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Intro

I An integral part but not understood in detail

I An adult laughs 18 times a day
I A good sense humor

I is related to communication competence
I helps raise an individual’s social status & popularity
I even helps attract compatible mates
I makes yourself happier :)
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What makes an image funny?
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Humor Techniques

I Animal doing something unusual

I Person doing something unusual

I Somebody getting hurt

I Somebody getting scared
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Animal doing something unusual
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Person doing something unusual
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Somebody getting hurt
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Somebody getting scared
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Changing objects can alter the funniness of a scene
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Removing Incongruities

An elderly person kicking a
football while skateboarding is
incongruous, but a young girl
doing so is not
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Adding Incongruities

Add incongruities (and humor)
by replacing the expected with
the unexpected
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Two Tasks to Understand Visual Humor

I Predicting how funny a given scene is (scene-level)

I Changing the funniness of a scene (object-level)
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Object-level Features

I Object embedding (150-d): captures the context in which
an object usually occurs

I Local embedding (150-d): weighted sum of object
embeddings of all other instances
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Scene-level Features

I Cardinality (150-d): bag-of-words representation of how
many instances of each object are in the scene

I Location (300-d): horizontal and vertical coordinates of every
object (closest to the center if multiple instance)

I Scene embedding (150-d): sum of object embeddings of all
objects in the scene

16 / 31



Predicting Funniness Score

I Dataset: 6,400 scenes, with funny score from 1-5 labelled by
workers from Amazon Mechanical Turk

I Support Vector Regressor (SVR) on scene-level features

I Metric: average relative error
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Predicting Funniness Score: Ablation Analysis

Different feature subsets perform about the same: slightly better
than baseline (average score of the training scenes)
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Alter Funniness of a Scene

I Detect the objects that do (or do not) contribute to humor

I Identify which objects should replace the objects from step 1
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Predicting Objects to be Replaced

I On average, the model replaces 3.67 objects (2.54 ground
truth) → this bias towards replace ensures a large ‘margin’

I Animate objects like humans and animals are more likely
sources of humor → tends to replace these objects
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Funny → Unfunny

Old man dancing → young boy dancing
Hawk stealing meat → baseball
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Funny → Unfunny

Cute puppy → Insect
Watermelon → Ax
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Unfunny → Funny

Couple having dinner at the table → Puppies having dinner at the
table
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Unfunny → Funny

Cating playing around → Racoon driving motorcycle
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Discussion

I Style/genre of an image or painting can make a difference

I Dataset is small: 6,400 images

I Feature representation can be improved
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