
Learning	
  the	
  visual	
  interpreta0on	
  
of	
  sentences	
  

C.	
  L.	
  Zitnick,	
  D.	
  Parikh,	
  and	
  L.	
  Vanderwende*,	
  ICCV	
  13	
  
	
  

Presenter:	
  Shenlong	
  Wang	
  
CSC	
  2523	
  	
  

*Many	
  images	
  from	
  Larry	
  Zitnick’s	
  ICCV	
  13	
  and	
  slides,	
  Coyne	
  SIGGRAPH	
  01	
  



We	
  will	
  discuss…	
  
•  Text	
  to	
  clip	
  arts	
  images	
  
–  Learning	
  the	
  Visual	
  Interpreta1on	
  of	
  Sentences,	
  ICCV	
  
2013	
  C.	
  L.	
  Zitnick,	
  D.	
  Parikh,	
  and	
  L.	
  Vanderwende	
  

–  Bringing	
  Seman1cs	
  Into	
  Focus	
  Using	
  Visual	
  
Abstrac1on,	
  CVPR	
  2013	
  (Oral)	
  C.	
  L.	
  Zitnick	
  and	
  D.	
  
Parikh	
  

•  Text	
  to	
  3D	
  scene	
  
– WordsEye:	
  an	
  automa1c	
  text-­‐to-­‐scene	
  conversion	
  
system,	
  SIGGRAPH	
  2001,	
  B.	
  Coyne,	
  and	
  R.	
  Sproat.	
  

–  Learning	
  Spa1al	
  Knowledge	
  for	
  Text	
  to	
  3D	
  Scene	
  
Genera1on,	
  A.	
  Chang,	
  M.	
  Savva,	
  C.	
  Manning,	
  EMNLP	
  
2014	
  



Brief	
  Review	
  

•  Image	
  to	
  Sentence	
  
– Retrieval	
  
– Genera0on	
  

•  Sentence	
  to	
  Image	
  
– Retrieval	
  
– Genera0on?	
  



Goal	
  

•  To	
  generate	
  seman0c	
  meaningful	
  images	
  
	
  

Zitnick,	
  2013	
  



Two	
  professors	
  converse	
  in	
  front	
  of	
  a	
  blackboard.	
  



Person	
   Person	
  

Table	
  

Equa0on	
  

Equa0on	
  

Gaze	
  
Gaze	
  

Tie	
  
Tie	
  

Mustache	
  

Receding	
  hairline	
  Blackboard	
  

Two	
  professors	
  converse	
  in	
  front	
  of	
  a	
  blackboard.	
  

Zitnick,	
  2013	
  



Two	
  professors	
  converse	
  in	
  front	
  of	
  a	
  blackboard.	
  

Zitnick,	
  2013	
  



Person	
   Person	
  

Dining	
  table	
  

Felzenszwalb,	
  2010	
  

Face	
  
Face	
  

Cat	
  



Two	
  professors	
  converse	
  in	
  front	
  of	
  a	
  blackboard.	
  

Zitnick,	
  2013	
  



Two	
  professors	
  converse	
  in	
  front	
  of	
  a	
  blackboard.	
  

Image	
  from	
  123RF.com	
  



Photorealism	
  is	
  not	
  necessary	
  for	
  learning	
  
visual	
  interpreta0on	
  of	
  seman0cs	
  

Figure 16: John does not believe the radio is green.

Figure 17: The devil is in the details.

Degeneralization: General categorical terms like furniture can-
not be depicted directly. We depict these by picking a specific ob-
ject instance of the same class (in this case, perhaps chair). This
works well enough in most cases, as in John bought a piece of fur-
niture. But sometimes, the reference is to the general class itself and
hence the class, not an instance of it, should be depicted as in This
table lamp is not furniture. We currently do not handle this case.
One depiction strategy might be to choose a representative, generic
looking object within the class and affix a textual label consisting
of the class name itself.

5 Discussion and Future Work
We believe WordsEye represents a new approach to creating 3D
scenes and images. It is not intended to completely replace more
traditional 3D software tools, but rather to augment them by, for
example, allowing one to quickly set up a scene to be later refined
by other methods. WordsEye focuses on translating the semantic
intent of the user, as expressed in language, into a graphic represen-
tation. Since semantic intent is inherently ambiguous, the resulting
3D scene might only loosely match what the user expected. Such
variability, however, will be an asset in many cases, providing in-
teresting and surprising interpretations. And when users want to
control a depiction more precisely, they can adjust their language to
better specify the exact meaning and graphical constraints they en-

Figure 18: Some real 1st Grade homework, and a WordsEye “inter-
pretation”.

vision. We believe that the low overhead of language-based scene
generation systems will provide a natural and appealing way for
everyday users to create imagery and express themselves.
WordsEye is currently a research project and is under active de-

velopment. We expect that eventually this technology will evolve
into something that can be applied to a wide variety of applications,
including: First and second language instruction (see Figure 18);
e-postcards (cf. www.bluemountain.com); visual chat; story
illustrations; game applications; specialized domains, such as cook-
book instructions or product assembly.
In its current state, WordsEye is only a first step toward these

goals. There are many areas where the capabilities of the system
need to be improved, such as: Improvements in the coverage and
robustness of the natural language processing, including investigat-
ing corpus-based techniques for deriving linguistic and real-world
knowledge; language input via automatic speech recognition rather
than text; a larger inventory of objects, poses, depiction rules, and
states of objects; mechanisms for depicting materials and textures;
mechanisms for modifying geometric and surface properties of ob-
ject parts (e.g. John has a long red nose); environments, activities,
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Jenny is catching the ball. 
Mike is kicking the ball. 
The table is next to the tree. ? 

Goal 

Learning the Visual Interpretation of Sentences, 
Zitnick, Parikh, and Vanderwende, ICCV 2013. 
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Jenny is catching the ball. 
Mike is kicking the ball. 
The table is next to the tree. 

Semantics 

<Jenny> <catch> <ball> 
<Mike> <kick> <ball> 
<table> <next to> <tree> 

Jenny and Mike are running 
from the snake. 

<Jenny> <run from> <snake> 
<Mike> <run from> <snake> 

<primary object>  <relation>  <secondary object> 

Sentence	
  Parsing	
  



CRF	
  model	
  

Figure 2: Example tuples extracted from sentences. Correct tuples are shown in blue, and incorrect or incomplete tuples are shown in red (darker).

to place objects anywhere in the scene. The Turkers could
flip the clip art horizontally and choose between three dis-
crete scales or depths when placing clip art. Example scenes
are shown throughout the paper.

We model scenes using a fully connected CRF [21, 32]
where each node represents an object, and edges represent
their pairwise relations. The CRF allows us to compute the
conditional probability of a scene given a set of sentences.
An object is modeled using three types of parameters. The
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where  , � and ⇡ are the unary potentials, � is the pairwise
potential and Z(S, ✓) is the partition function that normal-
izes the distribution. The variables i and j index the set of
objects, and ✓ represents the model’s parameters. We now
describe how we compute each potential in turn.
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for each depth level. The model parameters ✓

�

(i, k) are set
equal to the empirical likelihood P (k|i) of the kth compo-
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tion priors for some objects are shown in Figure 3.
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The relative 2D location is modeled using a GMM similar
to the absolute spatial location in Equation (3). The param-
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so that we may determine
whether object i is facing object j. This is important espe-
cially for humans and animals where the eye gaze direction
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Their parameters are learned using the K-means algorithm
(9 components). Each object is assigned one of a discrete
set of depths, z

i

. A separate set of components are learned
for each depth level. The model parameters ✓

�

(i, k) are set
equal to the empirical likelihood P (k|i) of the kth compo-
nent given the object i in the training data. Absolute loca-
tion priors for some objects are shown in Figure 3.

Attributes: The attribute potential encodes the likelihood
of observing the attributes given the sentences if the object
is a person and is 0 otherwise
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The variable k indexes the set of binary attributes containing
5 expressions e
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, 7 poses g
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and 10 wearable items h
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(hats
and glasses.) We discuss how we learn the parameters ✓
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in
Section 5.

Relative location: The pairwise potential �models the rel-
ative location of pairs of objects. We model the objects’ rel-
ative 2D image position separately from the relative depth,
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The relative 2D location is modeled using a GMM similar
to the absolute spatial location in Equation (3). The param-
eters ✓
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(i, j, k, S) compute the likelihood P (k|i, j, S) of
the kth component given the object types and sentences.
We discuss how these parameters are computed in Section
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object i
is facing when computing �

x

so that we may determine
whether object i is facing object j. This is important espe-
cially for humans and animals where the eye gaze direction
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Figure 3: Examples of nouns with highest mutual information for six ob-
jects. The absolute spatial prior for each object is displayed in red. A list of
the 200 most frequent nouns can be found in the supplementary material.

is semantically meaningful [41]. The value of P (�

x

,�

y

|k)
is computed using a standard normal distribution. Once
again the means and standard deviations of the mixture
components are shared among all object classes. This prop-
erty is essential if we hope to learn relations that gener-
alize across objects, i.e. that “next to” implies the same
spatial relationship regardless of the objects that are “next
to” each other. The parameters of the mixture components
are learned using the K-means algorithm (24 components).
Note the values of the mixture components inherently en-
code co-occurrence information, i.e. their values are larger
for objects that commonly co-occur.

