Back to the Homography: The Why
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Homography

v 71 Pov LS

@ In Lecture 9 we said that a homography is a transformation that
maps a projective plane to another projective plane.

@ We shamelessly dumped the following equation for homography
without explanation:

X a b c| [x
wily'|=|d e f| |y
1 g h i||1
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.

image plane 1 image plane 2

WORID 1 WORLD 2

Figure: We have our object in two different worlds, in two different poses relative
to camera, two different photographers, and two different cameras.
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.

i ip

image plane 1

image plane 2

WORID 1 WORILD 2
origin
(cam center)

origin
(cam center)

by
dq .a.l

Figure: Our object is a plane. Each plane is characterized by one point d on the
plane and two independent vectors a and b on the plane.
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.

il

image plane 1

image plane 2

WORILD 1 WORILD 2
origin
(cam center)

origin
(cam center)
b2
dy 22 [Xa=dy+a ag+p by
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.

image plane 1 image plane 2

WORLD 1 WORILD 2
origin
(cam center)

origin
(cam center)

|X1:d1+a-a1+ﬁ>b1| do az |X2:dz+0¢‘az+ﬁ'bz|

Figure: Any two Chicken Run DVDs on our planet are related by some
transformation T. We'll compute it, don’t worry.
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Homography

@ Let's revisit our transformation in the (new) light of perspective projection.

image plane 2
A ge p

WORLD 2

/ origin
origin ! (cam center)
(cam center)

[X; =dy+a-a;+3 by

Figure: Each object is seen by a different camera and thus projects to the
corresponding image plane with different camera intrinsics.
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Homography
@ Let's revisit our transformation in the (new) light of perspective projection.

@ S Seea
image plane 1 4 image plane 2
A S/
\ A1 / WORLD 2
\\ 7
'I' origin
Uy { (cam center)

origin
(cam center)

dy a.l;
Figure: Given this, the question is what's the transformation that maps the DVD

[X; =dy+a-a;+3 by

on the first image to the DVD in the second image?
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Homography

@ Each point on a plane can be written as: X=d+«a-a+ [ -b, whered is a
point, and a and b are two independent directions on the plane.
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Homography

@ Each point on a plane can be written as: X=d+«a-a+ [ -b, whered is a
point, and a and b are two independent directions on the plane.

@ Let's have two different planes in 3D:
First plane: Xy =dy+a-a;+3-by
Second plane: Xo=dy+a-ax+ - b

Via « and (3, the two points X; and Xy are in the same location relative to
each plane.
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Homography

@ Each point on a plane can be written as: X=d+«a-a+ [ -b, whered is a
point, and a and b are two independent directions on the plane.

@ Let's have two different planes in 3D:
First plane: Xy =dy+a-a;+3-by
Second plane: Xo=dy+a-ax+ - b

Via « and (3, the two points X; and Xy are in the same location relative to
each plane.

@ We can rewrite this using homogeneous coordinates:

First pIane: X1 = [al by dl]

Second plane: Xz = [az by d]
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Homography

@ Each point on a plane can be written as: X=d+«a-a+ [ -b, whered is a
point, and a and b are two independent directions on the plane.

@ Let's have two different planes in 3D:
First plane: Xy =dy+a-a;+3-by
Second plane: Xo=dy+a-ax+ - b

Via « and (3, the two points X; and Xy are in the same location relative to
each plane.

@ We can rewrite this using homogeneous coordinates:

First plane: X1 = [al by dl]

Second plane: Xz = [az by d]

@ Careful: A; = [al by dl] and A, = [az b, dg] are 3 x 3 matrices.
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Homography

@ In 3D, a transformation between the planes is given by:
Xo=TX;

There is one transformation T between every pair of points X; and Xs.

@ Expand it:
@ a
A |8l =TAL|B for every «,
1 1

@ Then it follows: T = A2A1_1, with T a 3 x 3 matrix.

@ Let's look at what happens in projective (image) plane. Note that we have
each plane in a separate image and the two images may not have the same
camera intrinsic parameters. Denote them with K; and K.

