
CSC 411: Introduction to Machine Learning

ASSIGNMENT # 1

Out: Jan 31, 2016
Due: Feb 12 (Friday), 2016 [noon Toronto time]

Submission

Package your code using zip or tar.gz in a file called CSC411-A1-*your-student-id*.[zip|tar.gz].
Only include functions and scripts that you modified.

Submit the code on MarkUs by February 12, 2016, noon. Hand in the written part of
your assignment in class (tutorial) on February 12.

1 Logistic Regression (30 points)

1.1 (10 points) Bayes’ Rule

Suppose you have a D-dimensional data vector x = (x1, . . . , xD)T and an associated class variable
y ∈ {0, 1} which is Bernoulli with parameter α (i.e. p(y = 1) = α and p(y = 0) = 1 − α). Assume
that the dimensions of x are conditionally independent given y, and that the conditional likelihood of
each xi is Gaussian with µi0 and µi1 as the means of the two classes and σi as their shared standard
deviation.

Use Bayes’ rule to show that p(y = 1|x) takes the form of a logistic function:

p(y = 1|x) = σ(wTx + b) =
1

1 + exp
(
−
∑D

i=1wixi − b
)

Derive expressions for the weights w = (w1, . . . , wD)T and the bias b in terms of the parameters of
the class likelihoods and priors (i.e., µi0, µi1, σi and α).

1.2 (10 points) Maximum Likelihood Estimation

Now suppose you are given a training set D = {(x(1), y(1)), . . . , (x(N), y(N))}. Consider a binary
logistic regression classifier of the same form as before:

p(y = 1|x(n),w, b) = σ(wTx(n) + b) =
1

1 + exp
(
−
∑D

i=1wix
(n)
i − b

)
Derive an expression for E(w, b), the negative log-likelihood of y(1), . . . , y(n) given x(1), . . . ,x(n) and
the model parameters, under the i.i.d. assumption. Then derive expressions for the derivatives of E
with respect to each of the model parameters.

1.3 (10 points) L2 Regularization

Now assume that a Gaussian prior is placed on each element of w, and b such that p(wi) =
N (wi|0, 1/λ), and p(b) = N (b|0, 1/λ). Derive an expression that is proportional to p(w, b|D), the
posterior distribution of w and b, based on this prior and the likelihood defined above. The expression
you derive must contain all terms that depend on w and b.

Define L(w, b) to be the negative logarithm of this posterior. Show that L(w, b) takes the following
form:

L(w, b) = E(w, b) +
λ

2

D∑
i=1

w2
i +

λ

2
b2 + C(λ)

where C(λ) is a term that depends on λ but not on either w or b. What are the derivatives of L
with respect to each of the model parameters?

2 Logistic Regression vs. KNN (25 points)

In this section you will compare the performance and characteristics of different classifiers, namely
Logistic Regression and k-Nearest Neighbors. You will extend the provided code and experiment
with these extensions. Note that you should understand the code first instead of using it as a black
box.

Both Matlab and Python1 versions of the code have been provided. You are free to work with
whichever you wish.

The data you will be working with are hand-written digits, 4s and 9s, represented as 28x28 pixel
arrays. There are two training sets: mnist train, which contains 80 examples of each class,
and mnist train small, which contains 5 examples of each class. There is also a validation set
mnist valid that you should use for model selection, and a test set mnist test.

Code for visualizing the datasets has been included in plot digits.

2.1 (5 points) k-Nearest Neighbors

Use the supplied kNN implementation to predict labels for mnist valid, using mnist train as the
training set.

Write a script that runs kNN for different values of k ∈ {1, 3, 5, 7, 9} and plots the classification rate
on the validation set (number of correctly predicted cases, divided by total number of data points)
as a function of k.

Comment on the performance of the classifier and argue which value of k you would choose. What
is the classification rate for k∗, your chosen value of k? Also compute the rate for k∗ + 2 and k∗− 2.

1If you choose to work with Python, you should use Python 2.7 with both the Numpy and Matplotlib packages
installed.

Does the test performance for these values of k correspond to the validation performance?2 Why or
why not?

2.2 (10 points) Logistic regression

Look through the code in logistic regression template and logistic. Complete the implemen-
tation of logistic regression by providing the missing part of logistic. Use checkgrad to make sure
that your gradients are correct.

Run the code on both mnist train and mnist train small. You will need to experiment with the
hyperparameters for the learning rate, the number of iterations (if you have a smaller learning rate,
your model will take longer to converge), and the way in which you initialize the weights. If you get
Nan/Inf errors, you may try to reduce your learning rate or initialize with smaller weights.

Report which hyperparameter settings you found worked the best and the final cross entropy (also
called log loss) and classification error on the training, validation and test sets. Note that you should
only compute the test error once you have selected your best hyperparameter settings using the
validation set.

Next look at how the cross entropy changes as training progresses. Submit 2 plots, one for each of
mnist train and mnist train small. In each plot show two curves one for the training set and one
for the validation set. Run your code several times and observe if the results change. If they do, how
would you choose the best parameter settings?

2.3 (10 points) Penalized logistic regression

Implement the penalized logistic regression model you derived in 1.3 by modifying logistic to
include a regularizer. Call the new function logistic pen. You should only penalize the weights
and not the bias term, as it only controls the height of the function but not its complexity. Note that
you can omit the C(λ) term in your error computation, since its derivative is 0 w.r.t. the weights
and bias. Use checkgrad to verify the gradients of your new logistic pen function.

Repeat part 2.2, but now with different values of the penalty parameter λ. Try λ ∈ {0.001, 0.01, 0.1, 1.0}.
At this stage you should not be evaluating on the test set as you will do so once you have chosen
your best λ.

To do the comparison systematically, you should write a script that includes a loop to evaluate
different values of λ automatically. You should also re-run logistic regression at least 10 times for
each value of λ.

So you will need two nested loops: The outer loop is over values of λ. The inner loop is over multiple
re-runs. Average the evaluation metrics (cross entropy and clasification error) over the different
re-runs. In the end, plot the average cross entropy and classification error against λ. So for each of
mnist train and mnist train small you will have 2 plots. One plot for cross entropy and another
plot for classification error. Each plot will have two curves - one for training and one for validation.

How do the cross entropy and classification error change when you increase λ? Do they go up, down,

2In general you shouldn’t peek at the test set multiple times, but for the purposes of this question it can be an
illustrative exercise.

first up and then down, or down and then up? Explain why you think they behave this way. Which
is the best value of λ, based on your experiments? Report the test error for the best value of λ.

Compare the results with and without penalty. Which one performed better for which data set?
Why do you think this is the case?

