
DescribeX: A Framework for Exploring and Querying XML

Web Collections

by

Flavio Rizzolo

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2008 by Flavio Rizzolo

Abstract

DescribeX: A Framework for Exploring and Querying XML Web Collections

Flavio Rizzolo

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2008

The nature of semistructured data in web collections is evolving. Even when XML web

documents are valid with regard to a schema, the actual structure of such documents

exhibits significant variations across collections for several reasons: an XML schema

may be very lax (e.g., to accommodate the flexibility needed to represent collections

of documents in RSS1 feeds), a schema may be large and different subsets used for

different documents (e.g., this is common in industry standards like UBL2), or open

content models may allow arbitrary schemas to be mixed (e.g., RSS extensions like those

used for podcasting). A schema alone may not provide sufficient information for many

data management tasks that require knowledge of the actual structure of the collection.

Web applications (such as processing RSS feeds or web service messages) rely on

XPath-based data manipulation tools. Web developers need to use XPath queries effec-

tively on increasingly larger web collections containing hundreds of thousands of XML

documents. Even when tasks only need to deal with a single document at a time, de-

velopers benefit from understanding the behaviour of XPath expressions across multiple

documents (e.g., what will a query return when run over the thousands of hourly feeds

collected during the last few months?). Dealing with the (highly variable) structure of

such web collections poses additional challenges.

1 http://www.rss-specifications.com/
2 http://oasis-open.org/committees/ubl/

ii

This thesis introduces DescribeX, a powerful framework that is capable of describ-

ing arbitrarily complex XML summaries of web collections, providing support for more

efficient evaluation of XPath workloads. DescribeX permits the declarative description

of document structure using all axes and language constructs in XPath, and generalizes

many of the XML indexing and summarization approaches in the literature. DescribeX

supports the construction of heterogenous summaries where different document elements

sharing a common structure can be declaratively defined and refined by means of path

regular expressions on axes, or axis path regular expression (AxPREs). DescribeX can

significantly help in the understanding of both the structure of complex, heterogeneous

XML collections and the behaviour of XPath queries evaluated on them.

Experimental results demonstrate the scalability of DescribeX summary refinements

and stabilizations (the key enablers for tailoring summaries) with multi-gigabyte web

collections. A comparative study suggests that using a DescribeX summary created from

a given workload can produce query evaluation times orders of magnitude better than

using existing summaries. DescribeX’s light-weight approach of combining summaries

with a file-at-a-time XPath processor can be a very competitive alternative, in terms

of performance, to conventional fully-fledged XML query engines that provide DB-like

functionality such as security, transaction processing, and native storage.

iii

To my parents,

Ofelia and Juan Carlos

iv

Acknowledgements

This thesis is the culmination of my graduate studies at the University of Toronto. It

goes without saying that no scientific work can be carried out in isolation, and this one

is no exception. I would like to thank here all the people who helped me along the way.

First and foremost, I wish to express my utmost gratitude to Alberto Mendelzon and

Renée Miller, both of whom have been a source of inspiration for many years. They were

also the Alpha and the Omega of my graduate studies: Alberto was my advisor during

my master’s and the early years of my PhD, and also the first one to suggest the idea

of a framework upon which this thesis is based; Renee supervised the final stages of the

work and made sure that all the pieces fitted together. Both provided me with support

and guidance well beyond the call of duty. They really made this work possible.

Special thanks go to José Maŕıa Turull Torres and Alejandro Vaisman, great friends

and mentors. José Maŕıa introduced me to the fascinating world of scientific research

and encouraged me to pursue graduate studies. I could never thank him enough for his

guidance in the first steps of my research career. Alejandro’s encouragement and insight

were always invaluable, especially during the most difficult times of my PhD (he was my

thesis advisor in disguise for many years). I consider them my academic role models for

their integrity and professionalism.

