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What are neural networks?

Let’s ask

• Biological

• Computational
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What are neural networks?

...Neural networks (NNs) are computational models inspired by
biological neural networks [...] and are used to estimate or

approximate functions... [Wikipedia]
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What are neural networks? The people behind
Origins:

Traced back to threshold logic [W. McCulloch and W. Pitts, 1943]
Perceptron [F. Rosenblatt, 1958]

More recently:

G. Hinton (UofT)

Y. LeCun (NYU)

A. Ng (Stanford)

Y. Bengio (University of Montreal)

J. Schmidhuber (IDSIA, Switzerland)

R. Salakhutdinov (UofT)

H. Lee (University of Michigan)

R. Fergus (NYU)

... (and many more having made significant contributions; apologies for
not being able to mention everyone and all the students behind)
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What are neural networks? Use cases

Classification
Playing video games
Captcha
Neural Turing Machine (e.g., learn how to sort) Alex Graves

http://www.technologyreview.com/view/532156/googles-secretive-deepmind-startup-unveils-a-neural-turing-machine/
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What are neural networks?
Example:

input x
parameters w1, w2, b

x ∈ R
h1

b ∈ R

f
w1 w2
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How to compute the function?

Forward propagation/pass, inference, prediction:
Given input x and parameters w , b
Compute latent variables/intermediate results in a feed-forward
manner
Until we obtain output function f

x ∈ R
h1

b ∈ R

f
w1 w2
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How to compute the function?
Example: input x , parameters w1, w2, b

x ∈ R
h1

b ∈ R

f
w1 w2

h1 = σ(w1 · x + b)
f = w2 · h1

Sigmoid function:
σ(z) = 1/(1 + exp(−z))

x = ln 2, b = ln 3, w1 = 2, w2 = 2
h1 =?
f =?
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How to compute the function?
Given parameters, what is f for x = 0, x = 1, x = 2, ...

f = w2σ(w1 · x + b)
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Let’s mess with parameters:

x ∈ R
h1

b ∈ R

f
w1 w2

h1 = σ(w1 · x + b)
f = w2 · h1

σ(z) = 1/(1 + exp(−z))

w1 = 1.0 b = 0
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Keep in mind the step function.
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How to use Neural Networks for binary classification?
Feature/Measurement: x
Output: How likely is the input to be a cat?
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How to use Neural Networks for binary classification?
Shifted feature/measurement: x
Output: How likely is the input to be a cat?

Previous features Shifted features
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Learning/Training means finding the right parameters.
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So far we are able to scale and translate sigmoids.

How well can we approximate an arbitrary function?
With the simple model we are obviously not going very far.

Features are good Features are noisy
Simple classifier More complex classifier
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How can we generalize?
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Let’s use more hidden variables:

x ∈ R
h1

b1

h2

b2

f

w1 w2

w3 w4

h1 = σ(w1 · x + b1)
h2 = σ(w3 · x + b2)

f = w2 · h1 + w4 · h2

Combining two step functions gives a bump.
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w1 = −100, b1 = 40, w3 = 100, b2 = 60, w2 = 1, w4 = 1
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So let’s simplify:

x ∈ R
h1

b1

h2

b2

f

w1 w2

w3 w4

fBump(x1, x2, h)

We simplify a pair of hidden nodes to a “bump” function:
Starts at x1

Ends at x2

Has height h
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Now we can represent “bumps” very well. How can we generalize?

f

Bump(0.0, 0.2, h1)

Bump(0.2, 0.4, h2)

Bump(0.4, 0.6, h3)

Bump(0.6, 0.8, h4)

Bump(0.8, 1.0, h5)
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More bumps gives more accurate approximation.
Corresponds to a single layer network.
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Universality: theoretically we can approximate an arbitrary
function
So we can learn a really complex cat classifier
Where is the catch?

Complexity, we might need quite a few hidden units
Overfitting, memorize the training data
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Generalizations are possible to
include more input dimensions
capture more output dimensions
employ multiple layers for more efficient representations

See ‘http://neuralnetworksanddeeplearning.com/chap4.html’ for a
great read!
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How do we find the parameters to obtain a good approximation? How
do we tell a computer to do that?

