CSC 411: Lecture 19: Reinforcement Learning

Class based on Raquel Urtasun & Rich Zemel’s lectures

Sanja Fidler

University of Toronto

April 3, 2016
Today

- Learn to play games
- Reinforcement Learning

[pic from: Peter Abbeel]
Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_l4U9A
Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE
Reinforcement Learning Resources

- RL tutorial – on course website
What is Reinforcement Learning?

[pic from: Peter Abbeel]
Learning algorithms differ in the information available to learner

- **Supervised**: correct outputs
- **Unsupervised**: no feedback, must construct measure of good output
- **Reinforcement learning**

More realistic learning scenario:

- Continuous stream of input information, and actions
- Effects of action depend on state of the world
- Obtain reward that depends on world state and actions
 - not correct response, just some feedback
Reinforcement Learning

State: s
Reward: r

Agent

Environment

Actions: a

[pic from: Peter Abbeel]
Environment
Example: Tic Tac Toe, Notation

(current) state
Example: Tic Tac Toe, Notation

![Tic Tac Toe Board](image)

action
Example: Tic Tac Toe, Notation

reward
(Here: -1)
World described by a discrete, finite set of states and actions

At every time step t, we are in a state s_t, and we:

- Take an action a_t (possibly null action)
- Receive some reward r_{t+1}
- Move into a new state s_{t+1}

An RL agent may include one or more of these components:

- Policy π: agents behaviour function
- Value function: how good is each state and/or action
- Model: agent’s representation of the environment
A policy is the agent’s behaviour.

It’s a selection of which action to take, based on the current state.

Deterministic policy: \(a = \pi(s) \)

Stochastic policy: \(\pi(a|s) = P[a_t = a|s_t = s] \)
Value Function

- **Value function** is a prediction of future reward
- Used to evaluate the goodness/badness of states
- Our aim will be to maximize the value function (the total reward we receive over time): find the policy with the highest expected reward
- By following a policy π, the value function is defined as:
 $$V^\pi(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

 - γ is called a **discount rate**, and it is always $0 \leq \gamma \leq 1$
 - If γ close to 1, rewards further in the future count more, and we say that the agent is “farsighted”
 - γ is less than 1 because there is usually a time limit to the sequence of actions needed to solve a task (we prefer rewards sooner rather than later)

[Slide credit: D. Silver]
The model describes the environment by a distribution over rewards and state transitions:

\[P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a) \]

We assume the Markov property: the future depends on the past only through the current state.
Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent’s location

[Slide credit: D. Silver]
Maze Example

Arrows represent policy $\pi(s)$ for each state s.

[Slide credit: D. Silver]
Maze Example

Numbers represent value $V^\pi(s)$ of each state s

[Slide credit: D. Silver]
Consider the game tic-tac-toe:

- **reward**: win/lose/tie the game \((+1/ -1/0)\) [only at final move in given game]
- **state**: positions of X’s and O’s on the board
- **policy**: mapping from states to actions
 - based on rules of game: choice of one open position
- **value function**: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, can use a table to represent value function
Each board position (taking into account symmetry) has some probability

<table>
<thead>
<tr>
<th>State</th>
<th>Probability of a win (Computer plays “o”)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>etc</td>
<td></td>
</tr>
</tbody>
</table>

Simple learning process:

- start with all values \(= 0.5\)
- **policy**: choose move with highest probability of winning given current legal moves from current state
- update entries in table based on outcome of each game
- After many games value function will represent true probability of winning from each state

Can try alternative policy: sometimes select moves randomly (exploration)
Basic Problems

- Markov Decision Problem (MDP): tuple \((S, A, P, \gamma)\) where \(P\) is

\[
P(s_{t+1} = s', r_{t+1} = r' \mid s_t = s, a_t = a)
\]

- Standard MDP problems:
 1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return

[Pic: P. Abbeel]
Basic Problems

- Markov Decision Problem (MDP): tuple \((S, A, P, \gamma)\) where \(P\) is
 \[
P(s_{t+1} = s', r_{t+1} = r' \mid s_t = s, a_t = a)
\]

- Standard MDP problems:
 1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return
 2. **Learning**: We don’t know which states are good or what the actions do. We must try out the actions and states to learn what to do

[P. Abbeel]
Example of Standard MDP Problem

1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return

2. **Learning**: Only have access to experience in the MDP, learn a near-optimal strategy

$$r(s, a) \text{ (immediate reward)}$$
1. **Planning**: given complete Markov decision problem as input, compute policy with optimal expected return

2. **Learning**: Only have access to experience in the MDP, learn a near-optimal strategy

We will focus on learning, but discuss planning along the way
Exploration vs. Exploitation

- If we knew how the world works (embodied in P), then the policy should be deterministic
 - just select optimal action in each state
- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment
- Without losing too much reward along the way
- Since we do not have complete knowledge of the world, taking what appears to be the optimal action may prevent us from finding better states/actions
- Interesting trade-off:
 - immediate reward (exploitation) vs. gaining knowledge that might enable higher future reward (exploration)
Examples

- **Restaurant Selection**
 - **Exploitation**: Go to your favourite restaurant
 - **Exploration**: Try a new restaurant

