We Are Humor Beings: Understanding and Predicting Visual Humor

Shuai Wang

University of Toronto

March 29, 2016

An integral part but not understood in detail

Intro

- An integral part but not understood in detail
- An adult laughs 18 times a day

Intro

- An integral part but not understood in detail
- An adult laughs 18 times a day
- A good sense humor
 - is related to communication competence
 - helps raise an individual's social status & popularity
 - even helps attract compatible mates
 - makes yourself happier :)

What makes an image funny?

Humor Techniques

- Animal doing something unusual
- Person doing something unusual
- Somebody getting hurt
- Somebody getting scared

Animal doing something unusual

Person doing something unusual

Somebody getting hurt

Somebody getting scared

Changing objects can alter the funniness of a scene

Removing Incongruities

An elderly person kicking a football while skateboarding is incongruous, but a young girl doing so is not

Adding Incongruities

Add incongruities (and humor) by replacing the expected with the unexpected

Two Tasks to Understand Visual Humor

- Predicting how funny a given scene is (scene-level)
- Changing the funniness of a scene (object-level)

Object-level Features

- Object embedding (150-d): captures the context in which an object usually occurs
- ► Local embedding (150-d): weighted sum of object embeddings of all other instances

Scene-level Features

- Cardinality (150-d): bag-of-words representation of how many instances of each object are in the scene
- Location (300-d): horizontal and vertical coordinates of every object (closest to the center if multiple instance)
- Scene embedding (150-d): sum of object embeddings of all objects in the scene

Predicting Funniness Score

 Dataset: 6,400 scenes, with funny score from 1-5 labelled by workers from Amazon Mechanical Turk

Predicting Funniness Score

- Dataset: 6,400 scenes, with funny score from 1-5 labelled by workers from Amazon Mechanical Turk
- Support Vector Regressor (SVR) on scene-level features

Predicting Funniness Score

- Dataset: 6,400 scenes, with funny score from 1-5 labelled by workers from Amazon Mechanical Turk
- Support Vector Regressor (SVR) on scene-level features
- Metric: average relative error

$$\frac{1}{N} \sum_{i=1}^{N} \frac{|Predicted F_i - Ground Truth F_i|}{Ground Truth F_i}$$

Predicting Funniness Score: Ablation Analysis

Different feature subsets perform about the same: slightly better than baseline (average score of the training scenes)

Feautres	Avg. Rel. Err.
Avg. Prediction Baseline	0.3151
Embedding	0.2516
Cardinality	0.2450
Location	0.2400
Cardinality + Location	0.2435
Embedding + Location	0.2435
Cardinality + Embedding	0.2435
Embedding + Cardinality + Location	0.2400

Alter Funniness of a Scene

- Detect the objects that do (or do not) contribute to humor
- Identify which objects should replace the objects from step 1

Predicting Objects to be Replaced

On average, the model replaces 3.67 objects (2.54 ground truth) → this bias towards replace ensures a large 'margin'

Predicting Objects to be Replaced

- On average, the model replaces 3.67 objects (2.54 ground truth) → this bias towards replace ensures a large 'margin'
- ► Animate objects like humans and animals are more likely sources of humor → tends to replace these objects

$\mathsf{Funny} \to \mathsf{Unfunny}$

Old man dancing \rightarrow young boy dancing Hawk stealing meat \rightarrow baseball

 $\mathsf{Funny} \to \mathsf{Unfunny}$

 $\begin{array}{l} \mbox{Cute puppy} \rightarrow \mbox{Insect} \\ \mbox{Watermelon} \rightarrow \mbox{Ax} \end{array}$

$\mathsf{Unfunny} \to \mathsf{Funny}$

Couple having dinner at the table \rightarrow Puppies having dinner at the table

$\mathsf{Unfunny} \to \mathsf{Funny}$

Cating playing around \rightarrow Racoon driving motorcycle

Discussion

► Style/genre of an image or painting can make a difference

Discussion

- Style/genre of an image or painting can make a difference
- Dataset is small: 6,400 images

Discussion

- Style/genre of an image or painting can make a difference
- Dataset is small: 6,400 images
- Feature representation can be improved

