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Finding Waldo

Let’s revisit the problem of finding Waldo

And let’s take a simple example

image template (filter)
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Let’s revisit the problem of finding Waldo

And let’s take a simple example

normalized cross-correlation Waldo detection
(putting box around max response)
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Finding Waldo

Now imagine Waldo goes shopping

... but our filter doesn’t know that

image template (filter)
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Finding Waldo

Now imagine Waldo goes shopping (and the dog too)

... but our filter doesn’t know that

normalized cross-correlation Waldo detection
(putting box around max response)
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Finding Waldo (again)

What can we do to find Waldo again?
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Finding Waldo (again)

What can we do to find Waldo again?

Edges!!!

image template (filter)
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Finding Waldo (again)

What can we do to find Waldo again?

Edges!!!

normalized cross-correlation

(using the edge maps)

Waldo detection
(putting box around max response)
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Waldo and Edges
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Edge detection

Map image from 2d array of pixels to a set of curves or line segments or
contours.

More compact than pixels.

Edges are invariant to changes in illumination

Important for recognition

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]
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Origin of Edges

Edges are caused by a variety of factors

depth discontinuity 

surface color discontinuity 

illumination discontinuity 

surface normal discontinuity 

[Source: N. Snavely]
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What Causes an Edge?

[Source: K. Grauman]
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Looking More Locally...

[Source: K. Grauman]
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Images as Functions

Edges look like steep cliffs

[Source: N. Snavely]
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Characterizing Edges

An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]
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How to Implement Derivatives with Convolution

How can we differentiate a digital image f [x , y ]?

Option 1: reconstruct a continuous image f , then compute the partial
derivative as

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x)

ε

Option 2: take discrete derivative (finite difference)

∂f (x , y)

∂x
≈ f [x + 1, y ]− f [x ]

1

What would be the filter to implement this using convolution?

1 -1 -1 

1 
!" !"

[Source: S. Seitz]
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Examples: Partial Derivatives of an Image

How does the horizontal derivative using the filter [−1, 1] look like?

Image
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Examples: Partial Derivatives of an Image

How does the horizontal derivative using the filter [−1, 1] look like?

Image
∂f (x,y)
∂x with [−1, 1] and correlation
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Examples: Partial Derivatives of an Image

How about the vertical derivative using filter [−1, 1]T ?

Image
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Image
∂f (x,y)
∂y with [−1, 1]T and correlation
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Examples: Partial Derivatives of an Image
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Examples: Partial Derivatives of an Image

Figure: Using correlation filters

[Source: K. Grauman]
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Finite Difference Filters

[Source: K. Grauman]
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Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1
(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
( ∂f∂x )2 + ( ∂f∂y )2

[Source: S. Seitz]
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Example: Image Gradient
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Example: Image Gradient

Sanja Fidler Intro to Image Understanding 23 / 70



Example: Image Gradient

[Source: S. Lazebnik]
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Effects of noise

What if our image is noisy? What can we do?

Consider a single row or column of the image.

Plotting intensity as a function of position gives a signal.

!"#$%&#'()*&#+,-.&

[Source: S. Seitz]

Sanja Fidler Intro to Image Understanding 25 / 70



Effects of noise

Smooth first with h (e.g. Gaussian), and look for peaks in ∂
∂x (h ∗ f ).

[Source: S. Seitz]
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Derivative theorem of convolution

Differentiation property of convolution

∂

∂x
(h ∗ f ) = (

∂h

∂x
) ∗ f = h ∗ (

∂f

∂x
)

It saves one operation

[Source: S. Seitz]
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2D Edge Detection Filters

Gaussian Derivative of Gaussian (x)

hσ(x , y) = 1
2πσ2 exp−

u2+v2

2σ2 ∂
∂x hσ(u, v)

[Source: N. Snavely]

Sanja Fidler Intro to Image Understanding 28 / 70



Derivative of Gaussians

[Source: K. Grauman]
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Example

Applying the Gaussian derivatives to image
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Example

Applying the Gaussian derivatives to image

Properties:

Zero at a long distance from the edge

Positive on both sides of the edge

Highest value at some point in between, on the edge itself
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Effect of σ on derivatives

The detected structures differ depending on the Gaussian’s scale parameter:

Larger values: larger scale edges detected

Smaller values: finer structures detected

[Source: K. Grauman]
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Laplacian of Gaussians

Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]
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2D Edge Filtering

with ∇2 the Laplacian operator ∇2f = ∂2f
∂x2 + ∂2f

∂y2

[Source: S. Seitz]
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Example

σ = 1 pixels σ = 3 pixels

Applying the Laplacian operator to image
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Example

σ = 1 pixels σ = 3 pixels

Applying the Laplacian operator to image

Properties:

Zero at a long distance from the edge

Positive on the darker side of edge

Negative on the lighter side

Zero at some point in between, on edge itself
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Locating Edges – Canny’s Edge Detector

Let’s take the most popular picture in computer vision: Lena
(appeared in November 1972 issue of Playboy magazine)

[Source: N. Snavely]
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Locating Edges

Figure: Canny’s approach takes gradient magnitude

[Source: N. Snavely]
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Locating Edges

Figure: Thresholding

[Source: N. Snavely]
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Locating Edges

!"#$#%&'%("#%#)*#+%

Figure: Gradient magnitude

[Source: N. Snavely]
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Non-Maxima Suppression

Figure: Gradient magnitude

Check if pixel is local maximum along gradient direction

If yes, take it

[Source: N. Snavely]
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Finding Edges

Figure: Problem with thresholding

[Source: K. Grauman]
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Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to
continue them

[Source: K. Grauman]
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Hysteresis thresholding

[Source: L. Fei Fei]
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Located Edges!

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]
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Canny Edge Detector

Matlab: edge(image,’canny’)

1 Filter image with derivative of Gaussian

2 Find magnitude and orientation of gradient

3 Non-maximum suppression

4 Linking and thresholding (hysteresis):

Define two thresholds: low and high
Use the high threshold to start edge curves and the low threshold to
continue them

[Source: D. Lowe and L. Fei-Fei]
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edge(image,'canny')


Canny Edge Detector

large σ detects large-scale edges

small σ detects fine edges

Canny with  Canny with  original  

[Source: S. Seitz]
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What Happens Here?

Remember this?
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What Happens Here?

What happens with an image with the following intensity profile?

Figure: Intensity of image in one horizontal slice

Figure: Horizontal derivative [−1, 1]
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What Happens Here?

Figure: Intensity of image in one horizontal slice

Figure: Horizontal derivative [−1, 1]
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What Happens Here?

Figure: The image

Is there really an edge in this image?
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What Happens Here?

Figure: Canny’s edge detection

Is there really an edge in this image?
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Canny edge detector

Still one of the most widely used edge detectors in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Depends on several parameters: σ of the blur and the thresholds

[Source: R. Urtasun]
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Summary – Stuff You Should Know

Not so good:

Horizontal image gradient: Subtract intensity of left neighbor from pixel’s
intensity (filtering with [−1, 1])

Vertical image gradient: Subtract intensity of bottom neighbor from
pixel’s intensity (filtering with [−1, 1]T )

Much better (more robust to noise):

Horizontal image gradient: Apply derivative of Gaussian with respect to x
to image (filtering!)

Vertical image gradient: Apply derivative of Gaussian with respect to y to
image

Magnitude of gradient: compute the horizontal and vertical image
gradients, square them, sum them, and

√
the sum

Edges: Locations in image where magnitude of gradient is high

Phenomena that causes edges: rapid change in surface’s normals, depth
discontinuity, rapid changes in color, change in illumination
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Summary – Stuff You Should Know

Properties of gradient’s magnitude:

Zero far away from edge
Positive on both sides of the edge
Highest value directly on the edge
Higher σ emphasizes larger structures

Canny’s edge detector:

Compute gradient’s direction and magnitude
Non-maxima suppression
Thresholding at two levels and linking

Matlab functions:

fspecial: gives a few gradients filters (prewitt, sobel, roberts)

smoothGradient: function to compute gradients with derivatives of
Gaussians. Find it in Lecture’s 3 code (check class webpage)

edge: use edge(I,‘canny’) to detect edges with Canny’s method,
and edge(I,‘log’) for Laplacian method
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Edge Detection

State of The Art

P. Dollar and C. Zitnick

Structured Forests for Fast Edge Detection

ICCV 2013
Code: http://research.microsoft.com/en-us/downloads/

389109f6-b4e8-404c-84bf-239f7cbf4e3d/default.aspx

(Time stamp: Sept 15, 2014)
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Testing the Canny Edge Detector

Let’s take this image

Our goal (a few lectures from now) is to detect objects (cows here)
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Testing the Canny Edge Detector

image gradients + NMS Canny’s edges

Sanja Fidler Intro to Image Understanding 50 / 70



Testing the Canny Edge Detector

image gradients + NMS Canny’s edges
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Testing the Canny Edge Detector

image gradients + NMS Canny’s edges

Lots of “distractor” and missing edges

Can we do better?
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Annotate...