The parameters ✓

�,z

(i, j,�

z

, S) used by the relative
depth potential encode the probability of the depth ordering
of two objects given the sentences P (�

z

|i, j, S). �

z

has
three discrete values {�1, 0, 1} corresponding to whether
object i is behind object j, at the same depth, or in front of
object j. We describe how we compute the parameters ✓

�,z

in Section 5.

4. Sentence parsing
In the previous section we described our CRF model for

scene generation. A majority of the model’s parameters for
computing the unary and pairwise potentials are dependent
on the set of given sentences S. In this section we describe
how we parse a set of sentences into a set of predicate tu-
ples. In the following section we describe how to determine
the CRF parameters given the predicate tuples.

A set of predicate tuples is a common method for en-
coding the information contained in a sentence. Several
papers have also explored the use of various forms of tu-
ples for use in semantic scene understanding [8, 31, 19]. In
our representation a tuple contains a primary object, a re-
lation, and an optional secondary object. The primary and
secondary object are both represented as nouns, where the
relation may take on several forms. The relation may be
a single word, such as a verb or preposition, or it may be a
combination of multiple words such as <verb, preposition>
or <verb, adjective> pairs. Examples of sentences and tu-
ples are shown in Figure 2. Note that each sentence can

Figure 4: Figure showing the probability of expression (red) and pose
(blue) for the primary object for several predicate relations, larger circle
implies greater probability.

produce multiple tuples. The tuples are found using a tech-
nique called semantic roles analysis [28] that allows for the
unpacking of a sentence’s semantic roles into a set of tuples.
Note that the words in the sentences are represented using
their lemma or “dictionary look-up form” so that different
forms of the same word are mapped together. For instance
“run”, “ran”, “runs” are all mapped to “run”. Each sen-
tence may contain multiple tuples. Finally, while we model
numerous relationships within a sentence, there are many
we do not model and semantic roles analysis often misses
tuples and may contain errors. One notable relation not cur-
rently modeled by our system is attributive adjectives. For
instance “happy” in “The happy boy” is a attributive adjec-
tive that we do not capture. However, “happy” in “The boy
is happy” is a predicative adjective that is modeled by our
tuple extractor. For semantic roles analysis we use the code
supplied online by the authors of [28].

In our experiments we use a set of 10,000 clip art scenes
provided by [41]. For each of these scenes we gathered two
sets of descriptions, each containing three sentences using
AMT. The turkers were instructed to “Please write three
simple sentences describing different parts of the scene.
These sentences should range from 4 to 8 words in length
using basic words that would appear in a book for young
children ages 4-6.” 9,000 scenes and their 54,000 sentences
were used for training, and 1000 descriptions (3000 sen-
tences) for the remaining 1000 scenes were used for testing.
319 nouns (objects) and 445 relations were found at least 8
times in the sentences.

5. Scene generation
In this section, we assume each scene has a set of tu-

ples T = {t1, . . . , tn}. Each tuple t

i

contains three in-
dices {p

i

, r

i

, s

i

} corresponding to the tuple’s primary ob-
ject p

i

2 Q, relation r

i

2 R and secondary object s
i

2 Q,
where Q is the set of objects and R the set of relations. We
now describe how the tuples are used to compute the CRF’s
parameters for scene generation, followed by how we gen-
erate scenes using the CRF.

Each tuple contains one or two nouns and a relation that
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Figure 3: Examples of nouns with highest mutual information for six ob-
jects. The absolute spatial prior for each object is displayed in red. A list of
the 200 most frequent nouns can be found in the supplementary material.
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is computed using a standard normal distribution. Once
again the means and standard deviations of the mixture
components are shared among all object classes. This prop-
erty is essential if we hope to learn relations that gener-
alize across objects, i.e. that “next to” implies the same
spatial relationship regardless of the objects that are “next
to” each other. The parameters of the mixture components
are learned using the K-means algorithm (24 components).
Note the values of the mixture components inherently en-
code co-occurrence information, i.e. their values are larger
for objects that commonly co-occur.
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three discrete values {�1, 0, 1} corresponding to whether
object i is behind object j, at the same depth, or in front of
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in Section 5.

4. Sentence parsing
In the previous section we described our CRF model for

scene generation. A majority of the model’s parameters for
computing the unary and pairwise potentials are dependent
on the set of given sentences S. In this section we describe
how we parse a set of sentences into a set of predicate tu-
ples. In the following section we describe how to determine
the CRF parameters given the predicate tuples.

A set of predicate tuples is a common method for en-
coding the information contained in a sentence. Several
papers have also explored the use of various forms of tu-
ples for use in semantic scene understanding [8, 31, 19]. In
our representation a tuple contains a primary object, a re-
lation, and an optional secondary object. The primary and
secondary object are both represented as nouns, where the
relation may take on several forms. The relation may be
a single word, such as a verb or preposition, or it may be a
combination of multiple words such as <verb, preposition>
or <verb, adjective> pairs. Examples of sentences and tu-
ples are shown in Figure 2. Note that each sentence can

Figure 4: Figure showing the probability of expression (red) and pose
(blue) for the primary object for several predicate relations, larger circle
implies greater probability.

produce multiple tuples. The tuples are found using a tech-
nique called semantic roles analysis [28] that allows for the
unpacking of a sentence’s semantic roles into a set of tuples.
Note that the words in the sentences are represented using
their lemma or “dictionary look-up form” so that different
forms of the same word are mapped together. For instance
“run”, “ran”, “runs” are all mapped to “run”. Each sen-
tence may contain multiple tuples. Finally, while we model
numerous relationships within a sentence, there are many
we do not model and semantic roles analysis often misses
tuples and may contain errors. One notable relation not cur-
rently modeled by our system is attributive adjectives. For
instance “happy” in “The happy boy” is a attributive adjec-
tive that we do not capture. However, “happy” in “The boy
is happy” is a predicative adjective that is modeled by our
tuple extractor. For semantic roles analysis we use the code
supplied online by the authors of [28].

In our experiments we use a set of 10,000 clip art scenes
provided by [41]. For each of these scenes we gathered two
sets of descriptions, each containing three sentences using
AMT. The turkers were instructed to “Please write three
simple sentences describing different parts of the scene.
These sentences should range from 4 to 8 words in length
using basic words that would appear in a book for young
children ages 4-6.” 9,000 scenes and their 54,000 sentences
were used for training, and 1000 descriptions (3000 sen-
tences) for the remaining 1000 scenes were used for testing.
319 nouns (objects) and 445 relations were found at least 8
times in the sentences.

5. Scene generation
In this section, we assume each scene has a set of tu-

ples T = {t1, . . . , tn}. Each tuple t

i

contains three in-
dices {p

i

, r

i

, s

i

} corresponding to the tuple’s primary ob-
ject p

i

2 Q, relation r

i

2 R and secondary object s
i

2 Q,
where Q is the set of objects and R the set of relations. We
now describe how the tuples are used to compute the CRF’s
parameters for scene generation, followed by how we gen-
erate scenes using the CRF.

Each tuple contains one or two nouns and a relation that
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Figure 6: Three random example scenes generated by our approach (Full-CRF) for the given input description (left). The resultant tuples are also shown
(2nd column). Our scenes faithfully reproduce the meaning of the input descriptions. In the first example (top), our scene has a soccer ball instead of the
foot ball in the ground truth scene (GT). This is because the input description did not specify the type of ball. The tree mentioned in the description is
missing in our scene because the tuples missed the tree. The bag-of-words model (BoW) can not infer who is kicking the ball, and hence returns an image
where Jenny is kicking the ball instead of Mike. The CRF model updated with only the nouns (Noun-CRF) contains the right objects, but at locations and
relationships inconsistent with the input description. Random scenes from the dataset (Random) are also shown to demonstrate the variety of scenes in the
dataset. More examples can be found in the supplementary material.

and the depth parameters by
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Note the values of P (k|r
i

) and P (�

z
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i

) are not dependent
on the object types. Thus we may learn the generic prop-
erties of a relation such as “next to” that is not dependent
on the specific pair of objects that are next to each other.
This allows us to generalize the relations to object pairs that
may not have been present in the training data. Examples
of the relative spatial locations learned for different rela-
tions are shown in Figure 5. Notice the variety of spatial
relations captured. Interestingly, “want”, “watch”, “scare”
and “laugh” all learn similar relative spatial locations. In-
tuitively, this makes sense since each relation implies the
primary object is looking at the secondary object, but the
secondary object may be facing either direction. If the pair-
wise parameters are not specified by the relations in the tu-
ples, the parameters are set to the empirical prior probabil-
ities given the object types. If a tuple does not contain a
secondary object, the tuple is not used to update the param-
eters for the pairwise potentials.

