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Overview

- A method for exploiting

unaligned text corpora to build
a segmentation and
annotation model from a few
labeled images.

- Novel use of kCCA to model

similarity between visual words
and corresponding text words.

- Achieved state-of-the-art

performance in annotation and
reasonable performance in
segmentation



Semantic Image Segmentation

- Goal: Assign each pixel in an
iImage to its semantic label.

- Requires more fine-grained
level of understanding than
object detection.

- Challenge: Fully-labeled
training data is expensive to
collect

- VOC2012: 2,913 trainval
Images over 20 categories

- ILSVRC 2012: 1.2 million
Images over 1,000
categories

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning Hierarchical Features for Scene Labeling,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
35, no. 8, pp. 1915-1929, Aug. 2013.



Conditional Random Fields
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[ label prior ] optimizes a margin-based criteria
- Simplistic model if graph is only
4-connected

- Strength depends to a large
extent on unary potentials

S. Nowozin and C. H. Lampert, “Structured Learning and Prediction in Computer Vision,” Foundations and Trends® in Computer Graphics and Vision, vol. 6, no. 3, pp. 185—
365, Mar. 2011.



ect of Unary & Pairwise
Potentials

Fig. 4.2 A natural image to be segmented.
(Image source: http://pdphoto.org)

Fig. 4.4 Left: heatmap of unary potential values. Right: segmentation masks for large w.
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Fig. 4.5 Segmentation masks for medium and small w.

Fig. 4.3 Resulting foreground region.

S. Nowozin and C. H. Lampert, “Structured Learning and Prediction in Computer Vision,” Foundations and Trends® in Computer Graphics and Vision, vol. 6, no. 3, pp. 185—
365, Mar. 2011.



TextonBoost for Image Understanding:
Multi-Class Object Recognition and Segmentation by
Jointly Modeling Texture, Layout, and Context

. . Jamie Sh"tt""" _ . John Winn, Carsten Rother, Antonio Criminisi
Machine Intelligence Laboratory, University of Cambridge Microsoft Research Cambridge, UK
jamie@shotton.org [jwinn, carrot,antcrim] @microsoft.com
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J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout,
and Context,” Int J Comput Vis, vol. 81, no. 1, pp. 2-23, 2009.




CPMC: Automatic Object Segmentation Using
Constrained Parametric Min-Cuts

Joao Carreira, Student Member, IEEE, and Cristian Sminchisescu, Member, IEEE
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Winner of VOC2009 &
2010

Use simple graph cut
algorithm to make
segment proposals

Rerank proposed
segments based on mid-
level region properties

Combine ranked regions
to obtain final
segmentation

J. Carreira and C. Sminchisescu, “CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 34, no. 7, pp. 1312-1328, Jul. 2012.



PASCAL VOC2012
Segmentation Leaderboard

Average Precision (AP %)

mean aero bicycle bird boat bottle bus car cat chair cow dining dog horse motor person potted sheep sofa train tv/ submission

plane table bike plant monitor date

» DeeplLab-CRF-COCO-Strong 7 704 853 36.2 848 612 675 846 814 810 308 738 538 775 765 823 816 56.3 789 523 766 63.3 11-Feb-2015
[> DeeplLab-CRF-MSc [7] 67.1 804 368 774 552 664 815 775 789 27.1 682 527 743 696 794 790 569 788 452 72.7 59.3 30-Dec-2014
[ DeeplLab-CRF 7] 664 784 33.1 782 556 653 813 755 786 253 69.2 52.7 75.2 69.0 79.1 77.6 547 783 451 733 56.2 23-Dec-2014
> CRF_RNN [ 65.2 809 340 729 526 625 798 763 799 236 67.7 518 748 699 76.9 76.9 49.0 747 427 721 59.6 10-Feb-2015

