being probabilistically most
plausible ones [18].

Attempts have been made to perform unsupervised sta-
tistical learning of parts. The authors of [24] propose a
method for unsupervised hierarchical learning of feature
combinations but are mainly concerned with constructing
discriminative object specific visual hierarchies designed
exclusively for recognition and not categorization purposes.
A combinatorial problem is reported even though only a
small number of features is used as the starting point. This
approach is inherently different from our method, which
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aims at designing one hierarchy of learned generic object
parts.

In [8, 1] the authors use vector quantization over out-
puts of SIFT-like descriptors to obtain the parts, while [27]
employs K-means clustering of various filter responses col-
lected over the training images. However, the obtained parts
are limited to textured images not having the ability to gen-
eralize to a large variety of textureless object categories,
for which shape is the primary cue, e.g., hand-drawn ob-
jects and silhouettes. A step in this direction has been made
by [2] by finding edge parts which have been shown effec-
tive for face detection. Yet the obtained features are very
local and carry too little discriminative information to be
used with a larger number of object classes.

The goal of this paper is to propose a novel approach to
the problem of parts, specifically to the parts of object struc-
ture. We will show how to defy the combinatorial problem
of unsupervised pattern acquisition within a hierarchical
framework and how the favorable statistics of images can
be exploited in order to manage the otherwise prohibitive
complexity of a higher-level feature combination. Further-
more, the proposed hierarchy enables the use of a top-down
mechanism in each layer resulting in a closed-end robust
statistical engine that could be efficiently used within many
of the current recognition systems.

The paper is organized as follows: in Section 2 we pro-
vide the motivation for the proposed approach which is
then presented in Section 3. The implementation details are
given in Section 4. The results obtained on various image
datasets are shown in Section 5. The paper is concluded
with a discussion in Section 6.

2 A Hierarchical Learning Architecture

The importance of structure has often been emphasized
in literature as one of the strongest cues for object catego-
rization [9, 4, 5, 25, 20, 15] and is also the focus of our re-
search. Specifically, the proposed approach addresses the
issues of constructing a general, structure-based, catego-
rization system that would be capable of recognizing a large
number of object classes.

We start with an outline of the properties that such a sys-
tem should possess:

Hierarchical organization. The previous work done
on the analysis of complexity underlying the categoriza-
tion process implies a hierarchical organization of the sys-
tem. The arguments can be shortly summarized as follows.
The parts used within the categorization system should,
on the one hand, enable a computationally feasible match-
ing against image features in the recognition stage imply-
ing they should be moderate in number and not too com-
plex. On the other hand, having a small set of parts, shared
across categories, would evoke a large number of object
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Figure 1. The hierarchical top-down and
bottom-up architecture

hypotheses implying an inefficient verification stage. The
most plausible solution to these largely contradictory re-
quirements is a multi-layered system of increasingly com-
plex and specific parts.

Top-down projection. In order to achieve robustness
against clutter, the parts comprising the individual layers of
the hierarchy should be designed in a way to enable a robust
verification of the presence of their underlying components.

Bottom-up learning. Parts and their higher level com-
binations should be learned in an unsupervised manner (at
least in the first stages of the hierarchy) in order to avoid
hand-labelling of massive image data as well as to cap-
ture the regularities within the visual data as effectively and
compactly as possible.

As most of the literature might agree with the aforemen-
tioned postulates, the enormous combinatorial complexity
that comes with the last postulate has slowed the progress
on this topic. Our approach aims to overcome this challeng-
ing problem.

However, before the learning issues can be addressed,
the parts must first be defined with great care. The following
are the generally acknowledged properties of parts:

Locality. The receptive fields in which parts are formed
should not be too large due to computational complexity of
feature combination. Moreover, features that appear close
together are likely to belong to the same entity.

Shift and rotation invariance. Since the objects can
appear in any position and orientation within an image, the
recognition should proceed independently of position and
orientation. However, rotation invariance should not be im-
plemented in a way to lose the already limited information
of local structure, thus the orientation should rather be sep-
arately encoded and accounted for.
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Encoded geometrical structure. Parts should encode
geometrical relations of their underlying components in
order to avoid the so-called binding problem [19] which
arises when only the presence of features is reported.
However, the relations must be sufficiently loose to account
for some degree of variation.

2.1 Complexity Issues

A comprehensive analysis of complexity encompassing
recognition of a large number of object classes was done
in [26], while the complexity issues of top-down matching
were addressed in [10]. We thus only embark on the com-
plexity conveyed by unsupervised learning of higher-level
feature combinations.