5.1. Generating scenes using the CRF

After the potentials of the CRF have been computed
given the tuples extracted from the sentences, we generate a
scene using a combination of sampling and iterated condi-
tional modes. Since there are 58 objects and each object
has a 3D position, an orientation and possible attributes,
a purely random sampling approach would require a pro-
hibitively large number of random samples to find a high
likelihood scene. Instead we iteratively select at random

a single object i and determine {c
i

,�

i

, 

i

} assuming the
other objects’ assignments are fixed. The occurrence of
the selected object i is randomly sampled with probability
✓

 

(1, i, S). If it is visible we apply an approach similar to
iterated conditional modes that maximizes the joint proba-
bility of the CRF. That is, the most probable position given
the location of the other objects is chosen. Similarly, the
most likely orientation d

i

for the object is chosen. If the
object is a person, the most likely expression and pose are
chosen. If the object is something that may be worn such
as a hat or glasses, its position is determined by the per-
son whose attributes indicate it is most likely to be worn by
them. If a person is not present, the worn object’s position is
determined similarly to other objects. This describes our ap-
proach to generating one sample. We generate 30,000 such
samples and pick the one with the maximum probability.
Examples of generated scenes are shown in Figure 6. The
qualitative results shown in Figures 3 to 6 show the algo-
rithm is learning intuitively “correct” interpretations of se-
mantic phrases that will likely transfer to real images. Eval-
uating these models on real images is part of future work.

6. Results
We evaluate our approach on two tasks: scene generation

and image retrieval.

6.1. Scene Generation

We use each one of our 1000 test descriptions (each de-
scription is a set of 3 sentences) as input, and generate a
scene using our approach. We conduct human studies to
evaluate how well our generated scene matches the input
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Figure 7: (left) The results of a human study asking which scenes better depicted a set of sentences. The subjects find our scenes (Full-CRF) better represent
the input sentences than all baseline approaches. In fact, our approach wins over or ties with the ground truth scenes frequently. (middle) Subjects were
asked to score how well a scene depicted a set of three sentences from 1 (very poor) to 5 (very well). We achieve absolute scores slightly worse than the
ground truth, but better than the baselines. (right) Our approach finds more correct matches in the top K retrieved images than a bag-of-words baseline.

description. We compare our approach (Full-CRF) to the
following baselines. GT: The ground truth uses the origi-
nal scenes that the mechanical turkers’ viewed while writ-
ing their sentence descriptions. Since all of these scenes
should provide good matches to the sentences, the best we
can expect from our approach is to tie with the ground truth.
BoW: We build a bag-of-words representation for the input
description that captures whether a word (primary object,
secondary object or relation) is present in the description
or not. 1 Using this representation, we find the most sim-
ilar description from the training dataset of 9, 000 scenes.
The corresponding scene is returned as the output scene.
The same NLP parsing was used for this baseline as our ap-
proach. Notice that this baseline does not generate a novel
scene. Noun-CRF: This baseline generates a scene using
the CRF, but only based on the primary and secondary ob-
ject nouns present in the predicate tuples. The tuple’s rela-
tion information is not used, and the corresponding poten-
tials in the CRF use the training dataset priors. Random:
We pick a random scene from the training data.

We conducted our user studies on Amazon Mechanical
Turk. We paired our result with each of the above 4 base-
lines for all 1000 test descriptions. Subjects were shown
the input description and asked which one of the two scenes
matched the description better, or if both equally matched.
Five subjects were shown each pair of scenes. The results
are shown in Figure 7 (left). We also conducted a study
where subjects were shown the input description and the
output scene and asked on a scale of 1 (very poorly) - 5
(very well), how well the scene matched the description.
Results are shown in Figure 7 (middle). We see that our ap-
proach significantly outperforms all baselines on both tasks.
It is especially notable that our approach wins over or ties
with the ground truth scenes (GT) in 50% of the examples.
In terms of the absolute scores, our approach scores a re-
spectable average of 3.46 compared to the score of 4.64 for
the ground truth scenes. The fact that our approach signifi-
cantly outperforms the bag-of-words nearest neighbor base-

1Entire tuples occur too rarely to be used as “words”.

line (BoW) (1.99) and the nouns-only CRF (Noun-CRF)
baseline (2.03) shows that it is essential to learn the seman-
tic meaning of complex language structures that encode the
relationships among objects in the scene. As expected the
random baseline performs the worst (1.11), but it demon-
strates that the dataset is challenging in that random scenes
rarely convey the same semantic meaning. Some randomly
chosen qualitative results are shown in Figure 6, and addi-
tional results may be viewed in the supplementary material.

6.2. Image Retrieval
Given an input test description (i.e. a user-provided

query), we use our CRF to score all 1000 test scenes in
the dataset. We sort the images by this score and return
the top K images. We report the percentage of queries that
return the true target image in the top K images. We com-
pare results for varying values of K to the BoW baseline
that only matches tuple objects and relations extracted from
a separate set of 3,000 training sentences on the 1000 test
scenes. The BoW baseline does not use any visual features.
Results are shown in Figure 7 (right). We see that our ap-
proach significantly outperforms the baseline. A user would
have to browse through only a tenth of the images using our
approach as compared to the baseline to achieve the same
recall of 75%. On average, our approach ranks the true tar-
get image at 37 compared to 150 by the baseline. This helps
demonstrate that obtaining a deeper visual interpretation of
a sentence significantly improves the quality of descriptive
text-based queries.

7. Discussion
The unreliability of current detectors on real images has

limited our ability to take a step forward and research com-
plex semantic relations to visual data. Hence, many pa-
pers [2, 16, 17, 19] only learn a relatively small number of
relations (19 in [16]). Our paper is the first to reason about
> 400 diverse relations (combinations of verbs, adjectives,
prepositions) containing subtle differences between con-
cepts such as “ran after” and “ran to.” Furthermore, pre-
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GT Full-CRF BoW Noun-CRF Random

Figure 18: Input description: Jenny has a wizard hat on. A balloon is in the sky. Lightning is in the air. Tuples: Jenny

have:ptcl:on hat; balloon be ; lightning be air;

GT Full-CRF BoW Noun-CRF Random

Figure 19: Input description: Jenny is kicking the football. The pizza is on the table. The airplane is flying over Jenny.

Tuples: Jenny kick football; pizza be table; airplane fly:p:over Jenny;

GT Full-CRF BoW Noun-CRF Random

Figure 20: Input description: Mike is sitting next to a cat. Mike is angry because he fell down. Jenny is running towards

Mike to help him. Tuples: Mike sit:p:next to cat; Mike be:pa:angry ; he fall ; Jenny run:p:towards Mike; Jenny help ;

GT Full-CRF BoW Noun-CRF Random

Figure 21: Input description: It is lighting out. Mike and Jenny are upset. Mike and Jenny are sitting on the ground with

there legs crossed. Tuples: it light ; Mike sit ground; Jenny sit ground; ground with leg;

GT Full-CRF BoW Noun-CRF Random

Figure 22: Input description: Jenny is throwingthe ball. Mike is catching the ball. The pie is on the table. Tuples: Jenny

be:pa:ball ; Mike catch ball; pie be table;
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GT Full-CRF BoW Noun-CRF Random

Figure 18: Input description: Jenny has a wizard hat on. A balloon is in the sky. Lightning is in the air. Tuples: Jenny

have:ptcl:on hat; balloon be ; lightning be air;

GT Full-CRF BoW Noun-CRF Random

Figure 19: Input description: Jenny is kicking the football. The pizza is on the table. The airplane is flying over Jenny.

Tuples: Jenny kick football; pizza be table; airplane fly:p:over Jenny;

GT Full-CRF BoW Noun-CRF Random

Figure 20: Input description: Mike is sitting next to a cat. Mike is angry because he fell down. Jenny is running towards

Mike to help him. Tuples: Mike sit:p:next to cat; Mike be:pa:angry ; he fall ; Jenny run:p:towards Mike; Jenny help ;

GT Full-CRF BoW Noun-CRF Random

Figure 21: Input description: It is lighting out. Mike and Jenny are upset. Mike and Jenny are sitting on the ground with

there legs crossed. Tuples: it light ; Mike sit ground; Jenny sit ground; ground with leg;

GT Full-CRF BoW Noun-CRF Random

Figure 22: Input description: Jenny is throwingthe ball. Mike is catching the ball. The pie is on the table. Tuples: Jenny

be:pa:ball ; Mike catch ball; pie be table;

GT Full-CRF BoW Noun-CRF Random

Figure 43: Input description: Mike is mad his ice melted. Jenny is scared of the bear. The bear is wearing a viking hat.