TT1_zoomout_16 (7 644 819 351 782 574 565 805 740 798 224 696 53.7 740 760 766 688 443 702 402 689 55.3 24-Nov-2014
[ FCN-8s 7] 622 768 342 689 494 603 753 747 776 214 625 468 718 639 76.5 739 45.2 724 374 709 55.1 12-Nov-2014
[> MSRA_CFM [ 61.8 757 267 695 488 656 81.0 69.2 73.3 300 687 515 69.1 681 717 675 504 665 444 589 53.5 17-Dec-2014
> TT1_zoomout [ 584 703 319 683 464 52.1 753 684 753 192 584 499 696 63.0 70.1 67.6 415 64.0 349 64.2 47.3 17-Nov-2014

sps (7] 516 633 25.7 63.0 398 592 709 614 549 168 45.0 482 505 510 57.7 63.3 318 58.7 31.2 55.7 48.5 21-Jul-2014
[ NUS_UDS 7] 50.0 67.0 245 472 450 479 65.3 606 58,5 155 508 374 458 59.9 62.0 52.7 40.8 48.2 368 53.1 456 29-0ct-2014
> TTIC-divmbest-rerank [7 48.1 62.7 256 469 430 548 584 586 556 146 475 31.2 447 510 609 53.5 36,6 509 30.1 502 46.8 15-Nov-2012
> BONN_O2PCPMC_FGT _SEGM [7 47.8 64.0 27.3 54.1 39.2 48.7 56.6 57.7 525 142 5438 296 422 58.0 54.8 50.2 36.6 586 316 484 38,6 08-Aug-2013

BONN O2PCPMC FGT SEGM (7] 47.5 634 27.3 56.1 37.7 47.2 579 593 550 115 508 30.5 450 584 574 48.6 346 533 324 476 39.2 23-Sep-2012
BONNGC_02P_cPMmcC_csi 17 46.8 636 26.8 456 41.7 47.1 543 586 55.1 145 490 309 46.1 526 58.2 53.4 320 445 346 453 43.1 23-Sep-2012

I> BONN_CMBR O2P CPMC_LIN' 467 63.9 23.8 446 403 455 59.6 587 57.1 117 459 349 430 549 580 515 346 441 299 505 44,5 23-Sep-2012

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6 (Accessed Feb 24, 2015)



http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6

Learning Hierarchical Features
for Scene Labeling

Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun

'M‘I “A
convnet

labeling
[(F, h(l))

Train multiscale convnet to get strong unary
potentials

Use tree to explain each superpixel by the ancestor
with the lowest impurity (entropy over categories)

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning Hierarchical Features for Scene Labeling,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
35, no. 8, pp. 1915-1929, Aug. 2013.



Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer” Trevor Darrell

UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu

forward /inference

backward /learning

Currently sixth on VOC2012
leaderboard

Leverage classification
convnets to obtain a coarse
neatmap over semantic
abels

Deconvolutional layer to
scale the heatmap up to full
size

Fine-tune network by
backpropagating per-pixel
multinomial logistic loss

J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” arXiv.org, vol. cs.CV. 14-Nov-2014.



SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-
VOLUTIONAL NETS AND FULLY CONNECTED CRFS

Liang-Chieh Chen
Univ. of California, Los Angeles
lcchen@ces.ucla.edu

Kevin Murphy
Google Inc.

kpmurphy@google.com

Input
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Ecole Centrale Paris and INRIA
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Final Output

Image/G.T.

DCNN output

Bi-linear Interpolation

CRF Iteration 1 CRF Iteration2 CRF Iteration 10

t.ucla.edu

Currently second on
VOC2012 leaderboard

Also based on
classification convnets

Use bi-linear interpolation
to upscale coarse heatmap

Fully connected CRF on
top to clean up output

Piecewise training to
decouple unary potentials
from CRF parameters

L.-C. Chen, G. Papandreou, |. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs,” arXiv.org, vol.

cs.CV. 22-Dec-2014.



