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Introduction

Layers in CNNs for image classification have various modules that control the
output volume of subsequent layers (Image Credit: Stanford C321n):

Convolution Layers

Filter Size
Stride
Padding

Pooling Layers

Activation Layers

FC Layers
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

Conventional modules (e.g., pooling/stride) reduce network resolution/coverage
between layers and make it challenging to carry out applications that require
dense predictions.
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Semantic segmentation: multi-scale contextual reasoning with full-resolution
output

Semantic Segmentation of Satellite Imagery (Image Credit: ETH Zurich)

Many state-of-the-art models for dense predictions are based on adaptations
of CNNs for image classification

Not all of aspects of image classification are useful for this application
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Resolution vs. Coverage

Resolution: image pixel density

Pooling: loss of resolution

4 3 2 4
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7 9

Pooling

Coverage: Overlap between adjacent feature maps

Large Stride: loss of coverage

Buffer

Recover resolution loss: upsample

Compensate for coverage loss: use smaller stride

Both increase number of layers/parameters and
computation/memory
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Fully Convolutional Network (FCN)

Conventional semantic segmentation network that uses pooling, stride, upsampling

Derived from classification architectures that take fixed-size inputs and produce
non-spatial outputs

FC layers considered as convolutions with kernels acting on the entire input region

where k is called the kernel size, s is the stride or subsam-
pling factor, and fks determines the layer type: a matrix
multiplication for convolution or average pooling, a spatial
max for max pooling, or an elementwise nonlinearity for an
activation function, and so on for other types of layers.

This functional form is maintained under composition,
with kernel size and stride obeying the transformation rule

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′,ss′ .

While a general deep net computes a general nonlinear
function, a net with only layers of this form computes a
nonlinear filter, which we call a deep filter or fully convolu-
tional network. An FCN naturally operates on an input of
any size, and produces an output of corresponding (possibly
resampled) spatial dimensions.

A real-valued loss function composed with an FCN de-
fines a task. If the loss function is a sum over the spatial
dimensions of the final layer, `(x; θ) =

∑
ij `
′(xij ; θ), its

gradient will be a sum over the gradients of each of its spa-
tial components. Thus stochastic gradient descent on ` com-
puted on whole images will be the same as stochastic gradi-
ent descent on `′, taking all of the final layer receptive fields
as a minibatch.

When these receptive fields overlap significantly, both
feedforward computation and backpropagation are much
more efficient when computed layer-by-layer over an entire
image instead of independently patch-by-patch.

We next explain how to convert classification nets into
fully convolutional nets that produce coarse output maps.
For pixelwise prediction, we need to connect these coarse
outputs back to the pixels. Section 3.2 describes a trick that
OverFeat [26] introduced for this purpose. We gain insight
into this trick by reinterpreting it as an equivalent network
modification. As an efficient, effective alternative, we in-
troduce deconvolution layers for upsampling in Section 3.3.
In Section 3.4 we consider training by patchwise sampling,
and give evidence in Section 4.3 that our whole image train-
ing is faster and equally effective.

3.1. Adapting classifiers for dense prediction

Typical recognition nets, including LeNet [19], AlexNet
[17], and its deeper successors [28, 29], ostensibly take
fixed-sized inputs and produce nonspatial outputs. The fully
connected layers of these nets have fixed dimensions and
throw away spatial coordinates. However, these fully con-
nected layers can also be viewed as convolutions with ker-
nels that cover their entire input regions. Doing so casts
them into fully convolutional networks that take input of
any size and output classification maps. This transformation
is illustrated in Figure 2. (By contrast, nonconvolutional
nets, such as the one by Le et al. [18], lack this capability.)

Furthermore, while the resulting maps are equivalent to
the evaluation of the original net on particular input patches,
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convolutionalization

Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding
layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

the computation is highly amortized over the overlapping
regions of those patches. For example, while AlexNet takes
1.2 ms (on a typical GPU) to produce the classification
scores of a 227 × 227 image, the fully convolutional ver-
sion takes 22 ms to produce a 10× 10 grid of outputs from
a 500 × 500 image, which is more than 5 times faster than
the naı̈ve approach1.