Imagine someone goes and annotates which edges are correct

... and someone has:

Sanja Fidler Intro to Image Understanding 51 / 70



Annotate...

Imagine someone goes and annotates which edges are correct

... and someone has:

The Berkeley Segmentation Dataset and Benchmark

by D. Martin and C. Fowlkes and D. Tal and J. Malik
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... and do Machine Learning

How can we make use of such data to improve our edge detector?
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... and do Machine Learning

How can we make use of such data to improve our edge detector?

We can use Machine Learning techniques to:

Train classifiers!

Please learn what a classifier /classification is

In particular, learn what a Support Vector Machine (SVM) is (some

links to tutorials are on the class webpage)

With each week it’s going to be more important to know about this

You don’t need to learn all the details / math, but to understand the

concept enough to know what’s going on
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Classification – a Disney edition (pictures only)

Each data point x lives in a n-dimensional space, x ∈ Rn

We have a bunch of data points xi , and for each we have a label, yi

A label yi can be either 1 (positive example – correct edge in our

case), or −1 (negative example – wrong edge in our case)
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Classification – a Disney edition (pictures only)
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Training an Edge Detector

How should we do this?
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Training an Edge Detector

We extract lots of image patches
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Training an Edge Detector

We extract lots of image patches

These are our training data
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Training an Edge Detector

We extract lots of image patches

These are our training data

We convert each image patch P (a matrix) into a vector x

Well... This works better: Extract image features for each patch

Image features are mappings from images (or patches) to other

(vector) meaningful representations. More on this in the next class!
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Using an Edge Detector

Once trained, how can we use our new edge detector?

Sanja Fidler Intro to Image Understanding 57 / 70



Using an Edge Detector

We extract all image patches
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Using an Edge Detector

We extract all image patches

Extract features and use our trained classifier
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Using an Edge Detector

We extract all image patches

Extract features and use our trained classifier

Place the predicted value (score) in the output matrix
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Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness score” score + NMS

Sanja Fidler Intro to Image Understanding 58 / 70



Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness” score score + NMS

image gradient

“edgeness” score
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Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS
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Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness” score score + NMS

image gradient

“edgeness” score
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Evaluation

Figure: green=correct, blue=wrong, red=missing, green+blue=output edges
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Evaluation

Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)

Recall =
# of green (correct edges)

# of all edges in ground-truth (first picture)

Sanja Fidler Intro to Image Understanding 64 / 70



Evaluation

Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)

Precision =
# of green (correct edges)

# of all edges in output (first picture)
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Evaluation

Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)
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Lesson 1

Trained detectors (typically) perform better (true for all

applications)

In this case, the code seem to work better for finding object

boundaries (edges) than finding text boundaries. Any idea why?

What would you do if you wanted to detect text (e.g., licence

plates)?

Think about your problem, don’t just use code as a black box
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So much trouble for just edge computation...

Can we do something cool with it already?

S. Avidan and A. Shamir

Seam Carving for Content-Aware Image Resizing

SIGGRAPH 2007
Paper: http://www.win.tue.nl/~wstahw/edu/2IV05/seamcarving.pdf
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Simple Application: Seam Carving

Content-aware resizing

Find path from top to bottom row with minimum gradient energy

Remove (or replicate) those pixels
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Seam Carving

A vertical seam s is a list of column indices, one for each row, where each

subsequent column differs by no more than one slot.

Let G denote the image gradient magnitude. Optimal 8-connected path:

s∗ = argminsE (s) = argmins

n∑
i=1

G (si )

Can be computed via dynamic programming

Compute the cumulative minimum energy for all possible connected seams

at each entry (i , j):

M(i , j) = G (i , j) + min (M(i − 1, j − 1),M(i − 1, j),M(i − 1, j + 1))

Backtrack from min value in last row of M to pull out optimal seam path.
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Seam Carving – Examples

Implement seam carving for 5% extra credit on first assignment
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Next time:

Image Features
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