- **Online Banner Advertisements**
 - **Exploitation**: Show the most successful advert
 - **Exploration**: Show a different advert

- **Oil Drilling**
 - **Exploitation**: Drill at the best known location
 - **Exploration**: Drill at a new location

- **Game Playing**
 - **Exploitation**: Play the move you believe is best
 - **Exploration**: Play an experimental move

[Slide credit: D. Silver]
Goal: find policy π that maximizes expected accumulated future rewards $V^\pi(s_t)$, obtained by following π from state s_t:

$$V^\pi(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

Game show example:

- assume series of questions, increasingly difficult, but increasing payoff
- choice: accept accumulated earnings and quit; or continue and risk losing everything

Notice that:

$$V^\pi(s_t) = r_t + \gamma V^\pi(s_{t+1})$$
What to Learn

- We might try to learn the function V (which we write as V^*)

$$V^*(s) = \max_a [r(s, a) + \gamma V^*(\delta(s, a))]$$

- Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

- We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]$$

- But there’s a problem:
 - This works well if we know $\delta()$ and $r()$
 - But when we don’t, we cannot choose actions this way
Q Learning

- Define a new function very similar to V^*

\[Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a)) \]

- If we learn Q, we can choose the optimal action even without knowing δ!

\[\pi^*(s) = \arg \max_a [r(s, a) + \gamma V^*(\delta(s, a))] \]
\[= \arg \max_a Q(s, a) \]

- Q is then the evaluation function we will learn
\(\gamma = 0.9 \)

\(r(s, a) \) (immediate reward) values

\(Q(s, a) \) values

\(V^*(s) \) values

\[V^*(s_5) = 0 + \gamma 100 + \gamma^2 0 + \ldots = 90 \]

One optimal policy
Training Rule to Learn Q

- Q and V^* are closely related:

\[V^*(s) = \max_a Q(s, a) \]

- So we can write Q recursively:

\[
Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)) \\
= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')
\]

- Let \hat{Q} denote the learner's current approximation to Q
- Consider training rule

\[
\hat{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}(s', a')
\]

where s' is state resulting from applying action a in state s
Q Learning for Deterministic World

- For each \(s, a \) initialize table entry \(\hat{Q}(s, a) \leftarrow 0 \)
- Start in some initial state \(s \)
- Do forever:
 - Select an action \(a \) and execute it
 - Receive immediate reward \(r \)
 - Observe the new state \(s' \)
 - Update the table entry for \(\hat{Q}(s, a) \) using Q learning rule:
 \[
 \hat{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}(s', a')
 \]
 - \(s \leftarrow s' \)
- If we get to absorbing state, restart to initial state, and run thru "Do forever" loop until reach absorbing state
Updating Estimated Q

- Assume the robot is in state s_1; some of its current estimates of Q are as shown; executes rightward move

\[
\hat{Q}(s_1, a_{\text{right}}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
\]

\[
\leftarrow r + 0.9 \max_a \{63, 81, 100\} \leftarrow 90
\]

- Important observation: at each time step (making an action a in state s only one entry of \hat{Q} will change (the entry $\hat{Q}(s, a)$))

- Notice that if rewards are non-negative, then \hat{Q} values only increase from 0, approach true Q
Q Learning: Summary

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action a results in transition from state s_i to s_j; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state $\rightarrow Q$ estimates improve from goal state back
 1. All $\hat{Q}(s, a)$ start at 0
 2. First episode – only update $\hat{Q}(s, a)$ for transition leading to goal state
 3. Next episode – if go thru this next-to-last transition, will update $\hat{Q}(s, a)$ another step back
 4. Eventually propagate information from transitions with non-zero reward throughout state-action space
Q Learning: Exploration/Exploitation

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$
- Good idea?
- Can instead employ stochastic action selection (policy):

$$P(a_i|s) = \frac{\exp(k\hat{Q}(s, a_i))}{\sum_j \exp(k\hat{Q}(s, a_j))}$$

- Can vary k during learning
 - more exploration early on, shift towards exploitation
Non-deterministic Case

- What if reward and next state are non-deterministic?
- We redefine \(V, Q \) based on probabilistic estimates, expected values of them:

\[
V^\pi(s) = E_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]
\]
\[
= E_\pi[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]
\]

and

\[
Q(s, a) = E[r(s, a) + \gamma V^*(\delta(s, a))]
\]
\[
= E[r(s, a) + \gamma \sum_{s'} p(s'|s, a) \max_{a'} Q(s', a')]\]
Non-deterministic Case: Learning Q

- Training rule does not converge (can keep changing \(\hat{Q} \) even if initialized to true \(Q \) values)

- So modify training rule to change more slowly

\[
\hat{Q}(s, a) \leftarrow (1 - \alpha_n) \hat{Q}_{n-1}(s, a) + \alpha_n[r + \gamma \max_{a'} \hat{Q}_{n-1}(s', a')]
\]

where \(s' \) is the state land in after \(s \), and \(a' \) indexes the actions that can be taken in state \(s' \)

\[
\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}
\]

where visits is the number of times action \(a \) is taken in state \(s \)