The spatial output maps of these convolutionalized mod-
els make them a natural choice for dense problems like se-
mantic segmentation. With ground truth available at ev-
ery output cell, both the forward and backward passes are
straightforward, and both take advantage of the inherent
computational efficiency (and aggressive optimization) of
convolution.

The corresponding backward times for the AlexNet ex-
ample are 2.4 ms for a single image and 37 ms for a fully
convolutional 10 × 10 output map, resulting in a speedup
similar to that of the forward pass. This dense backpropa-
gation is illustrated in Figure 1.

While our reinterpretation of classification nets as fully
convolutional yields output maps for inputs of any size, the
output dimensions are typically reduced by subsampling.
The classification nets subsample to keep filters small and
computational requirements reasonable. This coarsens the
output of a fully convolutional version of these nets, reduc-
ing it from the size of the input by a factor equal to the pixel
stride of the receptive fields of the output units.

3.2. Shift-and-stitch is filter rarefaction

Input shifting and output interlacing is a trick that yields
dense predictions from coarse outputs without interpola-
tion, introduced by OverFeat [26]. If the outputs are down-
sampled by a factor of f , the input is shifted (by left and top
padding) x pixels to the right and y pixels down, once for

1Assuming efficient batching of input in the single-image case. The
classifications scores for a single image by itself take 5.4 ms to produce,
which is nearly 25 times slower than the fully convolutional version.

Fully Convolutional Network (Long et al. (2015))

In-network upsampling and addtional layers to FC output allow pixelwise prediction
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Dilated Convolutions

High resolution operations throughout the network facilitated by dilated convolution

Sparse filters formed by skipping pixels at regular intervals

(a) 2-Stride (b) 2-Dilated

Convention (dark blue squares = non-zero):

n-Dilated: n − 1 pixels skipped
1-Dilated: 0 pixels skipped
2-Dilated: 1 pixels skipped
4-Dilated: 3 pixels skipped

2-Dilated 3 × 3 Filter = 5 × 5 Filter (9 non-zero weights)
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Dilated Convolutions

F. Yu, V. Koltun, “Multi-Scale Context Aggregation By Dilated
Convolutions”

Receptive field of an element x in layer k + 1 is the set of elements in layer k
that influence it

Published as a conference paper at ICLR 2016

(a) (b) (c)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F1 is produced from F0 by a 1-dilated convolution; each element in F1

has a receptive field of 3×3. (b) F2 is produced from F1 by a 2-dilated convolution; each element
in F2 has a receptive field of 7×7. (c) F3 is produced from F2 by a 4-dilated convolution; each
element in F3 has a receptive field of 15×15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

easy to see that the size of the receptive field of each element in Fi+1 is (2i+2 − 1)×(2i+2 − 1).
The receptive field is a square of exponentially increasing size. This is illustrated in Figure 1.

3 MULTI-SCALE CONTEXT AGGREGATION

The context module is designed to increase the performance of dense prediction architectures by
aggregating multi-scale contextual information. The module takes C feature maps as input and
produces C feature maps as output. The input and output have the same form, thus the module can
be plugged into existing dense prediction architectures.

We begin by describing a basic form of the context module. In this basic form, each layer has C
channels. The representation in each layer is the same and could be used to directly obtain a dense
per-class prediction, although the feature maps are not normalized and no loss is defined inside the
module. Intuitively, the module can increase the accuracy of the feature maps by passing them
through multiple layers that expose contextual information.

The basic context module has 7 layers that apply 3×3 convolutions with different dilation factors.
The dilations are 1, 1, 2, 4, 8, 16, and 1. Each convolution operates on all layers: strictly speaking,
these are 3×3×C convolutions with dilation in the first two dimensions. Each of these convolutions
is followed by a pointwise truncation max(·, 0). A final layer performs 1×1×C convolutions and
produces the output of the module. The architecture is summarized in Table 1. Note that the front-
end module that provides the input to the context network in our experiments produces feature maps
at 64×64 resolution. We therefore stop the exponential expansion of the receptive field after layer 6.