X1 X2
wy | y1| = KiXy and wo | y2| = KoXa
1 1
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Homography

@ From previous slide:

X1 X2
wr (1| = K1X1 and W (Vo = K2X2
1 1

@ Insert Xo = T Xj into equality on the right:

X2
Wr | Yo | = K2 TX]
1
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Homography

@ From previous slide:

w1

X1

1
1

X2

= K1X1 and W (Vo = K2X2

@ Insert Xo = T Xj into equality on the right:

w2

X2

Y2
1

1

=Ky TX1 = Ko T (K1 K1) Xy

Sanja Fidler
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Homography

@ From previous slide:

X1 X2
wr (1| = K1X1 and W (Vo = K2X2
1 1

@ Insert Xo = T Xj into equality on the right:

X2
wa [ya| = Ko TXy = Ko T (KT! K1) X
1 —
X1
w1 Y1
1
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Homography

@ From previous slide:

X1 X2
wr (1| = K1X1 and W (Vo = K2X2
1 1

@ Insert Xo = T Xj into equality on the right:

X2 X1
wa [y2| =Ko TXy =Ko T (K] KXy = miKa TKT | m
1 1
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Homography

@ From previous slide:

X1 X2
wr (1| = K1X1 and W (Vo = K2X2
1 1

@ Insert Xo = T Xj into equality on the right:

X2 X1
wa [y2| =Ko TXy =Ko T (K 'K X1 = wmi Ko TKT (0
1 N———

3%x3 matrix
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Homography

@ From previous slide:

X1 X2
wr (1| = K1X1 and W (Vo = K2X2
1 1

@ Insert Xo = T Xj into equality on the right:

X2 X1
wo |y2| =Ko TXy =Ko T(K{'KD)X1 =wm Ko TKT |
1 N———

3%x3 matrix

@ And finally:
Xo a b c| |x
wy [y2| = |d e f| n
1 g h i 1
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Homography

@ The nice thing about homography is that once we have it, we can compute
where any point from one projective plane maps to on the second projective
plane. We do not need to know the 3D location of that point. We don't
even need to know the camera parameters.
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Homography

@ The nice thing about homography is that once we have it, we can compute
where any point from one projective plane maps to on the second projective
plane. We do not need to know the 3D location of that point. We don't
even need to know the camera parameters.

@ We still owe one more explanation for Lecture 9.
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Remember Panorama Stitching from Lecture 97

Take a tripod, rotate camera

and take pictures

[Source: Fernando Flores-Mangas]
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Remember Panorama Stitching from Lecture 97

@ Each pair of images is related by homography. Why?

[Source: Fernando Flores-Mangas]
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Rotating the Camera

@ Rotating my camera with R is the same as rotating the 3D points with RT
(inverse of R):
X, = RTX;
where Xj is a 3D point in the coordinate system of the first camera and X,
the 3D point in the coordinate system of the rotated camera.
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Rotating the Camera

@ Rotating my camera with R is the same as rotating the 3D points with RT

(inverse of R):
X, = RTX;

where Xj is a 3D point in the coordinate system of the first camera and X,
the 3D point in the coordinate system of the rotated camera.

@ We can use the same trick as before, where we have T = R:

X1 X2
wy || = KXy and wa | ya| = KXz
1 1
X2 X1
wo |yl =wi KRK™! |y
1 3%x3 matrix 1
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Rotating the Camera

@ Rotating my camera with R is the same as rotating the 3D points with RT

(inverse of R):
X, = RTX;

where Xj is a 3D point in the coordinate system of the first camera and X,
the 3D point in the coordinate system of the rotated camera.

@ We can use the same trick as before, where we have T = R:

X1 X2
wy || = KXy and wa | ya| = KXz
1 1
X2 X1
wo |yl =wi KRK™! |y
1 3%x3 matrix 1

@ And this is a homography
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What If | Move the Camera?

@ So if | take a picture and then rotate the camera and take another picture,
the first and second picture are related via homography (assuming the scene
didn’t change in between)
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What If | Move the Camera?

@ So if | take a picture and then rotate the camera and take another picture,
the first and second picture are related via homography (assuming the scene
didn’t change in between)

@ What if | move my camera?
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2
Wy | Yo | = KXz
1
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2
wo || =KX= K(Xl —t)
1 v
X1
w1 Y1
1
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2 X1
wo | Yo :KX2:K(X1—t):W1 vi| — Kt
1 1
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2 X1
wo | Yo :KX2:K(X1—t):W1 vi| — Kt
1 1

@ Hmm... Different values of w; give me different points in the second image.