I would like to thank the members of my PhD committee, Kelly Lyons, Thodoros

Topaloglou, and John Mylopoulos, for their insightful comments, and Frank Tompa for

his thorough external appraisal. I also wish to acknowledge the contribution of Mariano

Consens, who helped in the development of some core ideas of this thesis.

I am deeply indebted to the administrative staff of the Department of Computer

Science for assisting me in so many different ways. Joan Allen and Linda Chow deserve

a special mention.

I am also grateful to the Department of Computer Science, the Natural Sciences and

Engineering Research Council of Canada, and the IBM Center for Advanced Studies for

v

their generous financial support at different times over my years of graduate studies.

I want to express my heartfelt appreciation to my many friends in Toronto and abroad,

especially to my best officemate, Attila, and to my musical buddies, Diego, Danny, Fabri-

cio, Gustavo and Santi; and in general to all those that had to put up with me for years:

Adriana, Adrian, Alberto, Alejandra, Christian, Ceci, Carlos, Clau, Fernanda, Fernando,

Frank, Jime, Lily, Lore, Mara, Pachi, Patricia, Rosana, Sebastian and Vivi. Each in their

one way made my life more meaningful and enjoyable.

I am also in debt with my parents, Ofelia and Juan Carlos, for helping me to become

who I am. I owe them much, and regret that I missed my best opportunities to repay. I

dedicate this thesis to them.

Above all, I have to thank a thousand times to my wife, Mariana, the person without

whom this thesis could have never been written. Her support and unconditional love are

beyond words. It is hard to know who I would be without her; I hope never to have the

occasion to find out.