Tuples: Mike be:pa:mad ; Jenny be:pa:scared ; bear wear hat;

GT Full-CRF BoW Noun-CRF Random

Figure 44: Input description: Jenny is sitting by the fire. Mike is wearing the hat. The pie is on the table. Tuples: Jenny sit

; Mike wear hat; pie be table;

GT Full-CRF BoW Noun-CRF Random

Figure 45: Input description: Mike is sitting near the dog. Mike is wearing classes. Jenny is smiling at the dog. Tuples:

Mike sit:p:near dog; Mike wear class; Jenny smile dog;

GT Full-CRF BoW Noun-CRF Random

Figure 46: Input description: The bear came to join the cookout Jenny reminds him mustard gives him a tummy ache Mike

wishes the bear would just take his food and go Tuples: bear join cookout; Jenny remind give; mustard give ache; Mike wish

take; Mike wish go; bear take food; bear go ;

GT Full-CRF BoW Noun-CRF Random

Figure 47: Input description: Mike and Jenny are sitting by a fire. Mike and Jenny are having a picnic. Mike is sitting under

a tree. Tuples: Mike sit ; Jenny sit ; Mike have picnic; Jenny have picnic; Mike sit tree;
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Figure 6: Spatial tags for “base” and “cup”.

Figure 7: The daisy is in the test tube.

tial relations, depends on the shapes and surfaces of those objects.
Additionally, terms like in and under can have different possible
spatial intepretations depending on the objects in question. For ex-
ample, The cat is under the table and The rug is under the table
denote different spatial areas. Some examples of spatial relations
are described below.

For The bird is on the cat, we find a top surface tag for the cat
(on its back) and a base tag for the bird (under its feet). We then
reposition the bird so that its feet are on the cat’s back.

For The daisy is in the test tube, we find the cup tag for the test
tube and the stem tag for the daisy and put the daisy’s stem into the
test tube’s cupped opening. See Figure 7. Spatial tags for stems are
applied to any object with a long, thin base leading to a thicker or
wider top area. Some objects with stems are stop signs, umbrellas,
palm trees and street lamps.

For The elephant is under the chair, we look for a canopy tag
for the chair (the area under the seat of the chair between the legs)
and put the elephant there. This might involve resizing the elephant
to make it fit. However, as noted earlier, under can also be inter-
preted so that the chair is put on the elephant’s back. Depending on
the size and shape of the objects in question, one interpretation or
another will be chosen. In general, we try to choose an interpreta-
tion that avoids resizing. However, we note that gross changes of
scale are extremely common in advertising and often highlight the
significance or functional role of the objects in question.

These examples are not meant to be an exhaustive list, but rather
illustrate the manner in which we use object tags to depict spatial
relations. A rendered example of a spatial relation using the top
surface and enclosure spatial tags is shown in Figure 8.

Figure 8: The bird is in the bird cage. The bird cage is on the chair.

Figure 9: Usage pose for a 10-speed.

3.3 Poses and Grips
Most actions are depicted in WordsEye via the use of predefined
poses, where a pose can be loosely defined as a character in a con-
figuration suggestive of a particular action.
Standalone poses consist of a character in a particular body po-

sition. Examples of this are waving, running, bowing, or kneeling.
Specialized usage poses involve a character using a specific in-

strument or vehicle. Some examples are swinging a baseball bat,
shooting a rifle, and riding a bicycle. For a bicycle, a human char-
acter will be seated on a bicycle with its feet on the pedals and hands
on the handlebars. In these, each pose is tightly associated with a
particular manipulated object; see Figure 9 for an example.
Generic usage poses involve a character interacting with a

generic stand-in object. The stand-in objects are represented by
simple markers like spheres and cubes. We use these in cases where
another object can convincingly be substituted for the stand-in. For
example, in the throw small object pose (Figure 10, left panel), the
ball is represented by a generic sphere. If the input sentence is John
threw the watermelon, the watermelon will be substituted for the
sphere in the same relative position with respect to the hand. The
new object can be substituted as is or, alternatively, resized to match
the size of the stand-in sphere. The positional and sizing constraints
are associated with the stand-in objects and are stored in the pose.
Grip poses involve a character holding a specific object in a cer-
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John said that the cat on the tablewas

Figure 2: Dependency structure for John said that the cat was on
the table..

Since linguistic descriptions tend to be at a high level of abstrac-
tion, there will be a certain amount of unpredictability in the graph-
ical result. This same tradeoff is seen in computational models of
behavior [21, 12] and natural phenomena. We also acknowledge
up front that it is infeasible to fully capture the semantic content of
language in graphics. But we do believe that a large number of in-
teresting 3D scenes can be described and generated directly through
language, and likewise that a wide variety of text can be effectively
depicted.
In the remainder of this paper, we describe each of the com-

ponents of WordsEye, starting with an overview of the linguistic
analysis techniques used.

2 Linguistic Analysis
The text is initially tagged and parsed using a part-of speech-tagger
[7] and a statistical parser [9]. The output of this process is a parse
tree that represents the structure of the sentence. Note that since the
parser is statistical, it will attempt to resolve ambiguities, such as
prepositional phrase attachments, according to the statistics of the
corpus on which it was trained (the Penn Treebank [19]). The parse
tree is then converted into a dependency representation (see [16],
inter alia) which is simply a list of the words in the sentence, show-
ing the words that they are dependent on (the heads) and the words
that are dependent on them (the dependents). Figure 2 shows an
example dependency structure, with arrows pointing from heads to
their dependents. The reason for performing this conversion from
parse tree to dependency structure is that the dependency represen-
tation is more convenient for semantic analysis. For example, if we
wish to depict the large naughty black cat we might actually have
no way of depicting naughty, but we still would like to depict large
and black. To do this we need merely to look at cat’s dependents
for depictable adjectives, which is in general simpler than hunting
for depictable modifiers in a tree structure headed by cat.
The next phase of the analysis involves converting the depen-

dency structure into a semantic representation. The semantic repre-
sentation is a description of the entities to be depicted in the scene,
and the relationships between them. The semantic representation
for the sentence John said that the cat is on the table is given in
Figure 3. The semantic representation is a list of semantic repre-
sentation fragments, each fragment corresponding to a particular
node of the dependency structure. Consider “node1”, which is the
semantic representation fragment for the action say, deriving from
the node say in the dependency structure. The subject is “node2”
(corresponding to John), and the direct object is the collection of
“node5”, “node4” and “node7”, corresponding to nodes associated
with the subordinate clause that the cat was on the table. Each
of these nodes in turn correspond to particular nodes in the depen-
dency structure, and will eventually in turn be depicted by a given
3D object: so John will be depicted (in the current system) by a
humanoid figure we call “Mr. Happy”, and table will be depicted
by one of a set of available 3D table objects.2

the Mirai 3D animation system from IZware, and uses 3D models from
Viewpoint.

2An individual semantic representation fragment as currently used in
WordsEye may seem relatively simple when compared, say, with the PAR

(("node2" (:ENTITY :3D-OBJECTS ("mr_happy")
:LEXICAL-SOURCE "John" :SOURCE SELF))

("node1" (:ACTION "say" :SUBJECT "node2"
:DIRECT-OBJECT ("node5" "node4" "node7")...))

("node5" (:ENTITY :3D-OBJECTS ("cat-vp2842")))
("node4" (:STATIVE-RELATION "on" :FIGURE "node5"

:GROUND "node7"))
("node7" (:ENTITY :3D-OBJECTS

("table-vp14364" "nightstand-vp21374"
"table-vp4098" "pool_table-vp8359" ...))))

Figure 3: Semantic representation for John said that the cat was on
the table.

Semantic representation fragments are derived from the depen-
dency structure by semantic interpretation frames. The appropriate
semantic interpretation frames are found by table lookup, given the
word in question. These frames differ depending upon what kind
of thing the word denotes. For nouns such as cat or table, Words-
Eye uses WordNet [10], which provides various kinds of semantic
relations between words, the particular information of interest here
being the hypernym and hyponym relations. The 3D objects are
keyed into the WordNet database so that a particular model of a cat,
for example, can be referenced as cat, or feline or mammal, etc.
Personal names such as John or Mary are mapped appropriately
to male or female humanoid figures. Spatial prepositions such as
on are handled by semantic functions that look at the left and right
dependents of the preposition and construct a semantic representa-
tion fragment depending upon their properties. Note that there has
been a substantial amount of previous work into the semantics of
spatial prepositions; see, inter alia, [5, 14, 15] and the collections
in [11, 20]; there has also been a great deal of interesting cross-
linguistic work, as exemplified by [22]. There have been only a
small number of implementations of these ideas however; one so-
phisticated instance is [24]. One important conclusion of much of
this research is that the interpretation of spatial relations is often
quite object-dependent, and relates as much to the function of the
object as its geometric properties, a point that ties in well with our
use of spatial tags, introduced below in Section 3.1.
Finally, most verbs are handled by semantic frames, which are

informed by recent work on verbal semantics, including [18]. The
semantic entry for say is shown in Figure 4. This semantic entry
contains a set of verb frames, each of which defines the argument
structure of one “sense” of the verb say. For example, the first
verb frame, named the SAY-BELIEVE-THAT-S-FRAME, has as
required arguments a subject and a THAT-S-OBJECT, or in other
words an expression such as that the cat is on the table. Optional
arguments include action location (e.g., John said in the bathroom
that the cat was on the table) and action time (e.g., John said yes-
terday that the cat was on the table.) Each of these argument spec-
ifications causes a function to be invoked to check the dependen-
cies of the verb for a dependent with a given property, and assigns
such a dependent to a particular slot in the semantic representation
fragment. WordsEye currently has semantic entries for about 1300
English nouns (corresponding to the 1300 objects described in Sec-
tion 3.1), and about 2300 verbs, in addition to a few depictable ad-
jectives, and most prepositions. The vocabulary is, however, readily
extensible and is limited only by what we are able to depict.
In addition to semantically interpreting words that denote par-

representation of [3]. But bear in mind that an entire semantic represen-
tation for a whole scene can be a quite complex object, showing relations
between many different individual fragments; further semantic information
is expressed in the depiction rules described below. Also note that part of
the complexity of PAR is due to the fact that that system is geared towards
generating animation rather than static scenes.

