
Intro to Image Understanding (CSC420)

Assignment 2
Submission Deadline : October 12 (Sunday), 11.59pm, 2014

Max points: 10, max extra credit points: 5

1. Write a function for Harris corner detection. Please copy a snippet of your code under each of
the questions below accordingly. Question (b) does not need code. For each question also plot
your result for the attached image building.jpg, and add it to your pdf/doc file.

(a) [1 point] Given an image (input to function), compute I2x, I2y and IxIy. Compute matrix
M in each pixel (Lecture 6).

(b) [1 point] If I have a 2× 2 matrix A =

[
a b
c d

]
, how do I compute its determinant det(A)

and trace(A)? Write down the equation. What’s the equation to compute the cornerness
measure R in each pixel? Write it with determinant and trace rather than the eigenvalues.

(c) [1 point] Compute R in each pixel.

(d) [1 point] Threshold R and perform non-maxima suppression to find corners. Plot an image
and mark the corner locations. You can do this for example by: imshow(im); hold on;
plot(x,y,’+r’); where x and y are the horizontal and vertical coordinates of the corners
you detected.

(e) Extra credit [5 points] Detect windows in image building.jpg. You are allowed to discuss
this exercise with your colleagues, and find solutions / papers online. For ideas, you can
check e.g. paper:
Jana Košecka, Wei Zhang, Extraction, matching and pose recovery based on dominant
rectangular structures. Computer Vision and Image Understanding, 100(3):174293
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.9184&rep=rep1&type=

pdf

You can assume the axes of the windows are aligned with the horizontal and vertical axis
in the image. If it can be of some help, a function findLines.m to find lines in an image is
attached. Write down your method, include the code in the pdf. Plot the results: a detec-
tion of a particular window is a bounding box (a rectangle) tightly fit around a window.
The points you get will be based on how many windows you get correct. You only need to
detect the windows on the frontal facade of the building (you can ignore the building on
the right and the windows on the cupola). Not detecting the door is ok, detecting it is ok
too.

2. For this exercise you will use the Scale-Invariant Feature Transform (SIFT) for matching. You
will extract SIFT features from two images and use them to find feature correspondences and
solve for the affine transformation between them. Please include code under each question. You
do not need to implement your own SIFT key point and feature extractor. Possible code to use:

• Download and unpack sift-0.9.19-bin.tar.gz from
http://www.robots.ox.ac.uk/~vedaldi/assets/sift/binaries/

1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.9184&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.9184&rep=rep1&type=pdf
http://www.robots.ox.ac.uk/~vedaldi/assets/sift/binaries/


• OR download and install the VLfeat package from http://www.vlfeat.org/. This pack-
age is in general very useful for basic computer vision algorithms. However, it’s bigger in
size than the package above and it might be slightly more difficult to install.

(a) [1 point] Feature extraction: Write a function that computes SIFT features for both
reference.png and test.png. You can use the function imreadbw() to read in the images as
grayscale. Rescale the images to take on grayscale values in [0, 1]. Then use the function
sift() to output, for each image, a list of feature descriptors and a list of their corresponding
frames. Please visualize the detected keypoints on the image. By visualize we mean: plot
the image, mark the center of each keypoint, and draw either a circle or rectangle to indicate
the scale of each keypoint. For clarity, please plot only the first 100 keypoints. You can
help yourself with the function plotsiftframe included in the link to the code above.
(Remember to use Matlab’s addpath() if you have unpacked the SIFT package into a
subfolder.)

(b) [2 points] Matching: Given the extracted features, describe a simple matching algorithm
to find the best feature matches (correspondences) for the features in reference.png and
features in image test.png. Implement the algorithm in Matlab. You can help yourself with
the attached function dist2.m. Visualize the top 3 correspondences. Show each image
and visualize each correspondence by indicating the feature’s position and scale in the
appropriate image. Use a separate color for each correspondence.

(c) [1.5 points] Affine transformation: Use the top 3 correspondences from part (b) to
solve for the affine transformation between the features in the two images. Look at Lecture
8 or the solution described in Section 7.4 of [Lowe, 2004] (pages 22-23). (Hint: [x, y] and
[u, v] are the positions of a feature correspondence on the two images.)
(Hint: use x=A\b to solve the system Ax = b.)

(d) [0.5 point] Visualize the affine transformation. Do this visualization by taking the four
corners of the reference image, transforming them via the computed affine transformation
to the points in the second image, and plotting those transformed points. Please also plot
the edges between the points to indicate the parallelogram. If you are unsure what the
instruction is, please look at Figure 12 of [Lowe, 2004].

(e) [1 point] What limitations are present in the above approach? What would be a more
robust way of estimating the transformation? Here by robust we mean a method that is
less sensitive to wrong matches (outliers). You do not need to write the code, just explain
your answer well.

Link to [Lowe, 2004]: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

2

http://www.vlfeat.org/
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