@ So even if | have K and t it seems | can't compute where a point from the
first image projects to in the second image.
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2 X1
wo | Yo :KXZ:K(Xl—t):Wl vi| — Kt
1 1

@ Hmm... Different values of w; give me different points in the second image.

@ So even if | have K and t it seems | can't compute where a point from the
first image projects to in the second image.

@ From
X1

wy [y1| = KXy
1

we know that different wy; mean different points X; on the projective line
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What If | Move the Camera?

@ If | move the camera by t, then: X, = X; —t. Let’s try the same trick again:

X2 X1
wo | Yo :KXZ:K(Xl—t):Wl vi| — Kt
1 1

@ Hmm... Different values of w; give me different points in the second image.

@ So even if | have K and t it seems | can't compute where a point from the
first image projects to in the second image.

@ From
X1

wy [y1| = KXy
1

we know that different wy; mean different points X; on the projective line

@ Where (x1,y1) maps to in the 2nd image depends on the 3D location of X;!
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What If | Move the Camera?

@ Summary: So if | move the camera, | can't easily map one image to the
other. The mapping depends on the 3D scene behind the image.
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What If | Move the Camera?

@ Summary: So if | move the camera, | can't easily map one image to the
other. The mapping depends on the 3D scene behind the image.

@ What about the opposite, what if | know that points (x1, 1) in the first
image and (x2, y2) in the second belong to the same 3D point?

€2 T
we |y2| =wi |y | — Kt
1 1 .
L3 T
We know this
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What If | Move the Camera?

@ Summary: So if | move the camera, | can't easily map one image to the
other. The mapping depends on the 3D scene behind the image.

@ What about the opposite, what if | know that points (x1, 1) in the first
image and (x2, y2) in the second belong to the same 3D point?

T2 T
wy Y2 | =wy |y | — Kt
1 1 .
v a
We know this

=) We can compute wi and wa

N N
/'\ /'\ ==) \We can compute point in 3D!
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What If | Move the Camera?

Summary: So if | move the camera, | can’t easily map one image to the
other. The mapping depends on the 3D scene behind the image.

What about the opposite, what if | know that points (xi, y1) in the first
image and (x2, y») in the second belong to the same 3D point?

This great fact is called stereo

This brings us to the two-view geometry, which we'll look at next
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Summary — Stuff You Need To Know

Perspective Projection:

@ If point Q is in camera’s coordinate system:

]
e Q=(X.Y.2)7 = a=(Z+p.F+n)

WX X
e Sameas: Q= (X,Y,2)T — w-yl=K|Y| — q:[xl
y
w V4
f 0 px
where K= [0 f p,| is camera intrinsic matrix
0 0 1

@ If Q is in world coordinate system, then the full projection is characterized
by a 3 X 4 matrix P:

X
WX
Y
w-y :K[R\t] 7
——
w b 1

Sanja Fidler
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Summary — Stuff You Need To Know

Perspective Projection:

@ All parallel lines in 3D with the same direction meet in one, so-called
vanishing point in the image

@ All lines that lie on a plane have vanishing points that lie on a line, so-called
vanishing line

@ All parallel planes in 3D have the same vanishing line in the image
Orthographic Projection

@ Projections simply drops the Z coordinate:

X

=N < X

Y
Z
1

@ Parallel lines in 3D are parallel in the image
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Stereo
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Depth

ocular Image

@ We know that it's impossible to get depth from a single image

0]

[Pic adopted from: J. Hays]

Sanja Fidler

S,
SRR N
SO
Sy

All these points project to p
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Depth from Monocular Image

@ We know that it's impossible to get depth from a single image

[Pic from: S. Lazebnik]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Shape from Shading

[Slide credit: J. Hays, pic from: Prados & Faugeras 2006]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Shape from Texture: What do you see in the image?