Our initial attempts to train the context module failed to yield an improvement in prediction accuracy.
Experiments revealed that standard initialization procedures do not readily support the training of the
module. Convolutional networks are commonly initialized using samples from random distributions
(Glorot & Bengio, 2010; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). However, we
found that random initialization schemes were not effective for the context module. We found an
alternative initialization with clear semantics to be much more effective:

kb(t, a) = 1[t=0]1[a=b], (4)

where a is the index of the input feature map and b is the index of the output map. This is a form
of identity initialization, which has recently been advocated for recurrent networks (Le et al., 2015).
This initialization sets all filters such that each layer simply passes the input directly to the next. A
natural concern is that this initialization could put the network in a mode where backpropagation
cannot significantly improve the default behavior of simply passing information through. However,
experiments indicate that this is not the case. Backpropagation reliably harvests the contextual
information provided by the network to increase the accuracy of the processed maps.

3

Consecutive 1-Dilated (left), 2-Dilated (middle), 4-Dilated (right) 3 × 3 Convolution

Resulting receptive field of 2i -Dilated feature map is size (2i+2 − 1)2

Receptive field grows exponentially while number of parameters is constant
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Multi-Scale Context Aggregation Context Module

Context module (7 layers) with progressively increasing receptive field
without losing resolution

Has same form of input/output: takes C feature maps in and produces C
feature maps out

Published as a conference paper at ICLR 2016

Layer 1 2 3 4 5 6 7 8
Convolution 3×3 3×3 3×3 3×3 3×3 3×3 3×3 1×1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field 3×3 5×5 9×9 17×17 33×33 65×65 67×67 67×67

Output channels
Basic C C C C C C C C
Large 2C 2C 4C 8C 16C 32C 32C C

Table 1: Context network architecture. The network processes C feature maps by aggregating
contextual information at progressively increasing scales without losing resolution.

This completes the presentation of the basic context network. Our experiments show that even this
basic module can increase dense prediction accuracy both quantitatively and qualitatively. This is
particularly notable given the small number of parameters in the network: ≈ 64C2 parameters in
total.

We have also trained a larger context network that uses a larger number of feature maps in the
deeper layers. The number of maps in the large network is summarized in Table 1. We generalize
the initialization scheme to account for the difference in the number of feature maps in different
layers. Let ci and ci+1 be the number of feature maps in two consecutive layers. Assume that C
divides both ci and ci+1. The initialization is

kb(t, a) =





C

ci+1
t = 0 and

⌊
aC

ci

⌋
=

⌊
bC

ci+1

⌋

ε otherwise
(5)

Here ε ∼ N (0, σ2) and σ � C/ci+1. The use of random noise breaks ties among feature maps
with a common predecessor.

4 FRONT END

We implemented and trained a front-end prediction module that takes a color image as input and
produces C = 21 feature maps as output. The front-end module follows the work of Long et al.
(2015) and Chen et al. (2015a), but was implemented separately. We adapted the VGG-16 network
(Simonyan & Zisserman, 2015) for dense prediction and removed the last two pooling and striding
layers. Specifically, each of these pooling and striding layers was removed and convolutions in
all subsequent layers were dilated by a factor of 2 for each pooling layer that was ablated. Thus
convolutions in the final layers, which follow both ablated pooling layers, are dilated by a factor of
4. This enables initialization with the parameters of the original classification network, but produces
higher-resolution output. The front-end module takes padded images as input and produces feature
maps at resolution 64×64. We use reflection padding: the buffer zone is filled by reflecting the
image about each edge.

Our front-end module is obtained by removing vestiges of the classification network that are counter-
productive for dense prediction. Most significantly, we remove the last two pooling and striding
layers entirely, whereas Long et al. kept them and Chen et al. replaced striding by dilation but
kept the pooling layers. We found that simplifying the network by removing the pooling layers
made it more accurate. We also remove the padding of the intermediate feature maps. Intermediate
padding was used in the original classification network, but is neither necessary nor justified in dense
prediction.

This simplified prediction module was trained on the Pascal VOC 2012 training set, augmented by
the annotations created by Hariharan et al. (2011). We did not use images from the VOC-2012
validation set for training and therefore only used a subset of the annotations of Hariharan et al.
(2011). Training was performed by stochastic gradient descent (SGD) with mini-batch size 14,
learning rate 10−3, and momentum 0.9. The network was trained for 60K iterations.

