The DPM Detector

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan
Object Detection with Discriminatively Trained Part Based Models
T-PAMI, 2010

Pa PEer: nttp://cs.brown.edu/~pff/papers/lsvm-pami.pdf
Code: http://www.cs.berkeley.edu/~rbg/latent/

Sanja Fidler CSC420: Intro to Image Understanding

http://cs.brown.edu/~pff/papers/lsvm-pami.pdf
http://www.cs.berkeley.edu/~rbg/latent/

The HOG Detector

@ The HOG detector models an object class as a single rigid template

Figure: Single HOG template models people in upright pose.

Sanja Fidler CSC420: Intro to Image Understanding

But Objects Are Composed of Parts

Sanja Fidler CSC420: Intro to Image Understanding

Even Rigid Objects Are Composed of Parts

Sanja Fidler CSC420: Intro to Image Understanding 4 /37

Objects Are Composed of Deformable Parts

@ Revisit the old idea by Fischler & Elschlager 1973

@ Objects are composed of parts at specific relative locations. Our model
should probably also model object parts.

@ Different instances of the same object class have parts in slightly different
locations. Our object model should thus allow slight slack in part position.

part part

springs

root part

part

Figure: Objects are a collection of deformable parts
[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ The DPM model starts by borrowing the idea of the HOG detector. It takes
a HOG template for the full object. (If you take something that works,
things can only get better, right?)

root part

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

DPM Model

@ DPM now wants to add parts. It wants to add them at locations relative to
the location of the root filter. Relative makes sense: if we move, we take our

parts with us.
We add parts at locations relative to this point
(upper left corner of the root filter)

springs
root part

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ Add a part at a relative location and scale.

springs
root part

part location: v{ = (/U]_’xjvlyy)
andsize: 6 x 6 (in HOG cells)

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ Give some slack to the location of the part. Why is this a good idea?

springs
root part A part also has deformation: it can
slightly ““move’ around expected
location
- This deformation is modeled with a
quadratic function

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Lebron James: Too big for the box

% ’,
-9

4“\‘-

springs
root part

'-f R

B T e) "/ y P

‘.-v.-
R e S S €

|7

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Danny de Vito: Too small for the box

springs
root part

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ People are of different heights, thus have feet at different locations relative
to the head. And we want to detect all people, not just the average ones.

Brad Pitt: Fits perfectly

springs
root part

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ We will, however, trust less detections where parts are not exactly in their
expected location. DPM penalizes part shifts with a quadratic function:

a(x — v)? + b(x —)+ cly — v) +d(y — v)

For example, a very tall person may
have feet way lower. We want our
model to detect also tall people.

But since there are less really tall

people, we want to penalize such

detections a little bit (we will trust it

vy = (Ul 2 U1 y) less — how many images do actually
’ ” have NBA players, afterall?).

o

penalize this shift by
quadratic function

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ Each part also has an appearance, which is modeled with a HOG template

@ Each part’s template is at twice the resolution as the root filter

part

springs
root part

Each part also has its own
appearance (a HOG template of 6x6
cells, each cell with 31 dimensions)

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

The DPM Model

@ And finally, DPM has a few parts. Typically 6 (but it's a parameter you can
play with). How many weights does a 6-part DPM model have?

@ How shall we score this part-model guy in an image (how to do detection)?

Full model:

* Root filter (HOG template)

part s Parts:
. » Location
springs » Deformation

root part » HOG template

part

root part (or root filter)

Sanja Fidler CSC420: Intro to Image Understanding

Remember the HOG Detector

@ HOG detector computes image pyramid, HOG features, and scores each
window with a learned linear classifier

Detection Phase The HOG Detector

P-g
> score(l, p) = w - ¢(/, p)

A

\4

Image pyramid HOG feature pyramid

[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

DPM Detector

@ For DPM the story is quite similar (pyramid, HOG, score window with a
learned linear classifier), but now we also need to score the parts.