To form a rough idea, let us consider the following sim-
plified case. Let N be the number of different parts, O the
number of orientations the parts can attain and k the num-
ber of possible discretized locations with an additional as-
sumption that only one part can appear at each location.
The number of all possible combinations in this case is
(1+N ·O)k giving a total of 7 billion possibilities when tak-
ing values as low as N = 2, O = 8 (angle sensitivity being
45 degrees) and k = 8 locations. While all the combina-
tions might not even appear in images, the computational
load of unsupervised learning may still be unmanageable.

Complexity issues aside, a system establishing each
combination as a separate part would also have no general-
ization power which is crucial for successful categorization.

It is therefore apparent that some approximations are
needed that would yield a moderate number of parts yet
still be capable of representing the majority of data. The
idea behind our approach is to find features that appear fre-
quently in images which are therefore optimal for describ-
ing the data.

3. Our Approach

The general procedure can be roughly described as fol-
lows. The hierarchy is built layer by layer starting with the
fixed Layer I comprised of a bank of oriented filters. In
the search for the parts of the second layer, parts of Layer
I are projected in a top-down manner onto a large data set
of images (at this stage this is a simple image convolution).
We must emphasize that we are mainly interested in shape
information, so we will not be working directly with the
values of filter outputs. A certain activation of the filter
will simply imply the presence or absence of a local edge
segment. To achieve scale invariance, the top-down pro-
jection is carried out on every scale by iteratively smooth-
ing and resampling a given image. Bottom-up learning is
performed by collecting the statistics of all possible local

configurations of parts. The most significant configurations
consequently define Layer II. This interplay of top-down
and bottom-up mechanism is propagated through the hier-
archy and is summarized in Algorithm 1 and depicted in
Figure 1 with details of both, top-down and bottom-up, pro-
cedures given in subsections 3.2 and 3.3.

Algorithm 1 : A hierarchical learning architecture
1: Top-down projection of parts defining Layer I (oriented

filters)
2: Bottom-up statistical learning of local configurations of

parts of Layer I
→ Result: Parts for Layer II

3: Top-down projection of Layer II parts
4: Bottom-up learning using parts of Layer II

→ Result: Parts for Layer III
...

3.1 Definition of Parts

In accordance with requirements set in Section 2 we
define the parts in the following way. Let Pn

i denote
the i-th part in Layer n. Each part Pn

i is characterized
by the center of mass, orientation and a list of subparts
(parts of the previous layer) with their respective orienta-
tions and positions relative to the center and orientation of
Pn

i . Specifically, a Pn
i that is normalized to the orienta-

tion of 0 degrees and has a center in (0, 0) encompasses
a list {(Pn−1

j , αj , [xj , yj ]T , σj

)}j , where αj and (xj , yj)
denote the relative orientation and position of Pn−1

j , re-
spectively, while σj denotes the allowed variance of its
position around (xj , yj). The translation and rotation of
Pn

i by (x, y) and β, respectively, would therefore imply
the following transformation of its subparts: {(Pn−1

j , αj +
β, [x, y]T +Rot(β)[xj , yj ]T , σj

)}j , where Rot(β) denotes
the rotation matrix by angle β.

For the ease of reference let what denote the information
about the type of parts, i.e., Pi

j , let orientation correspond
to the orientation information of parts and let where refer to
the position information of parts.

3.2 Top-down mechanism

The top-down mechanism consists of two stages, namely
the projection and the part selection stage.

3.2.1 Projection Stage

The projection of the n-th Layer parts onto the parts of the
preceding layer that were recovered in the processed image
proceeds as follows. Each ‘activated’ part Pn−1 within an
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Figure 2. Voting of subparts for part Pn
i

image votes for the presence of all parts Pn that contain
Pn−1 in their list of subparts. Specifically, it is the center
and orientation of the part that is voted for. Every hypothe-
sized center then checks for the presence of all correspond-
ing subparts of Pn. All fully verified hypotheses are passed
to the selection stage. In the case of no complete hypothe-
ses, lower layers of the hierarchy are consulted for verifica-
tion. The algorithm is described in Alg. 2 and depicted in
Fig. 2.

