CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

Class based on Raquel Urtasun & Rich Zemel’s lectures

Sanja Fidler

University of Toronto

March 14, 2016
Today

- Dimensionality Reduction
- PCA
- Autoencoders
One problem with mixture models: each observation assumed to come from one of K prototypes.

Constraint that only one active (responsibilities sum to one) limits the representational power.

Alternative: Distributed representation, with several latent variables relevant to each observation.

Can be several binary/discrete variables, or continuous.
Example: Continuous Underlying Variables

- What are the intrinsic latent dimensions in these two datasets?

- How can we find these dimensions from the data?
Principal Components Analysis

- PCA: most popular instance of second main class of unsupervised learning methods, projection methods, aka dimensionality-reduction methods

- Aim: find a small number of “directions” in input space that explain variation in input data; re-represent data by projecting along those directions

- Important assumption: variation contains information

- Data is assumed to be continuous:
 - linear relationship between data and the learned representation
PCA: Common Tool

- Handles high-dimensional data
 - If data has thousands of dimensions, can be difficult for a classifier to deal with
- Often can be described by much lower dimensional representation
- Useful for:
 - Visualization
 - Preprocessing
 - Modeling – prior for new data
 - Compression
PCA: Intuition

- As in the previous lecture, training data has \(N \) vectors, \(\{x_n\}_{n=1}^N \), of dimensionality \(D \), so \(x_i \in \mathbb{R}^D \).

- Aim to reduce dimensionality:
 - linearly project to a much lower dimensional space, \(M << D \):
 \[
 x \approx Uz + a
 \]
 where \(U \) a \(D \times M \) matrix and \(z \) a \(M \)-dimensional vector

- Search for orthogonal directions in space with the highest variance
 - project data onto this subspace

- Structure of data vectors is encoded in sample covariance
To find the principal component directions, we center the data (subtract the sample mean from each variable)

Calculate the empirical covariance matrix:

\[
C = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \bar{x})(x^{(n)} - \bar{x})^T
\]

with \(\bar{x} \) the mean

What’s the dimensionality of \(C \)?

Find the \(M \) eigenvectors with largest eigenvalues of \(C \): these are the principal components

Assemble these eigenvectors into a \(D \times M \) matrix \(U \)

We can now express \(D \)-dimensional vectors \(x \) by projecting them to \(M \)-dimensional \(z \)

\[
z = U^T x
\]
Standard PCA

- Algorithm: to find M components underlying D-dimensional data

1. Select the top M eigenvectors of C (data covariance matrix):

\[
C = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \bar{x})(x^{(n)} - \bar{x})^T = U\Sigma U^T \approx U_{1:M} \Sigma_{1:M} U_{1:M}^T
\]

where U is orthogonal, columns are unit-length eigenvectors

\[
U^T U = UU^T = 1
\]

and Σ is a matrix with eigenvalues on the diagonal, representing the variance in the direction of each eigenvector

2. Project each input vector x into this subspace, e.g.,

\[
z_j = u_j^T x; \quad z = U_{1:M}^T x
\]
Two Derivations of PCA

- Two views/derivations:
 - Maximize variance (scatter of green points)
 - Minimize error (red-green distance per datapoint)
PCA: Minimizing Reconstruction Error

- We can think of PCA as projecting the data onto a lower-dimensional subspace.
- One derivation is that we want to find the projection such that the best linear reconstruction of the data is as close as possible to the original data.

\[J(u, z, b) = \sum_n \lVert x^{(n)} - \tilde{x}^{(n)} \rVert^2 \]

where

\[\tilde{x}^{(n)} = \sum_{j=1}^{M} z_j^{(n)} u_j + \sum_{j=M+1}^{D} b_j u_j \]

- Objective minimized when first M components are the eigenvectors with the maximal eigenvalues.

\[z_j^{(n)} = u_j^T x^{(n)}; \quad b_j = \tilde{x}^T u_j \]
Applying PCA to faces

- Run PCA on 2429 19x19 grayscale images (CBCL data)
- Compresses the data: can get good reconstructions with only 3 components

![Images of faces]

- PCA for pre-processing: can apply classifier to latent representation
 - PCA with 3 components obtains 79% accuracy on face/non-face discrimination on test data vs. 76.8% for GMM with 84 states
- Can also be good for visualization
Applying PCA to faces: Learned basis
Applying PCA to digits

reconstructed with 2 bases

reconstructed with 10 bases

reconstructed with 100 bases

reconstructed with 506 bases

mean

principal basis 1

principal basis 2

principal basis 3
PCA is closely related to a particular form of neural network.

An autoencoder is a neural network whose outputs are its own inputs.

The goal is to minimize reconstruction error.
Autoencoders

- Define

\[z = f(Wx); \quad \hat{x} = g(Vz) \]

- Goal:

\[
\min_{W,V} \frac{1}{2N} \sum_{n=1}^{N} \| x^{(n)} - \hat{x}^{(n)} \|^2
\]

- If \(g \) and \(f \) are linear

\[
\min_{W,V} \frac{1}{2N} \sum_{n=1}^{N} \| x^{(n)} - VWx^{(n)} \|^2
\]

- In other words, the optimal solution is PCA.
Autoencoders: Nonlinear PCA

- What if $g()$ is not linear?
- Then we are basically doing **nonlinear PCA**
- Some subtleties but in general this is an accurate description
Comparing Reconstructions

Real data
30-d deep autoencoder
30-d logistic PCA
30-d PCA