Figure 6: Spatial tags for “base” and “cup”.

Figure 7: The daisy is in the test tube.

tial relations, depends on the shapes and surfaces of those objects.
Additionally, terms like in and under can have different possible
spatial intepretations depending on the objects in question. For ex-
ample, The cat is under the table and The rug is under the table
denote different spatial areas. Some examples of spatial relations
are described below.

For The bird is on the cat, we find a top surface tag for the cat
(on its back) and a base tag for the bird (under its feet). We then
reposition the bird so that its feet are on the cat’s back.

For The daisy is in the test tube, we find the cup tag for the test
tube and the stem tag for the daisy and put the daisy’s stem into the
test tube’s cupped opening. See Figure 7. Spatial tags for stems are
applied to any object with a long, thin base leading to a thicker or
wider top area. Some objects with stems are stop signs, umbrellas,
palm trees and street lamps.

For The elephant is under the chair, we look for a canopy tag
for the chair (the area under the seat of the chair between the legs)
and put the elephant there. This might involve resizing the elephant
to make it fit. However, as noted earlier, under can also be inter-
preted so that the chair is put on the elephant’s back. Depending on
the size and shape of the objects in question, one interpretation or
another will be chosen. In general, we try to choose an interpreta-
tion that avoids resizing. However, we note that gross changes of
scale are extremely common in advertising and often highlight the
significance or functional role of the objects in question.

These examples are not meant to be an exhaustive list, but rather
illustrate the manner in which we use object tags to depict spatial
relations. A rendered example of a spatial relation using the top
surface and enclosure spatial tags is shown in Figure 8.

Figure 8: The bird is in the bird cage. The bird cage is on the chair.

Figure 9: Usage pose for a 10-speed.

3.3 Poses and Grips
Most actions are depicted in WordsEye via the use of predefined
poses, where a pose can be loosely defined as a character in a con-
figuration suggestive of a particular action.
Standalone poses consist of a character in a particular body po-

sition. Examples of this are waving, running, bowing, or kneeling.
Specialized usage poses involve a character using a specific in-

strument or vehicle. Some examples are swinging a baseball bat,
shooting a rifle, and riding a bicycle. For a bicycle, a human char-
acter will be seated on a bicycle with its feet on the pedals and hands
on the handlebars. In these, each pose is tightly associated with a
particular manipulated object; see Figure 9 for an example.
Generic usage poses involve a character interacting with a

generic stand-in object. The stand-in objects are represented by
simple markers like spheres and cubes. We use these in cases where
another object can convincingly be substituted for the stand-in. For
example, in the throw small object pose (Figure 10, left panel), the
ball is represented by a generic sphere. If the input sentence is John
threw the watermelon, the watermelon will be substituted for the
sphere in the same relative position with respect to the hand. The
new object can be substituted as is or, alternatively, resized to match
the size of the stand-in sphere. The positional and sizing constraints
are associated with the stand-in objects and are stored in the pose.
Grip poses involve a character holding a specific object in a cer-

Figure 10: “Throw small object” pose and “hold wine bottle” grip.

Figure 11: John rides the bicycle. John plays the trumpet.

tain way. Some objects can be used in a variety of ways while being
held in the same grip. For instance, if we have a grip for holding a
wine bottle (Figure 10, right panel), this grip can be used in vari-
ous poses, such as pouring wine, giving the bottle to someone else,
putting the bottle on a surface, and so forth. This technique allows
us to avoid a combinatorial explosion in the number of poses for
specific objects. We do not want a separate pour, give, and put pose
for every object in our database. We avoid this by having a small
number of grips for each object and then selecting the grip appro-
priate for the more generic action pose. To do this, we first put and
attach the object in the hand before going to the action pose. This
is facilitated by classifying objects and poses into categories repre-
senting their shape. For example, the poses swing long object and
hold long object might be applied to a sword in a hold sword grip.
Bodywear poses involve a character wearing articles of clothing

like hats, gloves, shoes, etc. These are used to attach the object to
the appropriate body part and are later combined with other poses
and body positions.
Another strategy we adopt is to combine upper and lower body

poses. Some poses require the whole body to be positioned, while
for others only the upper or lower body needs to be positioned.
We use the simple procedure of associating an active body part for
each pose, and then moving only those bones that are necessary
when more than one pose is applied to the same character. For
example, see Figure 11 which shows a character riding a bicycle
(lower) while playing the trumpet (upper).

3.4 Inverse Kinematics
Poses are effective for putting a character into a stance that suggests
a particular action. But for a scene to look realistic and convinc-

Figure 12: Spatial tag for “push handle” of baby carriage, indicated
by the box around the handle.

Figure 13: The lawn mower is 5 feet tall. John pushes the lawn
mower. The cat is 5 feet behind John. The cat is 10 feet tall.

ing, the character must sometimes interact directly with the envi-
ronment. We use IK to do this [25]. So, for example, in pointing, it
is not enough just to put the character into a pointing pose since the
object pointed at can be anywhere in the environment. Instead, the
hand must be moved with IK to point in the desired direction.
We also use IK to modify existing poses. For example, the push

large object pose consists of the character leaning toward an object
with legs in stride and arms outstretched. Consider, however, push-
ing various objects such as a lawnmower, a car, or a baby carriage.
Since the different objects have handles and surfaces at different
heights, no single body pose can work for them all. The hands must
be located at the correct position on the object. To do this, the char-
acter is first put behind the object in the push large object pose.
Then the hands are moved using IK to the handle or vertical sur-
face of the object. Note that this technique relies on object tags for
handle or vertical surface in order to determine the target position
for the IK; see Figure 12, and Figure 13 for a rendered example that
uses IK to move the hands to the handle of a lawnmower.

3.5 Attributes
WordsEye currently handles attributes for size, color, transparency
and shape. Color and transparency are applied to the object as sur-
face attributes. They are applied to the dominant part (as defined in
the object database) of the object unless otherwise specified. The
shape of the object can be modified using shape displacements in
the Mirai animation system. These are predefined states of ver-
tex positions associated with the 3D model that can be additively
combined. For example, in a human face, there can be separate dis-
placements for a smile and a wink. The various displacements can

Coyne,	
  2001	
  



Objects	
  not	
  depicable	
  
•  Texturaliza+on	
  
•  Emblema+za+on	
  	
  
– Light	
  bulb	
  for	
  idea,	
  church	
  for	
  religion	
  

•  Characteriza+on	
  	
  
– Football	
  player	
  will	
  wear	
  a	
  football	
  helmet	
  

•  Conven+on	
  icon	
  
– Don’t	
  think	
  

•  Degeneraliza+on	
  	
  
– Chair	
  for	
  furniture	
  
	
  



Text	
  to	
  3D	
  Scene	
  

We rely on the functional properties of objects to make some
of these interpretations. Verbs typically range along a continuum
from pure descriptions of state changes like John went to the store
to more explicit specifications of manner like John crawled to the
store. Sometimes an instrument (or vehicle) is mentioned as in John
rode a bicycle to the store while in other cases, the type of instru-
ment is only implied by the verb as in John rode to the store. To find
implied instruments, we look for objects whose functional proper-
ties are compatible with the instrument type demanded by the verb.
In this case we want a rideable vehicle and find (among others) a
bicycle. We then apply the “usage” pose for that object (bicycle).
In this way, the sentence John rode to the store gets depicted with
John in a riding pose on a bicyle.
Very often the interpretation will depend on the setting of the

scene, either an environment (e.g., a forest) or an activity (e.g., a
football game). Sometimes there is no explicitly specified environ-
ment, in which case an environment compatible with the rest of the
text could be supplied. Consider, for example, The flower is blue.
Rather than just depicting a blue flower floating on the page, we
have the option of supplying a background. The simplest case for
this is a ground plane and/or supporting object. For more visually
complex cases, we may want to put the flower in a vase on a fire-
place mantle in the middle of a fully decorated living room. Even
when the setting is specified as in John walked through the forest, it
must be resolved into specific objects in specific places in order to
be depicted.
It should be noted that the same type of semantic inferences

made with instrumental objects can also be applied to settings. For
the sentence John filled his car with gas, we know he is proba-
bly at a gas station and we might want to depict John holding the
gas pump. WordsEye currently does not have enough real-world
knowledge or the mechanisms in place to handle environments or
activities but we recognize their importance both to interpreting se-
mantic representations and adding background interest to otherwise
more purely literal depictions.