[From the PhD Thesis: A.M. Loh. The recovery of 3-D structure using visual texture patterns]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

(a) Estimated surface shape (b) Texture projected onto surface

Figure: Shape from Texture
[From the PhD Thesis: A.M. Loh. The recovery of 3-D structure using visual texture patterns]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

(b) Needle diagram

(c) Mesh surface (d) New view of pear (g) Mesh surface (h) New view of strawberry

Figure: Shape from Texture

[From the PhD Thesis: A.M. Loh. The recovery of 3-D structure using visual texture patterns]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Waterlilies: Donut: Woven lamp:
non-homogeneous non-stationary anisotropic

Figure: Shape from Texture: And quite a lot of stuff around us is textured

[From the PhD Thesis: A.M. Loh. The recovery of 3-D structure using visual texture patterns]
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Depth from ocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Images from
same point of
view, different
camera
parameters

3d shape / depth
estimates

Figure: Shape from Focus/De-focus
[Slide credit: J. Hays, pics from: H. Jin and P. Favaro, 2002]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Occlusion gives us ordering in depth
[Slide credit: J. Hays, Painting: Rene Magritt'e Le Blanc-Seing]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

King's College Cir @
| Toronto, Ontr

et View - Aug 2011

Figure: Depth from Google: “Borrow” depth from Google s Street View Z- buffer
[Paper: C. Wang, K. Wilson, N. Snavely, Accurate Georegistration of Point Clouds using

Geographic Data, 3DV 2013. http://www.cs.cornell.edu/projects/georegister/docs/georegister_3dv.pdf
Sanja Fidler CSC420: Intro to Image Understanding 18 / 29


http://www.cs.cornell.edu/projects/georegister/docs/georegister_3dv.pdf

Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Depth from Google: Once you have depth you can render cool stuff

http://inear.se/urbanjungle/
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

TR

Figure: Depth from Google: Recognize this?

http://inear.se/urbanjungle/
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Depth by tricking the brain: do you see the 3D object?

[Source: J. Hays, Pics from: http://magiceye.com]
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Depth from Monocular Image

@ But when present, we can use certain cues to get depth (3D) from one image

Figure: Depth by tricking the brain

[Source: J. Hays, Pics from: http://magiceye.com]
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Depth from Two Views: Stereo

@ All points on projective line to P map to p

All these points project to p

Figure: One camera
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Depth from Two Views: Stereo

@ All points on projective line to P in left camera map to a line in the image
plane of the right camera

Figure: Add another camera
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Depth from Two Views: Stereo

@ If | search this line to find correspondences...

.
8 .
Ll .
"tasgunnnret

hese two points
are matched

Figure: If I am able to find corresponding points in two images...
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Depth from Two Views: Stereo

@ | can get 3D!

| can locate the point in 3D

.
8 .
Ll .
"tasgunnnret

hese two points
are matched

Figure: | can get a point in 3D by triangulation!
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Stereo

Epipolar geometry
o Case with two cameras with parallel optical axes
@ General case

Parallel stereo cameras: General stereo cameras:
left \a!
left image plane right image plane 'Mage pig, \"\E.‘r\‘t\mage °

(6] o
left camera center right camera center
T
NI .
/l\ /I\ /N N
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Stereo

Epipolar geometry
o Case with two cameras with parallel optical axes < First this
@ General case

Parallel stereo cameras: General stereo cameras:
left \an
left image plane right image plane 'Mage p|, \"\E.‘r\‘t\mage po

(6] o
left camera center right camera center
T
NI .
/l\ /I\ /N N
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Stereo: Parallel Calibrated Cameras

@ We assume that the two calibrated cameras (we know intrinsics and
extrinsics) are parallel, i.e. the right camera is just some distance to the right
of left camera. We assume we know this distance. We call it the baseline.

left image plane baseline right image plane
0, 0« -0 O,

left camera center T right camera center

T| The right camera

% t % t= 0| isshifted to the
NN b

right in X direction
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Stereo: Parallel Calibrated Cameras

@ Pick a point P in the world

P (X.Y.Z)
p1 (@1, yzy Y (@, yr)
left image planej right image plane
O O,
left camera center right camera center

T
0
0

=R
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Stereo: Parallel Calibrated Cameras

@ Points Oy, O, and P (and p; and py) lie on a plane. Since two image planes
lie on the same plane (distance f from each camera), the lines 0,0, and
pipr are parallel.

P (XY, 2) parallel

left image plane right image plane
0O O,

left camera center right camera center
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Stereo: Parallel Calibrated Cameras

@ Since lines 0,0, and pyp, are parallel, and O and O, have the same y, then
also p; and p, have the same y: y, = y;!