Algorithm 2 : Top-down

1: for each subpart Pn−1 found in the image do
2: for each part Pn containing Pn−1 do
3: Vote for the center and orientation of Pn

4: According to the hypothesized center check for all
subparts comprising Pn (variance in the position
is allowed)

5: end for
6: All fully verified parts Pn are passed to step 8
7: end for
8: Part selection with the MDL principle

3.2.2 Part Selection with the Minimum Description
Length Principle

The projection stage results in redundant descriptions of ob-
jects. To greatly alleviate the computational cost of bottom-
up learning, redundancy of the obtained parts is first re-
duced by applying a Minimum Description Length (MDL)
model-selection method as proposed in [17], but tailored to
our specific models.

We shortly summarize the procedure. By considering
each part as a model with a certain cost and error, the ob-
jective function that selects an optimal subset of parts which
fully describe the object yet discards the redundant parts can
be written in the form

F (m) = mT Qm (1)

where m = [m1, . . . ,mN ] and mi denotes the presence
variable taking value 1 for the presence and 0 for the ab-
sence of part Pn

i in the final description. The diagonal terms
of the matrix Q stand for the cost-benefit value of a corre-
sponding part Pn

i while the off-diagonal terms express the

relations of the overlapping parts. The objective function is
solved using the greedy algorithm as proposed in [17]. The
details are given in Section 4.

This procedure reduces the original number of activated
parts by a factor of 5 to 10 by losing no information with
respect to the description of the object.

3.3 Bottom-up learning

We first present the conceptual ideas behind the proposed
learning process and give the implementation details in the
next section.

Suppose that parts of Layer n− 1 have already been ob-
tained and the bottom-up construction of parts of Layer n
is under consideration. To meet the requirements set in
Section 2 local part configurations will be investigated by
collecting statistics over a large dataset of images. Further-
more, in order to achieve shift and rotation invariance the
part-centered coordinate system is chosen (depicted in ut-
most left of Fig. 3). This means that for each part Pn−1

i

activated in any processed image, its local neighborhood of
the surrounding parts is first normalized with respect to ori-
entation and position of the central part Pn−1

i , and stored
for further processing.

In line with the conclusion of 2.1 only the most frequent
local arrangements are sought. These will consequently de-
fine parts in Layer n. However, keeping track of all possi-
ble local configurations (or at least a vast majority of them)
seems, according to complexity issues addressed in 2.1, an
elusive task. Next, we show how to overcome this problem
by decoupling the complexity into the sequential statistical
analysis of different aspects of feature combinations.

Local combinations encode all, what+orient.+where
information (see 3.1 for notation). Therefore, if a particular
combination of only one type of information (for example
what) appears with small probability in images, then adding
further information can only reduce the total probability of
the corresponding configurations. Since only the most fre-
quent configurations are sought, such combinations can be
discarded from further analysis.

Thereby the bottom-up learning as we propose it pro-
ceeds as follows. An image dataset is processed and the
statistics of all what configurations are collected. Only the
most frequent configurations are passed on to the next stage,
where the images are processed again and all possible orien-
tation combinations in which the previously selected what
features appear are stored. The most frequent ones are se-
lected resulting in configurations now encoding what and
orientation information. Finally, the statistics of all the rel-
ative locations where these features occur in are collected
and the significant peaks in certain locations are then added
to arrive at the final parts. Alg.3 and Fig.3 summarize the
procedure.
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Algorithm 3 : Bottom-up learning
1: for each image scale do
2: for each part Pn−1 activated in an image do
3: Local neighborhood is defined and normalized

with respect to Pn−1

Complexity is decoupled and separate statistics are
sought:

4: what parts (only most frequent cases are passed on
to the following stage)

5: orientation parts (only most frequent cases are
passed on to the following stage)

6: where parts
7: end for
8: end for

Figure 3. Bottom-up learning procedure of
local configurations (left) by decoupling the
complexity in separate statistics.

The following subsections give the details of how each
statistic is carried out.

3.3.1 Determining the Neighborhood Size

Since the number of possible combinations grows exponen-
tially with the size of the local neighborhood under consid-
eration, the size must be chosen with great care. Several
different sizes must be tested by processing the images and
collecting count histograms Hj (an element Hj(i) is incre-
mented whenever i parts are found in the local neighbor-
hood of Pn−1

j ).
The final size of the neighborhood consequently used

in further analysis is set to the size that produces the most
manageable histograms, i.e., histograms that have peeks in
lower indices and contain considerably lower values there-
on.

Denote the index of the last significant peak in the corre-
sponding histograms by m. This implies that keeping track
of a limited number of the activated parts in the chosen size
of the local neighborhood will not result in losing too much
information.