4.6 Figurative and Metaphorical Depiction
Many sentences include abstractions or describe non-physical prop-
erties and relations, and consequently they cannot be directly de-
picted. We use the following techniques to transform them into
something depictable:
Textualization: When we have no other way to depict an entity

(for example, it may be abstract or maybe we do not have a match-
ing 3D model in our database), we generate 3D extruded text of the
word in question. This can sometimes generate amusing results:
see Figure 14.
Emblematization: Sometimes an entity is not directly de-

pictable, but some 3D object can be an emblem for it. In those
cases, the emblem is used. A simple example of an emblem is a
light bulb to represent the word idea, or a church to (somewhat eth-
nocentrically) represent religion. We also use emblems to represent
fields of study. For example, entomology is depicted by a book with
an insect as an emblem on its cover.
Characterization: This is a specialized type of emblematization

related to human characters in their various roles. In order to depict
these, we add an article of clothing or have the character hold an
instrument that is associated with that role. So, for example, a cow-
boy will wear a cowboy hat, a football player will wear a football
helmet, a boxer will wear boxing gloves, a detective might carry a
magnifying glass, and so on.
Conventional icons: We use comic book conventions, like

thought bubbles, to depict the verbs think or believe. The thought
bubble contains the depiction of whatever is being thought of. Like-
wise, we use a red circle with a slash to depict not; see Figure 15.
The interior of the circle contains the depiction of the subject matter

Figure 14: The cat is facing the wall.

Figure 15: The blue daisy is not in the army boot.

being negated. This same sort of depiction process can be applied
recursively. For example, for John thinks the cat is not on the table,
the thought bubble contains a red-slashed circle which in turn con-
tains the cat on the table. Alternatively, John does not believe the
radio is green is depicted with the slashed circle encompassing the
entire depiction of John and the thought bubble and its contents;
see Figure 16. Similarly, comic book techniques like speed lines
and impact marks could be used to depict motion and collisions.
Literalization: Sometimes figurative or metaphorical meanings

can be depicted most effectively in a literal manner: see Figure 17.
We note that this is a well established technique. For example, T. E.
Breitenbach’s poster “Proverbidioms”3 contains depictions of hun-
dreds of figures of speech. Throwing the baby out with the bathwa-
ter is depicted literally, as a baby being tossed out a window along
with a tub of bathwater. This approach comes naturally to Words-
Eye.
Personification: When metaphorical statements are interpreted

literally, an inanimate or abstract entity often needs to be depicted
in a human role (e.g., Time marches on). Our current minimalist
approach is to affix some representation (flattened object, text, or
emblem) of that entity onto a generic human character’s chest as a
visual identifier, like Superman’s “S”. A more satisfactory solution
would be, in cartoon style, to give the object a set of generic legs
and arms and a superimposed face.

3www.tebreitenbach.com/posters.htm

Figure 16: John does not believe the radio is green.

Figure 17: The devil is in the details.

Degeneralization: General categorical terms like furniture can-
not be depicted directly. We depict these by picking a specific ob-
ject instance of the same class (in this case, perhaps chair). This
works well enough in most cases, as in John bought a piece of fur-
niture. But sometimes, the reference is to the general class itself and
hence the class, not an instance of it, should be depicted as in This
table lamp is not furniture. We currently do not handle this case.
One depiction strategy might be to choose a representative, generic
looking object within the class and affix a textual label consisting
of the class name itself.

5 Discussion and Future Work
We believe WordsEye represents a new approach to creating 3D
scenes and images. It is not intended to completely replace more
traditional 3D software tools, but rather to augment them by, for
example, allowing one to quickly set up a scene to be later refined
by other methods. WordsEye focuses on translating the semantic
intent of the user, as expressed in language, into a graphic represen-
tation. Since semantic intent is inherently ambiguous, the resulting
3D scene might only loosely match what the user expected. Such
variability, however, will be an asset in many cases, providing in-
teresting and surprising interpretations. And when users want to
control a depiction more precisely, they can adjust their language to
better specify the exact meaning and graphical constraints they en-

Figure 18: Some real 1st Grade homework, and a WordsEye “inter-
pretation”.

vision. We believe that the low overhead of language-based scene
generation systems will provide a natural and appealing way for
everyday users to create imagery and express themselves.
WordsEye is currently a research project and is under active de-

velopment. We expect that eventually this technology will evolve
into something that can be applied to a wide variety of applications,
including: First and second language instruction (see Figure 18);
e-postcards (cf. www.bluemountain.com); visual chat; story
illustrations; game applications; specialized domains, such as cook-
book instructions or product assembly.
In its current state, WordsEye is only a first step toward these

goals. There are many areas where the capabilities of the system
need to be improved, such as: Improvements in the coverage and
robustness of the natural language processing, including investigat-
ing corpus-based techniques for deriving linguistic and real-world
knowledge; language input via automatic speech recognition rather
than text; a larger inventory of objects, poses, depiction rules, and
states of objects; mechanisms for depicting materials and textures;
mechanisms for modifying geometric and surface properties of ob-
ject parts (e.g. John has a long red nose); environments, activities,
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We rely on the functional properties of objects to make some
of these interpretations. Verbs typically range along a continuum
from pure descriptions of state changes like John went to the store
to more explicit specifications of manner like John crawled to the
store. Sometimes an instrument (or vehicle) is mentioned as in John
rode a bicycle to the store while in other cases, the type of instru-
ment is only implied by the verb as in John rode to the store. To find
implied instruments, we look for objects whose functional proper-
ties are compatible with the instrument type demanded by the verb.
In this case we want a rideable vehicle and find (among others) a
bicycle. We then apply the “usage” pose for that object (bicycle).
In this way, the sentence John rode to the store gets depicted with
John in a riding pose on a bicyle.
Very often the interpretation will depend on the setting of the

scene, either an environment (e.g., a forest) or an activity (e.g., a
football game). Sometimes there is no explicitly specified environ-
ment, in which case an environment compatible with the rest of the
text could be supplied. Consider, for example, The flower is blue.
Rather than just depicting a blue flower floating on the page, we
have the option of supplying a background. The simplest case for
this is a ground plane and/or supporting object. For more visually
complex cases, we may want to put the flower in a vase on a fire-
place mantle in the middle of a fully decorated living room. Even
when the setting is specified as in John walked through the forest, it
must be resolved into specific objects in specific places in order to
be depicted.
It should be noted that the same type of semantic inferences

made with instrumental objects can also be applied to settings. For
the sentence John filled his car with gas, we know he is proba-
bly at a gas station and we might want to depict John holding the
gas pump. WordsEye currently does not have enough real-world
knowledge or the mechanisms in place to handle environments or
activities but we recognize their importance both to interpreting se-
mantic representations and adding background interest to otherwise
more purely literal depictions.

4.6 Figurative and Metaphorical Depiction
Many sentences include abstractions or describe non-physical prop-
erties and relations, and consequently they cannot be directly de-
picted. We use the following techniques to transform them into
something depictable:
Textualization: When we have no other way to depict an entity

(for example, it may be abstract or maybe we do not have a match-
ing 3D model in our database), we generate 3D extruded text of the
word in question. This can sometimes generate amusing results:
see Figure 14.
Emblematization: Sometimes an entity is not directly de-

pictable, but some 3D object can be an emblem for it. In those
cases, the emblem is used. A simple example of an emblem is a
light bulb to represent the word idea, or a church to (somewhat eth-
nocentrically) represent religion. We also use emblems to represent
fields of study. For example, entomology is depicted by a book with
an insect as an emblem on its cover.
Characterization: This is a specialized type of emblematization

related to human characters in their various roles. In order to depict
these, we add an article of clothing or have the character hold an
instrument that is associated with that role. So, for example, a cow-
boy will wear a cowboy hat, a football player will wear a football
helmet, a boxer will wear boxing gloves, a detective might carry a
magnifying glass, and so on.
Conventional icons: We use comic book conventions, like

thought bubbles, to depict the verbs think or believe. The thought
bubble contains the depiction of whatever is being thought of. Like-
wise, we use a red circle with a slash to depict not; see Figure 15.
The interior of the circle contains the depiction of the subject matter

Figure 14: The cat is facing the wall.