P (X.Y,Z) So: Yr =1
P1 (.’El, yl)/--- I Y (‘TT’: yr)
left image planej right image plane
O O,
left camera center right camera center
T
0

/!\ /!\
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Stereo: Parallel Calibrated Cameras

@ So all points on the projective line O\p; project to a horizontal line with
y = y; on the right image. This is nice, let's remember this.

"‘;",0 Points from this line project to a
< horizontal line in right image

L

Y
P ($l,yz7“""
left image planej right image plane
O, O,
left camera center right camera center

T
0
0

% t
A ==

¥
/N
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Stereo: Parallel Calibrated Cameras

@ Another observation: No point from Oyp; can project to the right of x; in

the right image. Why?

The projected points cannot fall
to the right of 1. Why?

A4

b g

P (Uﬁl,yzy'“

I

left image planej
O

left camera center

/!\

Sanja Fidler

T
0
O

CSC420: Intro to Image Understanding

right image plane
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right camera center
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Stereo: Parallel Calibrated Cameras

@ Because that would mean our image can see behind the camera...

The projected points cannot fall
to the right of 1. Why?

p1 (1, 4)9" =T~

left image planej
O,

ght image plane

O

That 3D point would have been
behind the camera!

Sanja Fidler CSC420: Intro to Image Understanding



Stereo: Parallel Calibrated Cameras

@ Since our points p; and p, lie on a horizontal line, we can forget about y; for
a moment (it doesn't seem important). Let's look at the camera situation
from the birdseye perspective instead. Let's see if we can find a connection
between x;, x, and Z (because Z is what we want).

World
point

image point image point
(left) (right)
Focal =¥ F
length f ! |
0, SN /oS S . optical
optical OI D ~center
center, ™ (right)
(left) baseline T

[Adopted from: J. Hays]
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Stereo: Parallel Calibrated Cameras

@ We can then use similar triangles to compute the depth of the point P

P Similar triangles:

O' s 3" focal length  disparity

[Adopted from: J. Hays]
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Stereo: Parallel Calibrated Cameras

@ We can then use similar triangles to compute the depth of the point P

P Similar triangles:

T_T+ZE1—$T

Z Z-7
iz f T
X| Z —
a ]
f‘ Pi P v
O' _____ "y D" Soif lknow Z; and T, then |
T can compute Z!
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Stereo: Parallel Calibrated Cameras

@ We can then use similar triangles to compute the depth of the point P

P Similar triangles:
T T+a —a

Z Z—f

X, A —

X Ty — Ty

f Pi P
. . X

OI _____ N Dr- r = fZ + Do

And if | know Z, | can compute X and Y,
which gives me the point in 3D
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,?

left image right image
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,?7 By matching.

left image L right image

the match will be on this line (same y)

(CAREFUL: this is only true for parallel cameras. Generally, line not horizontal)

Sanja Fidler CSC420: Intro to Image Understanding



Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,?7 By matching.

We are looking for this point

left image ! right image

the match will be c;n the left of z;
how do I find it?

Sanja Fidler CSC420: Intro to Image Understanding



Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

We call this line a scanline

left image right image

we scan the line and compare patches to the one in the left image

We are looking for a patch on scanline most similar to patch on the left
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

How similar?

left image right image

we scan the line and compare patches to the one in the left image

We are looking for a patch on scanline most similar to patch on the left
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

How similar?

left image right image

we scan the line and compare patches to the one in the left image

We are looking for a patch on scanline most similar to patch on the left
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

Most similar. A match!

left image right image

we scan the line and compare patches to the one in the left image

We are looking for a patch on scanline most similar to patch on the left

Sanja Fidler CSC420: Intro to Image Understanding



Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

left image Matching cost I
d

At each point on the scanline: Compute a matching cost e

Matching cost: SSD or normalized correlation
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

S8 D(patehy,patch,) = 35 e, (2:) = Ty, (2,1

T Y

left image
Compute a matching cost ///\
Matching cost: SSD (look for minima) disparity
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Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

dox Zy(Ipatch; (@, 4) - Tpaten, (2, ¥))
HIpatch,,H ' HIpatchrH

NC(patch,, patch,) =

left image 2';’::" I /\] M\N
Compute a matching cost

Matching cost: Normalized Corr. (look for maxima) disparity

Sanja Fidler CSC420: Intro to Image Understanding



Stereo: Parallel Calibrated Cameras

@ For each point x;, how do | get x,? By matching. Patch around x, should
look similar to the patch around x;.