3.3.2 Statistics of What

Let N be the number of all parts defining Layer n − 1. For
each type of part, Pn−1, activated in an image a separate
what statistics of its local neighborhood is collected in the
form of vectors (and stored in a matrix):

[a11 a12 . . . a1m
Pn−1

1

| . . . | aN1 aN2 . . . aNm
Pn−1

N

| a
no part

], (2)

where aij = 1 if the receptive field contains j parts of the
type Pn−1

i , with aij = 0 otherwise. If the local neighbor-
hood contains no other subparts except the central one, all
aij are set to 0 and a is set to 1.

The significant configurations are selected in the follow-
ing way. By adding up the elements across each column
in the matrix, the columns with significant sums are se-
lected. For each selected column with the corresponding
index i, a submatrix that has ones in the i-th column is
processed in a similar manner, yielding another set of sig-
nificant columns. This procedure is repeated until all the
sums in the remaining columns drop to the value by a cer-
tain percentage lower than the sum of the starting column i.
The obtained sequences of columns represent the final what
parts. We must emphasize that the configurations chosen
are conditional on the central part, i.e., they take the form
(Pn−1

i , {Pn−1
i1

, . . . ,Pn−1
iK

}).

3.3.3 Statistics of Orientation

Following the idea of the previous subsection the orienta-
tion information can be added to each of the selected what
parts by a similar procedure. Whenever a certain neigh-
borhood within an image contains any of the previously se-
lected what parts their corresponding orientations are stored
in vectors:

[b11 b12 . . . b1O
Pn−1

i1

| . . . | bK1 bK2 . . . bKO
Pn−1

iK

], (3)

where O is the number of orientations in which each part
Pn−1

ik
∈ what can appear in, with bko = 1 if Pn−1

ik
occurs

in the orientation of 2π(o− 1)/O relative to the orientation
of the central part Pn−1

i . Since certain type of parts within
the what part under consideration can be the same, the am-
biguity is resolved by the lexicographical ordering of parts
with respect to their positions in the local neighborhood.

The most significant orientations are found by
employing the procedure described in the previous
subsection. The final features now encode both,
what and orient. information, and take the form
(Pn−1

i , {(Pn−1
i1

, αi1), . . . , (Pn−1
iK

, αiK
)}).

3.3.4 Statistics of Where

The statistical analysis of what is carried out in a similar
fashion as the previous ones, requiring another pass through
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the images.
Whenever a certain previously selected what +

orientation configuration is encountered in a local neigh-
borhood, the positions of parts relative to the central one are
stored as rows in a matrix:

[ x1, y1
(Pn−1

i1
,αi1 )

| . . . | xK , yK
(Pn−1

iK
,αiK

)

], (4)

For each feature, clustering of positions is performed us-
ing the corresponding columns and clusters with significant
peeks are selected for further processing. For each clus-
ter all rows of the matrix that have (x, y) within the cluster
and belong to the corresponding feature are selected. The
obtained submatrix is again subjected to clustering. This
process is continued until no significant clusters are found.

The final features now take the form
(Pn−1

i , {(Pn−1
j , αj , (xj , yj), σj)}) and thus encode

all aspects of feature information. As such they are pro-
nounced as parts of Layer n. Note that the variances σj are
also learned (denoting the radius of clusters). Furthermore,
for each part the center of mass and orientation is calculated
and its subparts are normalized accordingly.

4 Implementation details

4.1 Layer I

The Parts. The first layer in the hierarchy consists of a
family of Gabor filters:

gλ,ψ,ϕ(x, y) = e−
u2+γ2v2

2σ2 cos
(2πu

λ
+ ϕ

)

u = x cos ψ−y sin ψ, v = x sin ψ + y cos ψ,

where (x, y) represents the center of the filter’s receptive
field, with the parameters set as in [21]. We use the set of
two filter banks, one with even (ϕ = 0) and the other with
odd (ϕ = −1/2π) Gabor kernels with both banks contain-
ing filters in 6 equidistant orientations (ψ = i(π/6), i =
0, 1, . . . , 5).

Top-down: projection. After an image is convolved
with the filter banks, the total energy for each orientation
is computed [21]:

Eλ,ψ(x, y) =
√

r2
λ,ψ,0(x, y) + r2

λ,ψ,−π/2(x, y), (5)

where rλ,ψ,0(x, y) and rλ,ψ,−π/2(x, y) are responses of
even and odd Gabor filters, respectively. In order to find
the best orientation of a local edge centered in point (x, y)
a maximum of all orientations in Eλ,ψ(x, y) is computed,
similarly as in [22]. Since we are only interested in pres-
ence or absence of a local edge, only points above a certain
threshold are kept. Furthermore, local maxima are found

(c) (d)(a) (b)

Figure 4. Typical examples of images.

by selecting only those points having at most two surround-
ing points in a 3 × 3 window with larger response values.
This is the heuristic we have chosen to use and it has proven
successful. Every selected point represents the center of an
local edge.