Detection Phase The DPM Detector
Po—=g
Z- L
TS -
Image pyramid HOG feature pyramid [FMR CVPR'08]
[FGMR PAMI'10]

[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

Z=(p1,...,pn)

n
score(l, pp) = max m;i(1, py) Z di(po, pi)
P1y---3Pn <
i=0
Filter scores Sprlng costs
po_:_ T
z fEEE
Image pyramid HOG feature pyramid [FMR CVPR'08]
[FGMR PAMI'10]

Sanja Fidler CSC420: Intro to Image Understanding

@ More specifically, we will score a location (window) in the image as follows:

score(/, pp) = max (ZF HOG(!, p;) ZWdef - (dx, dy,dx2,dy2)>

Pis--+sPn

where

Fo is the (learned) HOG template for root filter

o F;is the (learned) HOG template for part i

HOG(I, p;) means a HOG feature cropped in window defined by part
location p; at level | of the HOG pyramid

wyes' are (learned) weights for the deformation penalty
(dx, dy, dx?, dy?) with (dx, dy) = (x;, y:) — ((x0, ¥o) + vi) tell us how
far the part / is from its expected position (xg, o) + Vi)

Sanja Fidler CSC420: Intro to Image Understanding

@ More specifically, we will score a location (window) in the image as follows:

score(/, pp) = max (ZF HOG(!, p;) ZWdef - (dx, dy,dx2,dy2)>

Pis--+sPn

where

Fo is the (learned) HOG template for root filter

o F;is the (learned) HOG template for part i

HOG(I, p;) means a HOG feature cropped in window defined by part
location p; at level | of the HOG pyramid

wyes' are (learned) weights for the deformation penalty

(dx, dy, dx?, dy?) with (dx, dy) = (x;, y:) — ((x0, ¥o) + vi) tell us how
far the part / is from its expected position (xg, o) + Vi)

@ Main question: How shall we compute that nasty max,,, . .7

Sanja Fidler CSC420: Intro to Image Understanding

@ Push the max inside (why can we do that?):

score(/, po) = Fo- HOG(1, o)+ Y max (Fi- HOG(1, i) ~ Waet'- s (x:,1)
i=1

Sanja Fidler CSC420: Intro to Image Understanding

@ Push the max inside:

score(/, p) = Fo- HOG(I, po) + Y max (Fi -HOG(1, pi) _Wdefi'¢def(xia)/i))

i=1

@ We can compute this with dynamic programming. Any idea how?

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l, po) = Fo - HOG(1, py) Zmax(F HOG(L, pi) = Waet' * ey (21, 1))

Compute cross-correlation
P Ve with filter Fj

Image pyramid HOG feature pyramid

Figure: We can compute F; - HOG(!, p;) for the full level / via cross-correlation of
the HOG feature matrix at level / with the template (filter) F;

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l,pg) = Fo - HOG(L, po) Zmax (F -HOG(l,p;) — Wdet' - ¢.def(xi,yi))

=1
Compute cross-correlation
p_: /with filter F{
Compute cross-correlation
/with filter F}
e
Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l,pg) = Fo - HOG(L, po) Zmax (F -HOG(l,p;) — Wdet' - ¢.def(xi,yi))

=1
p e Let’s say we want to
B compute score in this
EEHT location
m
Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l, po) = Fo - HOG(l, po) + 3 max (Fi - HOG(pi) — Waot' + ey (22, 1))

i=1

This is 0 in yellow point, because
: (d, dy, dz*, dy*) = (0,0,0,0)

There is no penalty for
placing the part in the
yellow location (the part is
H at expected location
relative to the location of
5 the root filter)

Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l, po) = Fo - HOG(l, po) + 3 max (Fi - HOG(pi) — Waer' - ey (22, 1))

i=1

p T

i’

But at this location we pay

Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Computing Score with Dynamic Programming

We are computing this: max (Fi -HOG(l,pi) — Waet" - baes (i, yz))
Pi

We need to loop over all
P possible placements of the

H part. For each placement
o / we need to:

i * Compute deformation

> mmmm cost

T * Read out the correlation

= ' value

hi * Subtract deformation
from corr value

Find the max of these

scores across all

placements. Store the max

Image pyramid HOG feature pyramid | in the yellow spot.

Figure: We can compute these scores efficiently with something called distance transforms
(this is exact). But works equally well: Simply limit the scope of where each part could be to a
small area, e.g., a few HOG cells up,down,left,right relative to yellow spot (this is approx).