left image

Do this for all the points in the left image!
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Stereo: Parallel Calibrated Cameras

@ We get a disparity map as a result

Result: Disparity map
(red values large disp., blue small disp.)
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Stereo: Parallel Calibrated Cameras

@ We get a disparity map as a result

Things that are closer have larger disparity than those that are far
away from camera. Why?
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Stereo: Parallel Calibrated Cameras

@ Depth and disparity are inversely proportional

& Similar triangles:
E T THx—a
| z  Z-f
Z
X i pdl
f‘ P, i p,
0, o o8 Depth (Z) and disparity are
T inversely proportional
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Stereo: Parallel Calibrated Cameras

@ Smaller patches: more detail, but noisy. Bigger: less detail, but smooth

patch size =5

patch size = 35

patch size = 85
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You Can Do It Much Better...

@ With Energy Minimization on top, e.g., a Markov Random Field (MRF)

Segment

\

Boundary

i
i
1
i
[}
[

Superpixels (UCM [Arbelaez, et al. 2011]
and SLIC [Achanta, et al. 2010])

Segment variable y: = (i, 3i,7:)
Slanted 3D plane of segment

Continuous variable

Boundary variable 0;;
Relationship between segments

4 states
Occlusion Hinge  Coplanar

Discrete variable

K. Yamaguchi, D. McAllester, R. Urtasun, Efficient Joint Segmentation,
Occlusion Labeling, Stereo and Flow Estimation, ECCV 2014

Paper: http://www.cs.toronto.edu/~urtasun/publications/yamaguchi_et_al_eccv14.pdf

Code: http://ttic.uchicago.edu/~dmcallester/SPS/index.html

Sanja Fidler
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http://www.cs.toronto.edu/~urtasun/publications/yamaguchi_et_al_eccv14.pdf
http://ttic.uchicago.edu/~dmcallester/SPS/index.html

You Can Do It Much Better...

[K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]

=== Qcclusion 7~
=== Hinge
=== Coplanar

Disparity image

Flow image
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Where “Ours” means: [K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]

Look at State-of-the-art on KITTI

@ How can we evaluate the performance of a stereo algorithm?

Stereo
s VSO ——4.97%
[E.neckeAﬁﬁM] I £, 86%
PR- [§°ge‘ ggﬂg\g I 4 369
[Yamaguchi, EIEIC2§IE] 4.04%
oo R-SFAE —— 5
3.92%

o SO RS
.
Ours (Stereo)_ 3.39%
I 3.05%

VC-SF
[Vogel, et al, 2014]
]
2.83%
5%

0% 1% 2% 3%
Error > 3 pixels (Non-Occluded)

@ Autonomous driving dataset KITTI: http://uww.cvlibs.net/datasets/kitti/

Ours (Joint)
4%

Flow
OB U e — 6.52%
———
TOVZARCIET 6.20%
I
[n’Qf.%Tgl( i 5.93%
MotionSLIC mm 3.91%
[Vamagucm elal 2013)
W
PR [§o%§ etezﬂ?m:ﬂ 3.76%
—
et o 3.64%
PR-Sf+E IE—— 3 57
[Vogel, et al, 2013]
—— .,
Ours (Flow) 3.38%
 —
Ours (Joint) 2.82%
——
2.72%
5% 6% 7%

2% 3% 4%

[Vogel, e\(/z ,§§1A]
0% 1%
Error > 3 pixels (Non-Occluded)

6%

erstanding
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http://www.cvlibs.net/datasets/kitti/

From Disparity We Get...

@ Depth: Once you have disparity, you have 3D

Figure: K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014
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http://www.cs.utoronto.ca/~fidler/courses/CSC420/yamaguchi_resvid_iter10.mp4
http://www.cs.utoronto.ca/~fidler/courses/CSC420/yamaguchi_resvid_iter10.mp4

From Disparity We Get...
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Stereo

Epipolar geometry

@ Case with two cameras with parallel optical axes

@ General case

Parallel stereo cameras:

¢

< Next time

€y

P1 (Thyz)

left image planej

left camera center

T
0
0

% t
N =

Sanja Fidler

right image
plane

right camera center

¥
/N

General stereo cameras:
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