Figure 15: The blue daisy is not in the army boot.

being negated. This same sort of depiction process can be applied
recursively. For example, for John thinks the cat is not on the table,
the thought bubble contains a red-slashed circle which in turn con-
tains the cat on the table. Alternatively, John does not believe the
radio is green is depicted with the slashed circle encompassing the
entire depiction of John and the thought bubble and its contents;
see Figure 16. Similarly, comic book techniques like speed lines
and impact marks could be used to depict motion and collisions.
Literalization: Sometimes figurative or metaphorical meanings

can be depicted most effectively in a literal manner: see Figure 17.
We note that this is a well established technique. For example, T. E.
Breitenbach’s poster “Proverbidioms”3 contains depictions of hun-
dreds of figures of speech. Throwing the baby out with the bathwa-
ter is depicted literally, as a baby being tossed out a window along
with a tub of bathwater. This approach comes naturally to Words-
Eye.
Personification: When metaphorical statements are interpreted

literally, an inanimate or abstract entity often needs to be depicted
in a human role (e.g., Time marches on). Our current minimalist
approach is to affix some representation (flattened object, text, or
emblem) of that entity onto a generic human character’s chest as a
visual identifier, like Superman’s “S”. A more satisfactory solution
would be, in cartoon style, to give the object a set of generic legs
and arms and a superimposed face.

3www.tebreitenbach.com/posters.htm

Figure 16: John does not believe the radio is green.

Figure 17: The devil is in the details.

Degeneralization: General categorical terms like furniture can-
not be depicted directly. We depict these by picking a specific ob-
ject instance of the same class (in this case, perhaps chair). This
works well enough in most cases, as in John bought a piece of fur-
niture. But sometimes, the reference is to the general class itself and
hence the class, not an instance of it, should be depicted as in This
table lamp is not furniture. We currently do not handle this case.
One depiction strategy might be to choose a representative, generic
looking object within the class and affix a textual label consisting
of the class name itself.

5 Discussion and Future Work
We believe WordsEye represents a new approach to creating 3D
scenes and images. It is not intended to completely replace more
traditional 3D software tools, but rather to augment them by, for
example, allowing one to quickly set up a scene to be later refined
by other methods. WordsEye focuses on translating the semantic
intent of the user, as expressed in language, into a graphic represen-
tation. Since semantic intent is inherently ambiguous, the resulting
3D scene might only loosely match what the user expected. Such
variability, however, will be an asset in many cases, providing in-
teresting and surprising interpretations. And when users want to
control a depiction more precisely, they can adjust their language to
better specify the exact meaning and graphical constraints they en-

Figure 18: Some real 1st Grade homework, and a WordsEye “inter-
pretation”.

vision. We believe that the low overhead of language-based scene
generation systems will provide a natural and appealing way for
everyday users to create imagery and express themselves.
WordsEye is currently a research project and is under active de-

velopment. We expect that eventually this technology will evolve
into something that can be applied to a wide variety of applications,
including: First and second language instruction (see Figure 18);
e-postcards (cf. www.bluemountain.com); visual chat; story
illustrations; game applications; specialized domains, such as cook-
book instructions or product assembly.
In its current state, WordsEye is only a first step toward these

goals. There are many areas where the capabilities of the system
need to be improved, such as: Improvements in the coverage and
robustness of the natural language processing, including investigat-
ing corpus-based techniques for deriving linguistic and real-world
knowledge; language input via automatic speech recognition rather
than text; a larger inventory of objects, poses, depiction rules, and
states of objects; mechanisms for depicting materials and textures;
mechanisms for modifying geometric and surface properties of ob-
ject parts (e.g. John has a long red nose); environments, activities,
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  Figure 16: John does not believe the radio is green.

Figure 17: The devil is in the details.

Degeneralization: General categorical terms like furniture can-
not be depicted directly. We depict these by picking a specific ob-
ject instance of the same class (in this case, perhaps chair). This
works well enough in most cases, as in John bought a piece of fur-
niture. But sometimes, the reference is to the general class itself and
hence the class, not an instance of it, should be depicted as in This
table lamp is not furniture. We currently do not handle this case.
One depiction strategy might be to choose a representative, generic
looking object within the class and affix a textual label consisting
of the class name itself.

5 Discussion and Future Work
We believe WordsEye represents a new approach to creating 3D
scenes and images. It is not intended to completely replace more
traditional 3D software tools, but rather to augment them by, for
example, allowing one to quickly set up a scene to be later refined
by other methods. WordsEye focuses on translating the semantic
intent of the user, as expressed in language, into a graphic represen-
tation. Since semantic intent is inherently ambiguous, the resulting
3D scene might only loosely match what the user expected. Such
variability, however, will be an asset in many cases, providing in-
teresting and surprising interpretations. And when users want to
control a depiction more precisely, they can adjust their language to
better specify the exact meaning and graphical constraints they en-

Figure 18: Some real 1st Grade homework, and a WordsEye “inter-
pretation”.

vision. We believe that the low overhead of language-based scene
generation systems will provide a natural and appealing way for
everyday users to create imagery and express themselves.
WordsEye is currently a research project and is under active de-

velopment. We expect that eventually this technology will evolve
into something that can be applied to a wide variety of applications,
including: First and second language instruction (see Figure 18);
e-postcards (cf. www.bluemountain.com); visual chat; story
illustrations; game applications; specialized domains, such as cook-
book instructions or product assembly.
In its current state, WordsEye is only a first step toward these

goals. There are many areas where the capabilities of the system
need to be improved, such as: Improvements in the coverage and
robustness of the natural language processing, including investigat-
ing corpus-based techniques for deriving linguistic and real-world
knowledge; language input via automatic speech recognition rather
than text; a larger inventory of objects, poses, depiction rules, and
states of objects; mechanisms for depicting materials and textures;
mechanisms for modifying geometric and surface properties of ob-
ject parts (e.g. John has a long red nose); environments, activities,
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niture. But sometimes, the reference is to the general class itself and
hence the class, not an instance of it, should be depicted as in This
table lamp is not furniture. We currently do not handle this case.
One depiction strategy might be to choose a representative, generic
looking object within the class and affix a textual label consisting
of the class name itself.

5 Discussion and Future Work
We believe WordsEye represents a new approach to creating 3D
scenes and images. It is not intended to completely replace more
traditional 3D software tools, but rather to augment them by, for
example, allowing one to quickly set up a scene to be later refined
by other methods. WordsEye focuses on translating the semantic
intent of the user, as expressed in language, into a graphic represen-
tation. Since semantic intent is inherently ambiguous, the resulting
3D scene might only loosely match what the user expected. Such
variability, however, will be an asset in many cases, providing in-
teresting and surprising interpretations. And when users want to
control a depiction more precisely, they can adjust their language to
better specify the exact meaning and graphical constraints they en-
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vision. We believe that the low overhead of language-based scene
generation systems will provide a natural and appealing way for
everyday users to create imagery and express themselves.
WordsEye is currently a research project and is under active de-

velopment. We expect that eventually this technology will evolve
into something that can be applied to a wide variety of applications,
including: First and second language instruction (see Figure 18);
e-postcards (cf. www.bluemountain.com); visual chat; story
illustrations; game applications; specialized domains, such as cook-
book instructions or product assembly.
In its current state, WordsEye is only a first step toward these

goals. There are many areas where the capabilities of the system
need to be improved, such as: Improvements in the coverage and
robustness of the natural language processing, including investigat-
ing corpus-based techniques for deriving linguistic and real-world
knowledge; language input via automatic speech recognition rather
than text; a larger inventory of objects, poses, depiction rules, and
states of objects; mechanisms for depicting materials and textures;
mechanisms for modifying geometric and surface properties of ob-
ject parts (e.g. John has a long red nose); environments, activities,
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color(red)“There is a room with 
a table and a cake. 

There is a red chair to 
the right of the table.”
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Figure 2: Overview of our spatial knowledge representation for text-to-3D scene generation. We parse
input text into a scene template and infer implicit spatial constraints from learned priors. We then ground
the template to a geometric scene, choose 3Dmodels to instantiate and arrange them into a final 3D scene.

tion, where the input is natural language and the
desired output is a 3D scene.
We focus on the text-to-3D task to demonstrate

that extracting spatial knowledge is possible and
beneficial in a challenging scenario: one requiring
the grounding of natural language and inference of
rarelymentioned implicit pragmatics based on spa-
tial facts. Figure 1 illustrates some of the inference
challenges in generating 3D scenes from natural
language: the desk was not explicitly mentioned
in the input, but we need to infer that the computer
is likely to be supported by a desk rather than di-
rectly placed on the floor. Without this inference,
the user would need to be much more verbose with
text such as “There is a room with a chair, a com-
puter, and a desk. The computer is on the desk, and
the desk is on the floor. The chair is on the floor.”