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

Zn;ax (Fi -HOG(l,p;) — Waes" - ¢def(xi7yi))

i=1
P5ig Do this for each part. Sum
>rH all the max part scores in
i = / the yellow spot
Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Computing the Score with Dynamic Programming

score(l,pg) = Fo - HOG(L, po) Zmax (F -HOG(l,p;) — Wdet' - ¢.def(xi,yi))

=1

S Add the value in the yellow
tH location to the value in the
red location.

Done!

Image pyramid HOG feature pyramid

Sanja Fidler CSC420: Intro to Image Understanding

Detection

B

response of part filters

transformed responses

combined score of
root locations

response of root filter|

color encoding of filter
response values

low value high value

[Pic from: Felzenswalb et al., 2010]

CSC420: Intro to Image

@ You can't train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?

Sanja Fidler CSC420: Intro to Image Understanding

@ You can't train this model as simple as the HOG detector, via SVM. For
those taking CSC411: Why not?

@ Because the part positions are not annotated (we don't have ground-truth,
and SVM needs ground-truth). We say that the parts are latent.

@ You can train the model with something called latent SVM. For ML buffs:

o Check the Felzenswalb paper
e For those with even stronger ML stomach: Yu, Joachims, Learning
Structural SVMs with Latent Variables, ICML'09.

Sanja Fidler CSC420: Intro to Image Understanding

[DT05]
AP0.12

Figure: Performance of the HOG detector on person class on PASCAL VOC

[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

i

N
XA

e =

e
i
I SO VI o -

-

[DT'05] [FMR'08]
AP0.12 AP 0.27

Figure: DPM version 1: adds the parts

[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

[DT'05] [FMR'08]
AP 0.12 AP 0.27 [FGMR'10]
AP 0.36

Figure: DPM version 2: adds another template (called mixture or component).
Supposed to detect also people sitting down (e.g., occluded by desk).

[Pic from: R. Girshik]
Sanja Fidler CSC420: Intro to Image Understanding 31 /37

[FGMR'10] g

AP 0.36 [GFM voc-release5]
AP 0.45

[DT'05] [FMR'08]
AP 0.12 AP 0.27

Figure: DPM version 3: adds multiple mixtures (components)

[Pic from: R. Girshik]

Sanja Fidler CSC420: Intro to Image Understanding

[DT05] [FMR’08] XX i
AP 0.12 AP 0.27 [FGMR’10] —
AP 0.36 [GFM voc-releaseb]
AP 0.45

I

Subtype | Subtype 2 Example detections and derived filters

o [
[GFM'11]
AP 0.49
[Pic from: R. Girshik]
Sanja Fidler CSC420: Intro to Image Understanding 31/3

g
]
o
o
=
o
o)
c
-
(g0]
)
-

bottle

person

S A e X,
s S e A

S S N
it e SO S

Koo |

T T Al

i

et i 1

2010]

[Pic from: Felzenswalb et al.,

32 /37

CSC420: Intro to Image Understanding

Sanja Fidler

Learned Models

car

~

-
A
’
$
'
.

4

-

[Pic from: Felzenswalb et al., 2010]

Sanja Fidler CSC420: Intro to Image Understanding

33 /37

Learned Models

cat

(Takes some imagination to see a cat...)

[Pic from: Felzenswalb et al., 2010]

Sanja Fidler CSC420: Intro to Image Understanding

person

[Pic from: Felzenswalb et al., 2010]
Sanja Fidler CSC420: Intro to Image Understanding 35 /37

[Pic from: Felzenswalb et al., 2010]

Sanja Fidler CSC420: Intro to Image Understanding 36 / 37

@ As you already know, the code is available:
http://www.cs.berkeley.edu/~rbg/latent/

@ Trivia:

o Takes about 20-30 seconds per image per class. Speed-ups exist.

e Depending on the size of the dataset, training takes around 12 hours
(for most PASCAL classes).

e Has some cool post-processing tricks: bounding box prediction and
context re-scoring. Each typically results in around 2% improvement in
AP.

e In the code, if you switch off the parts, you get the Dalal & Triggs’
HOG detector.

Sanja Fidler CSC420: Intro to Image Understanding

http://www.cs.berkeley.edu/~rbg/latent/