We now compare the accuracy of our front-end module to the FCN-8s design of Long et al. (2015)
and the DeepLab network of Chen et al. (2015a). For FCN-8s and DeepLab, we evaluate the public

4

Context Module Using Multi-Layered Dilated Convolutions

Module can be combined readily with existing dense prediction architectures
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Front-End Module

Simplified image classification
CNNs (Simonyan & Zisserman
(2015)) by removing layers
that are counterproductive for
dense prediction

Final pooling and
striding layers
Padding in intermediate
feature maps

Inputs are padded images and
outputs are C = 21 feature
maps at 64 × 64 resolution

Training (VOC-2012)

Iterations (n) = 60K
Mini-batch size (p): 14
Learning rate (α): 10−3

Momentum (β): 0.9

Test accuracy comparison vs.
FCN-8s and DeepLab+

Published as a conference paper at ICLR 2016

(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.
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FCN-8s 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
DeepLab 72 31 71.2 53.7 60.5 77 71.9 73.1 25.2 62.6 49.1 68.7 63.3 73.9 73.6 50.8 72.3 42.1 67.9 52.6 62.1
DeepLab-Msc 74.9 34.1 72.6 52.9 61.0 77.9 73.0 73.7 26.4 62.2 49.3 68.4 64.1 74.0 75.0 51.7 72.7 42.5 67.2 55.7 62.9
Our front end 82.2 37.4 72.7 57.1 62.7 82.8 77.8 78.9 28 70 51.6 73.1 72.8 81.5 79.1 56.6 77.1 49.9 75.3 60.9 67.6

Table 2: Our front-end prediction module is simpler and more accurate than prior models. This table
reports accuracy on the VOC-2012 test set.

models trained by the original authors on VOC-2012. Segmentations produced by the different
models on images from the VOC-2012 dataset are shown in Figure 2. The accuracy of the models
on the VOC-2012 test set is reported in Table 2.

Our front-end prediction module is both simpler and more accurate than the prior models. Specif-
ically, our simplified model outperforms both FCN-8s and the DeepLab network by more than 5
percentage points on the test set. Interestingly, our simplified front-end module outperforms the
leaderboard accuracy of DeepLab+CRF on the test set by more than a percentage point (67.6%
vs. 66.4%) without using a CRF.

5
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Experimentation Results

Front-end module is both simpler and +5% (mean IoU) more accurate
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(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.
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models trained by the original authors on VOC-2012. Segmentations produced by the different
models on images from the VOC-2012 dataset are shown in Figure 2. The accuracy of the models
on the VOC-2012 test set is reported in Table 2.

Our front-end prediction module is both simpler and more accurate than the prior models. Specif-
ically, our simplified model outperforms both FCN-8s and the DeepLab network by more than 5
percentage points on the test set. Interestingly, our simplified front-end module outperforms the
leaderboard accuracy of DeepLab+CRF on the test set by more than a percentage point (67.6%
vs. 66.4%) without using a CRF.

5

VOC-2012 Test Set Accuracy

In anticipation of comparison with high performing systems, two-stage testing done
on the front-end module

Coarse Tuning: VOC-2012, Microsoft COCO
n = 100K, α = 10−3

n = 40K, α = 10−4

Fine Tuning: VOC-2012 only
n = 50K, α = 10−5

Mean IoU accuracy of front-end on VOC-2012

Test: 71.3%
Validation: 69.8%

Controlled experiments performed by inserting Context Module after front-end
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Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.
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Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.
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Controlled experiments performed by inserting Context Module after front-end
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(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.

ae
ro

bi
ke

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv

m
ea

n
Io

U

FCN-8s 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
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Table 2: Our front-end prediction module is simpler and more accurate than prior models. This table
reports accuracy on the VOC-2012 test set.
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Experimentation Results

Context modules (Basic and Large) added to front-end and then to two
different semantic segmentation architectures

1 CRF (Chen et al. (2015))
2 CRF-RNN (Zheng et al. (2015))
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(a) Image (b) Front end (c) + Context (d) + CRF-RNN (e) Ground truth