Contributions We present a spatial knowledge
representation that can be learned from 3D scenes
and captures the statistics of what objects occur
in different scene types, and their spatial posi-
tions relative to each other. In addition, we model
spatial relations (left, on top of, etc.) and learn a
mapping between language and the geometric con-
straints that spatial terms imply. We show that
using our learned spatial knowledge representa-
tion, we can infer implicit constraints, and generate
plausible scenes from concise natural text input.

2 Task Definition and Overview

We define text-to-scene generation as the task of
taking text that describes a scene as input, and gen-
erating a plausible 3D scene described by that text
as output. More concretely, based on the input
text, we select objects from a dataset of 3D models
and arrange them to generate output scenes.
The main challenge we address is in transform-

ing a scene template into a physically realizable 3D
scene. For this to be possible, the system must be

able to automatically specify the objects present
and their position and orientation with respect to
each other as constraints in 3D space. To do so, we
need to have a representation of scenes (§3). We
need good priors over the arrangements of objects
in scenes (§4) and we need to be able to ground
textual relations into spatial constraints (§5). We
break down our task as follows (see Figure 2):
Template Parsing (§6.1): Parse the textual de-
scription of a scene into a set of constraints on the
objects present and spatial relations between them.
Inference (§6.2): Expand this set of constraints by
accounting for implicit constraints not specified in
the text using learned spatial priors.
Grounding (§6.3): Given the constraints and pri-
ors on the spatial relations of objects, transform the
scene template into a geometric 3D scenewith a set
of objects to be instantiated.
Scene Layout (§6.4): Arrange the objects and op-
timize their placement based on priors on the rel-
ative positions of objects and explicitly provided
spatial constraints.

3 Scene Representation

To capture the objects present and their arrange-
ment, we represent scenes as graphs where nodes
are objects in the scene, and edges are semantic re-
lationships between the objects.
We represent the semantics of a scene using a

scene template and the geometric properties using
a geometric scene. One critical property which is
captured by our scene graph representation is that
of a static support hierarchy, i.e., the order in which
bigger objects physically support smaller ones: the
floor supports tables, which support plates, which
can support cakes. Static support and other con-
straints on relationships between objects are rep-
resented as edges in the scene graph.
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Learned	
  rela0ve	
  posi0on	
  

Figure 5: Predicted positions using learned rela-
tive position priors for chair given desk (top left),
poster-room (top right), mouse-desk (bottom left),
keyboard-desk (bottom right).

4.3 Support Surface Priors
To identify which surfaces on parent objects sup-
port child objects, we first segment parent models
into planar surfaces using a simple region-growing
algorithm based on (Kalvin and Taylor, 1996). We
characterize support surfaces by the direction of
their normal vector, limited to the six canonical
directions: up, down, left, right, front, back. We
learn a probability of supporting surface normal di-
rection Sn given child object category Cc. For ex-
ample, posters are typically found on walls so their
support normal vectors are in the horizontal di-
rections. Any unobserved child categories are as-
sumed to havePsurf (Sn = up|Cc) = 1 sincemost
things rest on a horizontal surface (e.g., floor).

Psurf (Sn|Cc) =
count(Cc on surface with Sn)

count(Cc)

4.4 Relative Position Priors
We model the relative positions of objects based
on their object categories and current scene type:
i.e., the relative position of an object of category
Cobj is with respect to another object of category
Cref and for a scene type Cs. We condition on the
relationship R between the two objects, whether
they are siblings (R = Sibling) or child-parent
(R = ChildParent).

Prelpos(x, y, θ|Cobj , Cref , Cs, R)

When positioning objects, we restrict the search
space to points on the selected support surface.
The position x, y is the centroid of the target ob-
ject projected onto the support surface in the se-
mantic frame of the reference object. The θ is the
angle between the front of the two objects. We rep-
resent these relative position and orientation pri-
ors by performing kernel density estimation on the

Relation P (relation)

inside(A,B) V ol(A∩B)
V ol(A)

outside(A,B) 1 - V ol(A∩B)
V ol(A)

left_of(A,B) V ol(A∩ left_of (B))
V ol(A)

right_of(A,B) V ol(A∩ right_of (B))
V ol(A)

near(A,B) (dist(A,B) < tnear)
faces(A,B) cos(front(A), c(B)− c(A))

Table 1: Definitions of spatial relation using
bounding boxes. Note: dist(A,B) is normalized
against the maximum extent of the bounding box
ofB. front(A) is the direction of the front vector
of A and c(A) is the centroid of A.

Keyword Top Relations and Scores
behind (back_of, 0.46), (back_side, 0.33)
adjacent (front_side, 0.27), (outside, 0.26)
below (below, 0.59), (lower_side, 0.38)
front (front_of, 0.41), (front_side, 0.40)
left (left_side, 0.44), (left_of, 0.43)
above (above, 0.37), (near, 0.30)
opposite (outside, 0.31), (next_to, 0.30)
on (supported_by, 0.86), (on_top_of, 0.76)
near (outside, 0.66), (near, 0.66)
next (outside, 0.49), (near, 0.48)
under (supports, 0.62), (below, 0.53)
top (supported_by, 0.65), (above, 0.61)
inside (inside, 0.48), (supported_by, 0.35)
right (right_of, 0.50), (lower_side, 0.38)
beside (outside, 0.45), (right_of, 0.45)

Table 2: Map of top keywords to spatial relations
(appropriate mappings in bold).

observed samples. Figure 5 shows predicted posi-
tions of objects using the learned priors.

5 Spatial Relations

We define a set of formal spatial relations that we
map to natural language terms (§5.1). In addi-
tion, we collect annotations of spatial relation de-
scriptions from people, learn a mapping of spatial
keywords to our formal spatial relations, and train
a classifier that given two objects can predict the
likelihood of a spatial relation holding (§5.2).

5.1 Predefined spatial relations
For spatial relations we use a set of predefined rela-
tions: left_of, right_of, above, below, front, back,
supported_by, supports, next_to, near, inside, out-
side, faces, left_side, right_side.3 These are mea-
sured using axis-aligned bounding boxes from the
viewer’s perspective; the involved bounding boxes
are compared to determine volume overlap or clos-
est distance (for proximity relations; see Table 1).

3We distinguish left_of(A,B) asA being left of the left edge
of the bounding box of B vs left_side(A,B) as A being left of
the centroid of B.
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 There is a desk and 
a keyboard and a 

monitor. 

Input Text Basic +Support Hierarchy +Relative Positions

 There is a coffee table 
and there is a lamp 

behind the coffee table. 
There is a chair in front of 

the coffee table. 

UPDATE UPDATE

No Relations Predefined Relations Learned Relations

Figure 8: Top Generated scenes for randomly placing objects on the floor (Basic), with inferred Support
Hierarchy, and with priors on Relative Positions. Bottom Generated scenes with no understanding of
spatial relations (No Relations), scoring using Predefined Relations and Learned Relations.

the appropriate category and keywords.
We use a 3D model dataset collected from

Google 3DWarehouse by prior work in scene syn-
thesis and containing about 12490 mostly indoor
objects (Fisher et al., 2012). These models have
text associated with them in the form of names and
tags. In addition, we semi-automatically annotated
models with object category labels (roughly 270
classes). We used model tags to set these labels,
and verified and augmented them manually.
In addition, we automatically rescale models so

that they have physically plausible sizes and orient
them so that they have a consistent up and front
direction (Savva et al., 2014). We then indexed all
models in a database that we query at run-time for
retrieval based on category and tag labels.

6.4 Scene Layout
Once we have instantiated the objects in the scene
by selecting models, we aim to optimize an over-
all layout score L = λobjLobj + λrelLrel that is
a weighted sum of object arrangement Lobj score
and constraint satisfaction Lrel score:

Lobj =
∑

oi

Psurf (Sn|Coi)
∑

oj∈F (oi)

Prelpos(·)

Lrel =
∑

ci

Prel(ci)

where F (oi) are the sibling objects and parent ob-
ject of oi. We use λobj = 0.25 and λrel = 0.75 for
the results we present.
We use a simple hill climbing strategy to find a

reasonable layout. We first initialize the positions

Figure 9: Generated scene for “There is a room
with a desk and a lamp. There is a chair to the
right of the desk.” The inferred scene hierarchy is
overlayed in the center.

of objects within the scene by traversing the sup-
port hierarchy in depth-first order, positioning the
children from largest to first and recursing. Child
nodes are positioned by first selecting a supporting
surface on a candidate parent object through sam-
pling of Psurf . After selecting a surface, we sam-
ple a position on the surface based on Prelpos. Fi-
nally, we check whether collisions exist with other
objects, rejecting layouts where collisions occur.
We iterate by randomly jittering and repositioning
objects. If there are any spatial constraints that are
not satisfied, we also remove and randomly repo-
sition the objects violating the constraints, and it-
erate to improve the layout. The resulting scene is
rendered and presented to the user.

7 Results and Discussion

We show examples of generated scenes, and com-
pare against naive baselines to demonstrate learned
priors are essential for scene generation. We
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)
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