Image Features:

Scale Invariant Interest Point Detection
Scale Invariant Interest Points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]
How can we independently select interest points in each image, such that the detections are repeatable across different scales?

If I detect an interest point here

Then I also want to detect one here

[Source: K. Grauman, slide credit: R. Urtasun]
Scale Invariant Interest Points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

- Extract features at a variety of scales, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.
- When does this work?

If I detect an interest point here
Then I also want to detect one here
Scale Invariant Interest Points

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

- More efficient to extract features that are stable in both location and scale.

\[
f(I_{1...i_m}(x, \sigma)) = f(I_{1...i_m}(x', \sigma'))
\]

[Source: K. Grauman, slide credit: R. Urtasun]
Scale Invariant Interest Points

How can we **independently** select interest points in each image, such that the detections are repeatable across different scales?

- Find scale that gives local maxima of a function f in both position and scale.

$$f(I_{i_1...i_n}(x, \sigma)) = f(I_{i_1...i_n}(x', \sigma'))$$

[Source: K. Grauman, slide credit: R. Urtasun]
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).

\[f(I_{i_1...i_m}(x,\sigma)) \]

\[f(I_{i_1...i_m}(x',\sigma)) \]
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
Automatic Scale Selection

Function responses for increasing scale (scale signature).
What Can the Signature Function Be?

[Source: R. Szeliski, slide credit: R. Urtasun]
What Can the Signature Function Be?

[Source: R. Szeliski, slide credit: R. Urtasun]
Blob Detection – Laplacian of Gaussian

- Laplacian of Gaussian: We mentioned it for edge detection
 \[\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2}, \]
 where \(g \) is a Gaussian

- It is a circularly symmetric operator (finds difference in all directions)
- It can be used for 2D blob detection! How?
Blob Detection – Laplacian of Gaussian

- Laplacian of Gaussian: We mentioned it for edge detection

\[\nabla^2 g(x, y, \sigma) = -\frac{1}{\pi\sigma^4} \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) \exp^{-\frac{x^2 + y^2}{2\sigma^2}} \]

- It is a circularly symmetric operator (finds difference in all directions)
- It can be used for 2D blob detection! How?
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection – Laplacian of Gaussian

- It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
Blob Detection in 2D: Scale Selection

Laplacian of Gaussian = blob detector

[Source: B. Leibe, slide credit: R. Urtasun]
We define the **characteristic scale** as the scale that produces peak (minimum or maximum) of the Laplacian response.

[Source: S. Lazebnik]
Example

[Source: K. Grauman]
Scale Invariant Interest Points

Interest points are local maxima in both position and scale.

\[L_{xx}(\sigma) + L_{yy}(\sigma) \]

Squared filter response maps

Kristen Grauman

\[\Rightarrow \text{List of } (x, y, \sigma) \]
Example

[Source: S. Lazebnik]
Blob Detection – Laplacian of Gaussian

- That’s nice. But can we do faster?
- Remember again the Laplacian of Gaussian:

\[\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2}, \]

where \(g \) is a Gaussian.
Blob Detection – Laplacian of Gaussian

- That’s nice. But can we do faster?
- Remember again the Laplacian of Gaussian:

\[
\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2},
\]

where \(g \) is a Gaussian

- So computing our interest points means two convolutions (one for each derivative) **per scale**
- Larger scale (\(\sigma \)), larger the filters (more work for convolution)
- Can we do it faster?
Approximate the Laplacian of Gaussian

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(Laplacian)

\[DoG = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

[Source: K. Grauman]
Lowe’s DoG

[Source: R. Szeliski, slide credit: R. Urtasun]
Lowe’s DoG

- First compute a Gaussian image pyramid

\[
I_s = I \ast G_{\frac{k}{2}} \\
I_k = I \ast G_{\frac{k}{k+6}} \\
I_0 = I \ast G_6
\]

Each image is smoothed by a factor of k more than the image below.

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians

\[D(x, y, \rho) = I(x, y) \ast (G(x, y, k\rho) - G(x, y, \rho)) \]

for \(\rho = \{ \sigma, k\sigma, k^2\sigma, \ldots, k^{s-1}\sigma \}, \quad k = 2^{1/s} \)

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale

\[D(x, y, \rho) = I(x, y) * (G(x, y, k\rho) - G(x, y, \rho)) \]
for \(\rho = (\sigma, k\sigma, k^2\sigma, \ldots, k^n\sigma) \)

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we’re done!

[Source: F. Flores-Mangas]
Lowe’s DoG

- First compute a Gaussian image pyramid
- Compute Difference of Gaussians
- At every scale
- Find local maxima in scale
- A bit of pruning of bad maxima and we’re done!

[Source: F. Flores-Mangas]
Other Interest Point Detectors (Many Good Options!)

- Lindeberg: Laplacian of Gaussian
- Lowe: DoG (typically called the SIFT interest point detector)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuyttelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brady: Salient Regions
To match the same scene or object under different viewpoint, it’s useful to first detect **interest points** (keypoints)

We looked at these interest point detectors:
- Harris corner detector: translation and rotation but not scale invariant
- Scale invariant interest points: Laplacian of Gaussians and Lowe’s DoG

Harris’ approach computes I_x^2, I_y^2 and I_xI_y, and blurs each one with a Gaussian. Denote with: $A = g * I_x^2$, $B = g * (I_xI_y)$ and $C = g * I_y^2$. Then $M_{xy} = \begin{pmatrix} A(x, y) & B(x, y) \\ B(x, y) & C(x, y) \end{pmatrix}$ characterizes the shape of E_{WSSD} for a window around (x, y). Compute “cornerness” score for each (x, y) as $R(x, y) = \det(M_{xy}) - \alpha \text{trace}(M_{xy})^2$. Find $R(x, y) > \text{threshold}$ and do non-maxima suppression to find corners.

Lowe’s approach creates a Gaussian pyramid with s blurring levels per octave, computes difference between consecutive levels, and finds local extrema in space and scale.
Local Descriptors – Next Time

- **Detection**: Identify the interest points.
- **Description**: Extract a feature descriptor around each interest point.
- **Matching**: Determine correspondence between descriptors in two views.

\[x_1 = [x_1^{(1)}, \ldots, x_d^{(1)}] \]

[Source: K. Grauman]