Takeaways

+ Lack of data is a challenge

- Semi-supervised learning with auxiliary data

- Base off of classification models trained with lots
of data

+ Best approaches have both:

- strong unary potentials (convnets are a boon)

- way to incorporate context (structured model to
help squeeze out extra few %)



Motivation

1-5 Labeled Images

The halyard released, hands almost numb
with cold already, squirmed around to crawl
back and froze as he felt the sailboat rise
awkwardly to a huge wave. As far as the eye
could see the black ocean was slashed with
white streaks where waves were breaking.
The ... sea was angry and the sky screamed
at it ...

Unlabeled Text Corpus

Building strong models for
segmentation is hard due to scarcity
of labeled data.

Unaligned text is relatively plentiful

Can we apply co-occurences
observed in text articles on the same
topic to the image model itself?

Key assumptions:

-+ Concepts in the text have visual
counterparts in the image.

Neighboring concept pairs in the
text are more likely to also be
neighbors in the image.



Problem

(sess)
@ o - Learn a mapping
o between region-level
@ image features and text
labels.
- Given a test image, use
@ this mapping to predict

text labels for the image
at both a global level
(annotation) and at the
pixel level
(segmentation).

{sky, water,
sailboat}



Approach

-+ Use a superpixel algorithm to break images down into a set of non-
overlapping regions.

- Extract visual features for each region, and assign each region to a visual
word by clustering the features.

- Extract textual features for each text label by computing context and
adjective histograms.

-+ Learn a generative model of visual and textual features consisting of:

- A set of mappings between visual words and textual words, where many
visual words may map to a single textual word.

- A latent “concept” variable associated with each mapping which is
responsible for explaining all associated visual and textual features.

- A background model responsible for explaining all visual and textual left
out of the mapping.

-+ Use the learned mapping to perform annotation and segmentation on
unseen images.



Visual Features

Dv(4-1-8-5) =

context [ I I
histogram: =
color: position: =

Visual Features
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Visual
Words
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-+ For each region, extract the

following features:
- Color - RGB histogram

- Texture - Mean responses of
filterbanks

- Position - location in an 8x8
grid
-+ Shape - binary histogram of the

segment mask downscaled to
32 x 32

- Cluster each feature independently
- Assign each region to a visual word

by concatenating the assigned
cluster for each of the four features
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sailboat

Textual Features
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Textual Features

Context histogram:
normalized frequency of
words within window of
size four (only counting
nouns)

Adjective histogram:
Normalized frequencies
of co-occurring
adjectives



GGenerative Process




EM Algorithm

- M-Step

- Given a mapping, update projection matrices by
maximizing log likelihood:

- (j)eM

- E-Step

- Approximate the posterior distribution over all
possible mappings by a single weighted mapping
M.



M-Step
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Adapted from: A. Haghighi, P. Liang, T. Berg-Kirkpatrick, and D. Klein, “Learning Bilingual Lexicons from Monolingual Corpora.,” ACL, 2008.



An Alternate View
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Adapted from: A. Haghighi, P. Liang, T. Berg-Kirkpatrick, and D. Klein, “Learning Bilingual Lexicons from Monolingual Corpora.,” ACL, 2008.



Kernels

- Visual features:

- Product of linear context kernel and chi-squared
kernels for each the color, position, texture, and
shape features.

- Textual features:

- Product of linear context kernel and linear
adjective kernel.



E-step

- Computing expected value
@ over all mapping pairs is
\\‘» intractable
v :

<\‘// Instead, do hard EM and
\(’Xi‘ take k best mapping pairs

Mo, = argmaxlogp(V, T, M; &)
Ml:k

‘ |
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(RO
/ 0“’ kangaroo : : :
4,\\‘ J - Approximate with weighted
@ “\ matching of bipartite graph
/,) - Add new mapping pairs to

kKCCA training set and repeat




Strengths/Weaknesses of
Approach

Strengths

- Little reliance on labeled

iImage

- Bootstraps visual-text

mapping starting with only the
initial seed set

- Probabillistic model

Weaknesses

- Visual features are relatively

simple; spatial relationships
not preserved

- Sensitive to choices about

visual word clustering

- May not generalize to

infrequent visual words

- Many approximations in E-

step



Evaluation

+ Three components:

1. Justification of method for selecting visual
word clusters by balancing purity and
frequency

2. Experimental comparison of annotation and

segmentation performance against several
other models.

