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Overview

● Problem: Text + Question => Answer

● Solution:
○ Recurrent attention model

○ Memory network trained end-to-end

○ Weakly supervised

● Solution extends to sentence generation
○ Performs better than previous comparable RNNs and LSTMs



Main Motivation
● Answer questions about a body of text

○ Try to sound like a human

○ Turing test

● Perform better than previous approaches



Statement of the Problem

● Idea: test in “units” - small, one word answers, 

● Word order and sentence order matter

[ J. Weston, A. Bordes, S. Chopra, et. al., “Towards AI Complete Question Answering: A Set of Prerequisite Toy Tasks”, ICLR 2016 ]
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Statement of the Problem

● What assumptions are being made?
○ ordering
○ there is an answer (1 of 20)
○ nothing else happens



Memory Networks I
● Goal is to make use of memory in a neural net

● Compare to LSTM:
○ hidden state in each cell

○ Smaller amount of memory used

○ Changes easily over time



MemN2N I - Basic Architecture

1)

2)

3)

● Embedding matrices A, B, C, W are learned during training

ATTENTION!

Cross 
entropy

[ S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, “End-to-End Memory Networks”, Nov 2015]



MemN2N II - Approaches to Embedding
● Bag of Words (BoW)

○

● Position Encoding (PE)

○

● Temporal Encoding (TE)

○

● Random Noise (RN)

○ For regularizing 



MemN2N III - Multi-hop Architectures (with k hops) 

Types of Weight-Tying:
Adjacent:

●

●

●

Layer-wise (RNN-Like):

●

●

[ S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, “End-to-End Memory Networks”, Nov 2015]



Attention During Hops

[ S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, “End-to-End Memory Networks”, Nov 2015]



MemN2N IV - Multi-hop vs. RNN
● Can think of u vector as hidden state

● Recurrence is: 

● Unlike RNN, there is no concrete intermediate output
○ e.g. not predicting a word at an intermediate state

○         has no human-understandable meaning



MemN2N V - Sentence Generation
● Same multi-hop architecture

● Now embed words individually instead of sentences

● There is no question so u is fixed as constant vector, 0.1

● Layer-wise weight sharing

● Performs better than previous comparable RNNs and LSTMs



Original MemNets I
● I (Input feature map)

○ pre-processing of data

● G (Generalization)
○ store input, compress input chunks, update previous inputs based on new ones

● O (Output feature map)
○ Calculates relevant memories to perform response (perhaps using score function)

● R (Response)
○ Formatting O into the desired output (e.g. a response sentence or word)



Original MemNets II
● Can use any ML algorithm for each component

● Components don’t necessarily all connect together

● Proposed MemNN instantiation is strongly supervised
○ k supporting sentences are chosen as input during training time



Overview of Experimental Evaluation I
● Increasing # of hops increases performance

● Embedding approaches improve performance

● Linear start improves performance

○ Remove softmax at memory layer during training, replace it when validation error stopped 

decreasing

● Huge improvement on tasks 17 and 19 with added non-linearity
○ higher embedding dimension (100 instead of 50)

○ ReLU after each hop



Overview of Experimental Evaluation II

[ S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, “End-to-End Memory Networks”, Nov 2015]



More Non-Linearity

[ S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, “End-to-End Memory Networks”, Nov 2015]



Strengths of MemN2N
● Less supervised than original MemNN

● Can be trained end-to-end

● Outperforms tuned RNNs and LSTMs for language modelling

● MemN2N - has ~1.5x params as vanilla RNN
○ LSTM is ~4x !



Weaknesses & Future Direction of MemN2N
● Another way to learn embeddings (skip-thought!)

● Multi-word answers

● Higher error than MemNN in a lot of tasks

● Handling more data in memory
○ what if it doesn’t fit in memory? (databases)

○ what if it takes too long to look up? (bucketing)

● What about long stories?

● Positional reasoning could still use some work
○ 18.6% error at best



Applications



[ H. Xu, K. Saenko, “Ask, Attend, and Answer: Exploring Question-Guided Spatial Attention for Visual Question-Answering”, Nov. 2015]



[ M. Tapaswi, Y. Zhu, et. el., “Movie QA: Understanding Stories in Movies Through Question-Answering”, Dec. 2015]



DEMO

Source: https://github.com/vinhkhuc/MemN2N-babi-python

https://github.com/vinhkhuc/MemN2N-babi-python


Questions?


