
Deep Learning (CNNs) Jumpstart
2018

Chaoqi Wang, Amlan Kar



Why study it?







To the basics and beyond!

Note: Buzz will point to recommended resources 
while we fly through at light speed



Building Blocks
We always work with features (represented by real numbers)

Each block transforms features to newer features
Blocks are designed to exploit implicit regularities 



Fully Connected Layer
Use all features to compute a new set of features

Linear Transformation - F2 = WTF1 + b



Non-Linearity
Apply a nonlinear function to features

Sigmoid (Logistic Function) ReLU (Rectified Linear) Leaky ReLU

Comprehensive guide to nonlinearities:

https://towardsdatascience.com/secret-sauce-behind-t
he-beauty-of-deep-learning-beginners-guide-to-activati
on-functions-a8e23a57d046

Exponential Linear (eLU)

More:
- Maxout
- SeLU
- Swish
- And so many more ...

https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046


Convolutional Layer
Use a small window of features to compute a new set of features

Comprehensive guide to convolutional layers:
http://cs231n.github.io/convolutional-networks/

Need different parameters?

http://cs231n.github.io/convolutional-networks/


Convolutional Layer
Use a small window of features to compute a new set of features

- Lesser parameters than a FC layer
- Exploits the fact that local features 

repeat across images
- Exploiting implicit order can be seen 

as a form of model regularization

Normal convolution layers look at information in fixed 
windows. Deformable ConvNets and Non Local Networks 
propose methods to alleviate this issue



Pooling
Aggregate features to form lower dimensional features

Average Pooling Max Pooling
Also see Global Average Pooling (used in the 
recent best performing architectures)

- Reduce dimensionality of features
- Robustness to tiny shifts



Upsampling Layers

http://cs231n.stanford.edu/slides/
2017/cs231n_2017_lecture11.pdf

How to generate more features from less?

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf


Upsampling Layers: Subpixel Convolution

https://arxiv.org/pdf/1609.05158.pdf

Produce a grid of nxn features as n^2 filters in a convolution layer

Also read about checkerboard artifacts here: 
https://distill.pub/2016/deconv-checkerboard/

https://arxiv.org/pdf/1609.05158.pdf
https://distill.pub/2016/deconv-checkerboard/


Upsampling Layers: Transpose Convolution

Do read: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

What features did my current features come from?

Convolution Matrix Multiplication

- Convolutions are sparse matrix 
multiplications

- Multiplying the transpose of this 
matrix to the 4 dimensional input 
gives a 16 dimensional vector

- This is also how backpropagation 
(used to train networks) works for 
conv layers!

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic


Learning
Loss Functions

Backpropagation



Loss Functions
What should our training algorithm optimize? (some common ones)

Classification -> Cross Entropy between predicted distribution over classes and ground truth distribution
Regression -> L2 Loss, L1 Loss, Huber (smooth-L1) Loss
Decision Making (mainly in Reinforcement Learning)-> Expected sum of reward (very often 
non-differentiable, use many tricks to compute gradients)

- Most other tasks have very carefully selected domain specific loss functions and it is one of the most 
important make it or break it for a network

How do we optimize?
We use different variants of stochastic gradient descent: wt = wt-1 + a ∇w

http://www.deeplearningbook.org/contents/optimi
zation.html - See for more on optimization

http://www.deeplearningbook.org/contents/optimization.html
http://www.deeplearningbook.org/contents/optimization.html


Backpropagation

http://cs231n.github.io/optimization-2/

Chain Rule!

sigmoid

x0

x1

1

w0

w1
w2

1 * -1/(1.37)^2 = -0.53

-0.53 * e^(-1) = -0.20

http://cs231n.github.io/optimization-2/


Task

- Derive the gradients w.r.t. the input and weights for a single fully connected layer
- Derive the same for a convolutional layer

- Assume that the gradient from the layers above is known and calculate the 
gradients w.r.t. the weights and activations of this layer. You can do it for any non 
linearity

Do it yourself!

In case you’re lazy or you want to check your answer:
FC - https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d
Conv - https://grzegorzgwardys.wordpress.com/2016/04/22/8/

https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d
https://grzegorzgwardys.wordpress.com/2016/04/22/8/


Next Up: A Tour of Star 
Command’s latest and 

greatest weapons!







CONV3,    FC6,    FC7,    FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs















































Tips for training CNN

Know your data, clean your data, and normalize your data.
(A common trick: subtract the mean and divide its std.)



Tips for training CNN

Augment your data: 
horizontally flipping, random crops and color jittering.



Tips for training CNN

Initialization: 

a). Calibrating the variances with 1/sqrt(n)
w = np.random.randn(n) / sqrt(n) # (mean=0, var=1/n）
This ensures that all neurons have  approximately the same output 
distribution and empirically improves the rate of convergence.
(For neural network with ReLUs, w = np.random.randn(n) * sqrt(2.0/n) 
Is recommended) 

b). Initializing the bias: 
Initialize the biases to be zero. 
For ReLU non-linearities, some people like to use small constant value 
such as 0.01 for all biases .

https://arxiv.org/pdf/1502.01852.pdf


Tips for training CNN

Initialization: 

c).  Batch Normalization.
Less sensitive to initialization 

https://arxiv.org/abs/1502.03167


Tips for training CNN

Regularization: 
L1 : for sparsity
L2 : penalties peaky weight vectors, and prefers diffuse weight vectors.
Dropout: 

Dropout can be interpreted as sampling a Neural Network within the 
full Neural Network, and only updating the parameters of the sampled 
network based on the input data. 

During testing there is no dropout applied, with the interpretation of 
evaluating an averaged prediction across the exponentially-sized 
ensemble of all sub-networks



Tips for training CNN

Setting hyperparameters:
Learning Rate / Momentum (Δwt* = Δwt + mΔwt-1)
Decrease learning rate while training
Setting momentum to 0.8 - 0.9

Batch Size:
For large dataset: set to whatever fits your memory
For smaller dataset: find a tradeoff between instance randomness and 
gradient smoothness



Tips for training CNN

Monitoring your training (e.g. tensorboard):
Optimize your hyperparameter on val and evaluate on test
Keep track of training and validation loss during training
Do early stopping if training and validation loss diverge
Loss doesn’t tell you all. Try precision, class-wise precision, and more



That’s it!
You’re now ready for field 

experience at the deep end of Star 
Command!

Remember: You can only learn 
while doing it yourself!



Acknowledgements/Other Resources
Yukun Zhu’s tutorial from CSC2523 (2015):  
http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf,

CS231n CNN Architectures (Stanford): 
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

UIUC Advanced Deep Learning Course (2017): 
http://slazebni.cs.illinois.edu/spring17/lec04_advanced_cnn.pdf

http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf
http://slazebni.cs.illinois.edu/spring17/lec04_advanced_cnn.pdf