Top-down: selection. In the first Layer we only deal
with one type of part, a line segment, and the MDL selection
of [17] is adapted to account for models in the form of local
oriented lines.

4.2 Layer II and III

The only procedure that needs further explanation is
Top-down: selection. The cost of a part Pn is defined as
− log P (Pn) where P refers to the prior probability with
which Pn appears as a local configuration within an image.
This probability is obtained within the proposed statistical
analysis of images. This choice of cost implies that those
parts having a high probability of occurrence and therefore
having shorter codes offer more efficient representation of
the data and should thus be selected more often. The costs
of intersecting parts are treated similarly as in [17].

5 Results

The proposed hierarchical learning framework was ap-
plied to three different image datasets, namely the clipart
dataset1 containing 2394 images(Fig. 5(a) and (b)) and two
Caltech object categories (1027 airplane and 826 motor-
bike images - Fig. 5(c) and (d), respectively)2. To show
the quick convergence of the statistics we additionally in-
spected a small subset of images in the clipart dataset.

The size of the local neighborhood to be used for learn-
ing the parts of Layer 2 was investigated first with the re-
sulting optimal size being twice the size of filter’s receptive
field. Since the first Layer of the hierarchy contains parts
of only one type (a line segment) the count statistics as de-
scribed in 3.3.1 corresponds to the what statistics of 3.3.2
and is depicted in Fig. 5(a). The statistics were collected
for each image scale separately showing that they are al-
most the same for all scales, leading us to the conclusion
that we can merge statistics of different scales (see the last

1http://www.barrysclipart.com/barrysclipart.com/index.php
2http://www.robots.ox.ac.uk/ vgg/data3.html

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



Figure 5. (a) The What histograms for differ-
ent image datasets and scales. (b) The Ori-
entation histograms for two, three and four
parts on scale 1 of the Clipart dataset. The
slopes in labels indicate the orientations of
parts.

bar graph in Fig. 5(a)). Furthermore, it can be seen that only
neighborhood containing one to at most four parts have sig-
nificant peaks and need to be explored further.

Next, Fig.5(b) shows the obtained orientation his-
tograms corresponding to the neighborhoods containing
two, three and four parts (only the first few of the selected,
most frequent, orientations are shown). The fast drop in
frequency is even more apparent than for the what features.

Table 5 shows the number of all orientation combina-
tions that were selected and passed on to the next, the where
stage.

Image dataset # of selected combinations
Subset of Cliparts 150

Cliparts 141
Airplanes 67

Motorbikes 379

Table 1. Number of selected what+orient.
combinations for different datasets

The final parts for Layer II are presented in Fig. 7 with
the learned variances of corresponding subparts depicted
in the second row. The third row contains probabilities of
occurrence with respect to all local configurations that ap-
peared within the image datasets. The overall probability
that all the selected parts represent is shown in Fig. 5. It can
be seen that the number of all possible local configurations
reduces to as little as 5 parts representing the vast majority
(over 96%) of occurred configurations.

0 5 10 15 20 25 30 35 40
0.9

0.92

0.94

0.96

0.98

1

Subset of Cliparts
Cliparts
Caltech Motorbikes
Caltech Airplanes

Figure 6. The percentage of occurrence of
Layer 2 features for different datasets.

Finally, Fig. 8 depicts a few examples of the final parts
for Layer III. These results, together with the results in
Fig. 7 can also be seen as a statistical confirmation to some
of the well known Gestalt principles.

6 Summary and conclusions

In this paper we presented a novel approach that enables
unsupervised learning of generic parts of object structure
within a hierarchical framework by exploiting the regular-
ities present in the visual data. The approach additionally
enables the use of a top-down mechanism resulting in a
closed-end robust statistical engine that could be efficiently
used within many of the current categorization systems.

The results obtained on a large dataset of images con-
firm the presumed convergent statistics of natural images
and additionally confirm a number of Gestalt principles that
have so-far been only theorized as statistically most plausi-
ble ones.

Our future work will include designing further layers that
will enable object categorization, with the ability to deal
with a significantly larger number of object categories than
the current categorization methods.
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