Figure 3: Semantic segmentations produced by different models. From left to right: (a) input image,
(b) prediction by the front-end module, (c) prediction by the large context network plugged into the
front end, (d) prediction by the front end + context module + CRF-RNN, (e) ground truth.
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Front end 86.3 38.2 76.8 66.8 63.2 87.3 78.7 82 33.7 76.7 53.5 73.7 76 76.6 83 51.9 77.8 44 79.9 66.3 69.8
Front + Basic 86.4 37.6 78.5 66.3 64.1 89.9 79.9 84.9 36.1 79.4 55.8 77.6 81.6 79 83.1 51.2 81.3 43.7 82.3 65.7 71.3
Front + Large 87.3 39.2 80.3 65.6 66.4 90.2 82.6 85.8 34.8 81.9 51.7 79 84.1 80.9 83.2 51.2 83.2 44.7 83.4 65.6 72.1
Front end + CRF 89.2 38.8 80 69.8 63.2 88.8 80 85.2 33.8 80.6 55.5 77.1 80.8 77.3 84.3 53.1 80.4 45 80.7 67.9 71.6
Front + Basic + CRF 89.1 38.7 81.4 67.4 65 91 81 86.7 37.5 81 57 79.6 83.6 79.9 84.6 52.7 83.3 44.3 82.6 67.2 72.7
Front + Large + CRF 89.6 39.9 82.7 66.7 67.5 91.1 83.3 87.4 36 83.3 52.5 80.7 85.7 81.8 84.4 52.6 84.4 45.3 83.7 66.7 73.3
Front end + RNN 88.8 38.1 80.8 69.1 65.6 89.9 79.6 85.7 36.3 83.6 57.3 77.9 83.2 77 84.6 54.7 82.1 46.9 80.9 66.7 72.5
Front + Basic + RNN 89 38.4 82.3 67.9 65.2 91.5 80.4 87.2 38.4 82.1 57.7 79.9 85 79.6 84.5 53.5 84 45 82.8 66.2 73.1
Front + Large + RNN 89.3 39.2 83.6 67.2 69 92.1 83.1 88 38.4 84.8 55.3 81.2 86.7 81.3 84.3 53.6 84.4 45.8 83.8 67 73.9

Table 3: Controlled evaluation of the effect of the context module on the accuracy of three different
architectures for semantic segmentation. Experiments performed on the VOC-2012 validation set.
Validation images were not used for training. Top: adding the context module to a semantic segmen-
tation front end with no structured prediction (Long et al., 2015). The basic context module increases
accuracy, the large module increases it by a larger margin. Middle: the context module increases
accuracy when plugged into a front-end + dense CRF configuration (Chen et al., 2015a). Bottom:
the context module increases accuracy when plugged into a front-end + CRF-RNN configuration
(Zheng et al., 2015).

is both feasible and desirable. Our work shows that the dilated convolution operator is particularly
suited to dense prediction due to its ability to expand the receptive field without losing resolution
or coverage. We have utilized dilated convolutions to design a new network structure that reliably
increases accuracy when plugged into existing semantic segmentation systems. As part of this work,
we have also shown that the accuracy of existing convolutional networks for semantic segmentation
can be increased by removing vestigial components that had been developed for image classification.

7

VOC-2012 Validation Set Accuracy

Addition of Context Module improves accuracy by +0.6% (mean IoU) in all
three architectures
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Figure 3: Semantic segmentations produced by different models. From left to right: (a) input image,
(b) prediction by the front-end module, (c) prediction by the large context network plugged into the
front end, (d) prediction by the front end + context module + CRF-RNN, (e) ground truth.
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Table 3: Controlled evaluation of the effect of the context module on the accuracy of three different
architectures for semantic segmentation. Experiments performed on the VOC-2012 validation set.
Validation images were not used for training. Top: adding the context module to a semantic segmen-
tation front end with no structured prediction (Long et al., 2015). The basic context module increases
accuracy, the large module increases it by a larger margin. Middle: the context module increases
accuracy when plugged into a front-end + dense CRF configuration (Chen et al., 2015a). Bottom:
the context module increases accuracy when plugged into a front-end + CRF-RNN configuration
(Zheng et al., 2015).

is both feasible and desirable. Our work shows that the dilated convolution operator is particularly
suited to dense prediction due to its ability to expand the receptive field without losing resolution
or coverage. We have utilized dilated convolutions to design a new network structure that reliably
increases accuracy when plugged into existing semantic segmentation systems. As part of this work,
we have also shown that the accuracy of existing convolutional networks for semantic segmentation
can be increased by removing vestigial components that had been developed for image classification.
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Addition of Context Module improves accuracy by +0.6% (mean IoU) in all
three architectures
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Experimentation Results

