CSC411 Tutorial #6
Clustering: K-Means, GMM, EM

March 11, 2016
Boris Ivanovic*
csc411ta@cs.toronto.edu

*Based on the tutorial by Shikhar Sharma and Wenjie Luo’s 2014 slides.
Outline for Today

• K-Means
• GMM
• Questions

• I’ll be focusing more on the intuitions behind these models, the math is not as important for your learning here
In classification, we are given data with associated labels. What if we aren’t given any labels? Our data might still have structure. We basically want to simultaneously label points and build a classifier.

PS. I didn't change the bottom information because that would be disingenuous of me, and also because credit should be given where credit is due. Thanks Shikhar for the tutorial slides!
A major tomato sauce company wants to tailor their brands to sauces to suit their customers.

They run a market survey where the test subject rates different sauces.

After some processing they get the following data.

Each point represents the preferred sauce characteristics of a specific person.
Tomato sauce data

This tells us how much different customers like different flavors
Some natural questions

- How many different sauces should the company make?
- How sweet/garlicy should these sauces be?
- Idea: We will segment the consumers into groups (in this case 3), we will then find the best sauce for each group
Approaching k-means

- Say I give you 3 sauces whose garlickyness and sweetness are marked by X

![Scatter plot showing the relationship between garlic and sweetness]
Approaching k-means

- We will group each customer by the sauce that most closely matches their taste
Approaching k-means

- Given this grouping, can we choose sauces that would make each group happier on average?
Approaching k-means

- Given this grouping, can we choose sauces that would make each group happier on average?

![Graph showing the relationship between More Garlic and More Sweet, with a data point indicating a decision.]

Yes!
Approaching k-means

- Given these new sauces, we can regroup the customers
Approaching k-means

- Given these new sauces, we can regroup the customers
The k-means algorithm

- **Initialization**: Choose k random points to act as cluster centers
- Iterate until convergence:
 - **Step 1**: Assign points to closest center (forming k groups)
 - **Step 2**: Reset the centers to be the mean of the points in their respective groups
Viewing k-means in action

- **Demo...**
- **Note:** K-Means only finds a local optimum
- **Questions:**
 - How do we choose k?
 - Couldn’t we just let each person have their own sauce? (Probably not feasible...)
 - Can we change the distance measure?
 - Right now we’re using Euclidean
 - Why even bother with this when we can “see” the groups? (Can we plot high-dimensional data?)
A “simple” extension

Let’s look at the data again, notice how the groups aren’t necessarily circular?

![Scatter plot showing the relationship between More Garlic and More Sweet.](image-url)
A “simple” extension

- Also, does it make sense to say that points in this region belong to one group or the other?
Flaws of k-means

- It can be shown that k-means assumes the data belong to spherical groups, moreover it doesn’t take into account the variance of the groups (size of the circles)
- It also makes hard assignments, which may not be ideal for ambiguous points
 - This is especially a problem if groups overlap
- We will look at one way to correct these issues
K-means implicitly assumes each cluster is an isotropic (spherical) Gaussian, it simply tries to find the optimal mean for each Gaussian. However, it makes an additional assumption that each point belongs to a single group. We will correct this problem first by allowing each point to “belong to multiple groups” more accurately, that it belongs to each group with probability p_i, where $\sum_i p_i = 1$.
Gaussian mixture models

- Given a data point x with dimension D:

- A multivariate isotropic Gaussian PDF is given by:

 $$ P(x) = (2\pi)^{-\frac{D}{2}} \left(\sigma^2\right)^{-\frac{D}{2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^T(x-\mu)} $$ \hspace{1cm} (1)

- A multivariate Gaussian in general is given by:

 $$ P(x) = (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)} $$ \hspace{1cm} (2)

- We can try to model the covariance as well to account for elliptical clusters
Gaussian mixture models

- Demo GMM with full covariance
- Notice that now it takes much longer to converge
- Can be much faster convergence by first initializing with k-means
 - The EM algorithm
What we have just seen is an instance of the EM algorithm. The EM algorithm is actually a meta-algorithm, it tells you the steps needed in order to derive an algorithm to learn a model. The “E” stands for expectation, the “M” stands for maximization. We will look more closely at what this algorithm does, but won’t go into extreme detail.
Recall that we are trying to put the data into groups, while simultaneously learning the parameters of that group.

If we knew the groupings in advance, the problem would be easy:
- With k groups, we are just fitting k separate Gaussians.
- With soft assignments, the data is simply weighted (i.e. we calculate weighted means and covariances).
EM for the Gaussian Mixture Model

- Given initial parameters:
- Iterate until convergence
 - E-step:
 - Partition the data into different groups (soft assignments)
 - M-step:
 - For each group, fit a Gaussian to the weighted data belonging to that group
EM in general

- We specify a model that has variables \((x, z)\) with parameters \(\theta\), denote this by \(P(x, z|\theta)\)
- We want to optimize the log-likelihood of our data
 - \(\log(P(x|\theta)) = \log(\sum_z P(x, z|\theta))\)
- \(x\) is our data, \(z\) is some variable with extra information
 - Cluster assignments in the GMM, for example
- We don’t know \(z\), it is a “latent variable”
- E-step: infer the expected value for \(z\) given \(x\)
- M-step: maximize the “complete data log-likelihood” \(\log(P(x, z|\theta))\) with respect to \(\theta\)