Intuitive explanation:
Compute approximation error at the output
Propagate error back by computing individual contributions of
parameters to error

[Fig. from H. Lee]
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Intuitive example:

Target function: 5x2

Approximation: fw (x)
Domain of interest: x ∈ [0,1]
Error:

e(w) =

∫ 1

0
(5x2 − fw (x))2dx

Program of interest:

min
w

e(w) = min
w

∫ 1

0
(5x2 − fw (x))2dx
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Chain rule is important: w1,w2, x ∈ R
Assume

e(w1,w2) = f (w2,h(w1, x))

Derivatives are:

∂e(w1,w2)

∂w2
=
∂f (w2,h(w1, x))

∂w2

∂e(w1,w2)

∂w1
=

∂f (w2,h(w1, x))
∂w1

=
∂f
∂h
· ∂h
∂w1

Chain rule
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Back propagation does not work well for deep networks:
Diffusion of gradient signal (multiplication of many small numbers)
Attractivity of many local minima (random initialization is very far
from good points)
Requires a lot of training samples
Need for significant computational power

Solution: 2 step approach
Greedy layerwise pre-training
Perform full fine tuning at the end
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Why go deep?

Representation efficiency (fewer
computational units for the same function)
Hierarchical representation (non-local
generalization)
Combinatorial sharing (re-use of earlier
computation)
Works very well

[Fig. from H. Lee]
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To obtain more flexibility/non-linearity we use additional function
prototypes:

Sigmoid
Rectified linear unit (ReLU)
Pooling
Dropout
Convolutions
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Convolutions

What do the numbers mean?

See Sanja’s lecture 14 for the answers...
[Fig. adapted from A. Krizhevsky]
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Max Pooling

What is happening here?
[Fig. adapted from A. Krizhevsky]
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Rectified Linear Unit (ReLU)
Drop information if smaller than zero
Fixes the problem of vanishing gradients to some degree

Dropout
Drop information at random
Kind of a regularization, enforcing redundancy
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A famous deep learning network called “AlexNet.”

The network won the ImageNet competition in 2012.
How many parameters?
Given an image, what is happening?
Inference Time: about 2ms per image when processing many
images in parallel
Training Time: forever (maybe 2-3 weeks)

[Fig. adapted from A. Krizhevsky]
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Demo
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Neural networks have been used for many applications:

Classification and Recognition in Computer Vision
Text Parsing in Natural Language Processing
Playing Video Games
Stock Market Prediction
Captcha

Demos:
Russ website
Antonio Places website
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Classification in Computer Vision: ImageNet Challenge
http://deeplearning.cs.toronto.edu/

Since it’s the end of the semester, let’s find the beach...
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Classification in Computer Vision: ImageNet Challenge
http://deeplearning.cs.toronto.edu/

A place to maybe prepare for exams...
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Links:

Tutorials: http://deeplearning.net/tutorial/deeplearning.pdf
Toronto Demo by Russ and students:
http://deeplearning.cs.toronto.edu/
MIT Demo by Antonio and students:
http://places.csail.mit.edu/demo.html
Honglak Lee:
http://deeplearningworkshopnips2010.files.wordpress.com/2010/09/nips10-
workshop-tutorial-final.pdf
Yann LeCun:
http://www.cs.nyu.edu/ yann/talks/lecun-ranzato-icml2013.pdf
Richard Socher: http://lxmls.it.pt/2014/socher-lxmls.pdf
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Videos:

Video games: https://www.youtube.com/watch?v=mARt-xPablE
Captcha: http://singularityhub.com/2013/10/29/tiny-ai-startup-
vicarious-says-its-solved-captcha/
https://www.youtube.com/watch?v=lge-dl2JUAM#t=27
Stock exchange:
http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-
networks/Applications/stocks.html

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 35 / 35


	Universality of Neural Networks
	Learning Neural Networks
	Deep Learning
	Applications
	References