Context module (Large) and front-end module compared against other high
performing systems

1 DeepLab variants (Long et al. (2015))
2 CRF-RNN (Zheng et al. (2015))
3 Front-end/Context module combinations with CRF-RNN
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DeepLab++ 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1 72.7
DeepLab-MSc++ 89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 84.3 82.1 56.2 84.6 58.3 76.2 67.2 73.9
CRF-RNN 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7
Front end 86.6 37.3 84.9 62.4 67.3 86.2 81.2 82.1 32.6 77.4 58.3 75.9 81 83.6 82.3 54.2 81.5 50.1 77.5 63 71.3
Context 89.1 39.1 86.8 62.6 68.9 88.2 82.6 87.7 33.8 81.2 59.2 81.8 87.2 83.3 83.6 53.6 84.9 53.7 80.5 62.9 73.5
Context + CRF 91.3 39.9 88.9 64.3 69.8 88.9 82.6 89.7 34.7 82.7 59.5 83 88.4 84.2 85 55.3 86.7 54.4 81.9 63.6 74.7
Context + CRF-RNN 91.7 39.6 87.8 63.1 71.8 89.7 82.9 89.8 37.2 84 63 83.3 89 83.8 85.1 56.8 87.6 56 80.2 64.7 75.3

Table 4: Evaluation on the VOC-2012 test set. ‘DeepLab++’ stands for DeepLab-CRF-COCO-
LargeFOV and ‘DeepLab-MSc++’ stands for DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint
(Chen et al., 2015a). ‘CRF-RNN’ is the system of Zheng et al. (2015). ‘Context’ refers to the
large context module plugged into our front end. The context network yields very high accuracy,
ourperforming the DeepLab++ architecture without performing structured prediction. Combining
the context network with the CRF-RNN structured prediction module increases the accuracy of the
CRF-RNN system.

We believe that the presented work is a step towards dedicated architectures for dense prediction that
are not constrained by image classification precursors. As new sources of data become available,
future architectures may be trained densely end-to-end, removing the need for pre-training on image
classification datasets. This may enable architectural simplification and unification. Specifically,
end-to-end dense training may enable a fully dense architecture akin to the presented context net-
work to operate at full resolution throughout, accepting the raw image as input and producing dense
label assignments at full resolution as output.

State-of-the-art systems for semantic segmentation leave significant room for future advances. Fail-
ure cases of our most accurate configuration are shown in Figure 4. We will release our code and
trained models to support progress in this area.
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Figure 4: Failure cases from the VOC-2012 validation set. The most accurate architecture we trained
(Context + CRF-RNN) performs poorly on these images.
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VOC-2012 Test Set Accuracy

Context module has +2.2% mean IoU accuracy compared to front end alone

Context module alone outperforms DeepLab++

Context module with dense CRF performs on par with CRF-RNN

Context module combined with CRF-RNN outperforms CRF-RNN by 0.6%
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Table 4: Evaluation on the VOC-2012 test set. ‘DeepLab++’ stands for DeepLab-CRF-COCO-
LargeFOV and ‘DeepLab-MSc++’ stands for DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint
(Chen et al., 2015a). ‘CRF-RNN’ is the system of Zheng et al. (2015). ‘Context’ refers to the
large context module plugged into our front end. The context network yields very high accuracy,
ourperforming the DeepLab++ architecture without performing structured prediction. Combining
the context network with the CRF-RNN structured prediction module increases the accuracy of the
CRF-RNN system.

We believe that the presented work is a step towards dedicated architectures for dense prediction that
are not constrained by image classification precursors. As new sources of data become available,
future architectures may be trained densely end-to-end, removing the need for pre-training on image
classification datasets. This may enable architectural simplification and unification. Specifically,
end-to-end dense training may enable a fully dense architecture akin to the presented context net-
work to operate at full resolution throughout, accepting the raw image as input and producing dense
label assignments at full resolution as output.