3. Exploration of performance of the model under
various settings of training set size and text
label size.



Visual Word Clustering

Full Feature Clustering Separate Feature Clustering
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Figure 3. L. Analysis of visual word clustering. Each datapoint
corresponds to the average statistics of a segment clustering. Left:
L(a). All segment features are concatenated and clustered into k
clusters. The figure shows the number of times a word of that
cluster appears vs how pure the corresponding labels of this clus-
ter are. Notice that no such clustering provides very pure words.
Right: L(b). Results from using our method of clustering differ-
ent feature types separately and concatenating them (see text for
details). This region-based representation gives much flexibility in
the trade-off between frequency and purity.

Strike balance between

- Purity: a visual word should
map to a single text label

- Frequency: each visual word
should be observed multiple
times in the data.

Concatenating and then
clustering features yields low

purity.
Clustering first then
concatenating provides a

continuum between purity and
frequency.



Annotation & Segmentation

- Dataset of 4 sports categories (badminton, rowing, sailing and
snowboarding)

Images from searching flickr.com

Articles from the New York Times corpus
- Restrict set of text labels to those used in previous work

- Train with 4 x 5 images and test with 4 x 25
- Segmentation: precision computed on pixelwise per class level

Annotation Alipr Corr LDA Total Scene Our Model (Our Model - Exp. IV)
Results P | R | F R | F P | R | F P | R | F P | R F
Mean A7 125 12017 | 37 |23 |1 .29 .76 | 42 | 35| .71 | 47 | .71 | .79 75

Segmentation Cao,2007 Total Scene Our Model (Our Model - Exp. IV)
Results P R | F P | R | F P | R | F P | R F
Mean 3532|331 45| 43| .44 | 30| 24| 27 | 46 | .52 49

Table 1. Top: II. Annotation Comparison. Precision, recall and F-measure for Alipr, Corr-LDA, Total Scene and our model. All models
except Alipr were jointly trained on four sports categories. However, our method uses two orders of magnitude less training images.
Bottom: IIL Segmentation Comparison. Results of segmentation averaged over all 20 objects. Last column: IV. Analysis of single

category training. Average results when each sports category is trained and tested separately.



http://flickr.com

Influence of Training Set Size
and Text Labels

Annotation Segmentation

——only seed 01 ——only seed
0.2 -+-only 20 -+ only 20
all words all words
10 15 20 5 10 15 20

Figure 5. V. Influence of the number of training images and
possible text labels. Average F-mecasures and standard devia-
tion for different numbers of training images (x-axis) and different
pools of textual words that may participate in the mapping. 5 sets
of randomly chosen training images were used for each setting.

More training images leads
to better performance

Better to restrict text labels if
possible, but this can be
overcome by adding more
training images



Sample Segmentations

Figure 6. Top two rows: IV. Analysis of single category training. Results of annotation and segmentation of the test set. Labels are
shown in boxes and the corresponding regions are overlayed with the same color as the boundary box. Bottom row: V. Results with
mappings from all words of the text corpus. If all words of the text corpus are allowed in mappings the evaluation becomes very hard.
Man might replace the human label in badminton images. Wind might show up in front of a sailboat etc.



Strengths/Weaknesses of
Evaluation

Strengths

- Justification of visual word

selection

-+ Exploration of behavior of
model under various training
settings.

Weaknesses

- No evaluation on standard

segmentation benchmark

- Training settings are not

comparable across models

- Single category training gets

good results but other models
are not evaluated under this
setting.



Discussion

- How can we improve the visual and text features in this
model?

- Some other multi-modal approaches dispense with
discrete mappings and instead focus on a ranking loss Iin
the latent space. Is the discrete mapping a feature or a
weakness of this model?

- Current state-of-the-art approaches for segmentation
get around the problem of small labeled data by
leveraging convnets trained for image classification.
Does this solve the problem or is there still more to be
gained by exploring the relationship between images
and text?