State-of-the-art systems for semantic segmentation leave significant room for future advances. Fail-
ure cases of our most accurate configuration are shown in Figure 4. We will release our code and
trained models to support progress in this area.
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Table 4: Evaluation on the VOC-2012 test set. ‘DeepLab++’ stands for DeepLab-CRF-COCO-
LargeFOV and ‘DeepLab-MSc++’ stands for DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint
(Chen et al., 2015a). ‘CRF-RNN’ is the system of Zheng et al. (2015). ‘Context’ refers to the
large context module plugged into our front end. The context network yields very high accuracy,
ourperforming the DeepLab++ architecture without performing structured prediction. Combining
the context network with the CRF-RNN structured prediction module increases the accuracy of the
CRF-RNN system.

We believe that the presented work is a step towards dedicated architectures for dense prediction that
are not constrained by image classification precursors. As new sources of data become available,
future architectures may be trained densely end-to-end, removing the need for pre-training on image
classification datasets. This may enable architectural simplification and unification. Specifically,
end-to-end dense training may enable a fully dense architecture akin to the presented context net-
work to operate at full resolution throughout, accepting the raw image as input and producing dense
label assignments at full resolution as output.

State-of-the-art systems for semantic segmentation leave significant room for future advances. Fail-
ure cases of our most accurate configuration are shown in Figure 4. We will release our code and
trained models to support progress in this area.
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8

Failure Cases

Promising results observed for:

Dedicated dense prediction architectures without image classification artifacts
Removing pre-training by leveraging dilation convolutions and performing
end-to-end dense prediction
Simplifying and unifying architectures to take inputs and produce outputs at
full resolution
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DeepLab++ 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1 72.7
DeepLab-MSc++ 89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 84.3 82.1 56.2 84.6 58.3 76.2 67.2 73.9
CRF-RNN 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7
Front end 86.6 37.3 84.9 62.4 67.3 86.2 81.2 82.1 32.6 77.4 58.3 75.9 81 83.6 82.3 54.2 81.5 50.1 77.5 63 71.3
Context 89.1 39.1 86.8 62.6 68.9 88.2 82.6 87.7 33.8 81.2 59.2 81.8 87.2 83.3 83.6 53.6 84.9 53.7 80.5 62.9 73.5
Context + CRF 91.3 39.9 88.9 64.3 69.8 88.9 82.6 89.7 34.7 82.7 59.5 83 88.4 84.2 85 55.3 86.7 54.4 81.9 63.6 74.7
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Table 4: Evaluation on the VOC-2012 test set. ‘DeepLab++’ stands for DeepLab-CRF-COCO-
LargeFOV and ‘DeepLab-MSc++’ stands for DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint
(Chen et al., 2015a). ‘CRF-RNN’ is the system of Zheng et al. (2015). ‘Context’ refers to the
large context module plugged into our front end. The context network yields very high accuracy,
ourperforming the DeepLab++ architecture without performing structured prediction. Combining
the context network with the CRF-RNN structured prediction module increases the accuracy of the
CRF-RNN system.

We believe that the presented work is a step towards dedicated architectures for dense prediction that
are not constrained by image classification precursors. As new sources of data become available,
future architectures may be trained densely end-to-end, removing the need for pre-training on image
classification datasets. This may enable architectural simplification and unification. Specifically,
end-to-end dense training may enable a fully dense architecture akin to the presented context net-
work to operate at full resolution throughout, accepting the raw image as input and producing dense
label assignments at full resolution as output.

State-of-the-art systems for semantic segmentation leave significant room for future advances. Fail-
ure cases of our most accurate configuration are shown in Figure 4. We will release our code and
trained models to support progress in this area.
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Conclusions

Simplification of adapted image classification systems for semantic
segmentation can improve accuracy

Dilated convolutions support exponential expansion of the receptive field
without loss of resolution or coverage

CNN module with dilated convolutions systematically aggregate multi-scale
contextual information without resolution loss

Context Module increases the accuracy of current state-of-the-art semantic
segmentation architectures

For more information:

1 F. Yu, V. Koltun, “Multi-Scale Context Aggregation By Dilated
Convolutions”, ICLR, 2016

2 J. Long, E. Shelhamer, T. Darrell, “Fully Convolutional Network for Semantic
Segmentation”, CPVR, 2015

3 S. Zheng et al., “Conditional Random Fields as Recurrent Neural Networks”,
ICCV, 2015
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Thank you.
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