vi

Contents

1 Introduction 1

1.1 Major contributions . 7

1.1.1 AxPRE summaries . 7

1.1.2 Refinement lattice . 9

1.1.3 System implementation . 10

1.1.4 Answering queries using extents 10

1.2 Motivating example: exploring RSS feeds with summaries and XPath queries 11

1.3 Organization . 16

2 Related work 18

2.1 Structural summaries . 18

2.2 Path summaries for OO data . 22

2.3 Hierarchical encodings . 22

2.4 Answering XML queries using views . 23

2.5 Validating summaries . 24

3 AxPRE summaries 27

3.1 A regular expression language on axes 28

3.2 Neighbourhoods and bisimulation . 36

3.3 Describing summaries with AxPREs . 41

vii

4 Capturing earlier literature proposals with DescribeX 51

4.1 Bisimilarity-based proposals . 51

4.2 Ad-hoc construction proposals . 58

5 Describing extents and neighbourhoods 60

5.1 Concise descriptions . 61

5.2 Refinement and stabilization . 69

6 Changing descriptions with XPath 75

6.1 XPath syntax and data model . 76

6.2 Refinement with XPath . 78

6.3 Stabilization with XPath . 84

6.4 Adapting SDs to XPath queries . 86

6.4.1 Deriving AxPREs from queries 86

6.4.2 Finding candidates . 89

7 DescribeX engine 91

7.1 Initial SD construction . 93

7.2 Computing refinements . 95

8 Experimental results 99

8.1 Initial SD construction . 100

8.2 Refinements . 101

8.3 Edge stabilization . 107

8.4 XPath query evaluation using SDs . 110

8.4.1 Comparison with summary proposals 118

8.4.2 Comparison with XPath evaluators 119

9 Conclusion 122

viii

Bibliography 125

A XPath 1.0 formal semantics 136

B Declarative debugging of XPath queries with DescribeX 145

ix

List of Tables

8.1 Test collections . 100

8.2 Selected p∗ SD nodes and EEs from RSS2 102

8.3 Selected p∗ SD nodes and EEs from PSIMI2 102

8.4 Selected p∗ SD nodes and EEs from Wiki5 and Wiki45 102

8.5 RSS2 p∗|c∗ refinements . 103

8.6 PSIMI2 p∗|c∗ refinements . 103

8.7 Wiki5 p∗|c∗ refinements . 103

8.8 Wiki45 p∗|c∗ refinements . 104

8.9 RSS2 AxPRE refinements . 105

8.10 PSIMI2 AxPRE refinements . 106

8.11 Wiki5 AxPRE refinements . 106

8.12 Wiki45 AxPRE refinements . 106

8.13 RSS2 edge stabilization . 108

8.14 PSIMI2 edge stabilization . 108

8.15 Wiki5 edge stabilization . 109

8.16 Wiki45 edge stabilization . 110

8.17 RSS collection queries . 111

8.18 PSIMI collection queries . 111

8.19 Wikipedia collections queries . 112

8.20 RSS2 query results and times . 113

x

8.21 PSIMI2 query results and times . 114

8.22 Wiki5 query results and times . 116

8.23 Wiki45 query results and times . 117

8.24 System comparison: SD graph construction times (s) 118

8.25 RSS2 query evaluation comparative times (s) 120

8.26 Wiki5 query evaluation comparative times (s) 120

xi

List of Figures

1.1 Wikipedia document graph (a) and its incoming path summary (b) . . . 3

1.2 Axis graphs of RSS feed samples . 12

1.3 Label SD (a), and heterogeneous SD (b) of the RSS feed samples 13

2.1 Label SD fragment with XML graph schema model annotations 25

3.1 The axis graph of two PSI-MI interactions 28

3.2 Axis graph fragment from node 8 (a) and its automatonMA(8) (b) . . . 31

3.3 Rules of the modified Thompson’s construction 33

3.4 AxPRE automatonM[expRoleList].fc.ns∗ . 33

3.5 Intersection automatonMA(8) ∩M[expRoleList].fc.ns∗ (a) and resulting Ax-

PRE neighbourhood N[expRoleList].fc.ns∗(8) (b) 34

3.6 All [participant].c.fc.ns∗ neighbourhoods 36

3.7 All [participant].c∗ neighbourhoods . 38

3.8 Label SD for the PSI-MI samples . 44

3.9 A refined SD for the PSI-MI samples . 44

3.10 [participant].c.fc.ns∗ neighbourhoods of Figure 3.8 (a) and Figure 3.9 (b)

SDs . 48

4.1 AxPRE summary lattice capturing earlier homogeneous proposals 52

5.1 The two [interaction].c[participantList].(c|p) neighbourhoods (a) and their

representative neighbourhood (b) from our running example 61

xii

5.2 Two [expRoleList].c.f [expRole] neighbourhoods from our running example 63

5.3 Two [participant].c.fc.ns∗ neighbourhoods (a) and their representative

neighbourhood (b) from our running example 67

5.4 The c.fc.ns∗ neighbourhood of node s2 of Figure 3.8 68

5.5 The fc|c|ns neighbourhood of s4 from Figure 3.8: (a) before stabilizing c

edge to s6, (b) after stabilization . 72

5.6 The neighbourhood from Figure 5.5 (b) after stabilizing ns loop on s42 . 73

6.1 Partition of the nodes in the XML tree by axis relations 78

6.2 The [participant].c.fc.ns∗ neighbourhood from Figure 3.9 81

6.3 The [participant].c∗ neighbourhood of s4 from Figure 3.8: (a) before a c∗

refinement, (b) after the refinement . 82

6.4 AxPRE derivation functions L and P 87

A.1 Semantic definitions of XPath expressions 137

A.2 Semantic definitions of XPath location paths 138

A.3 Semantic definitions of XPath basic operators 143

A.4 Semantic definitions of XPath additional operators 144

B.1 DescribeX-Eclipse user interface . 146

xiii

Chapter 1

Introduction

XML is widely used as a common format for web accessible data (e.g., hypertext collec-

tions like Wikipedia) as well as for data exchanged among web applications (e.g., blogs,

news feeds, podcasts, web services messaging). This data is often referred to as semistruc-

tured for the lack of a clear separation between data and metadata it represents: tags

(metadata) and content (data) are mixed together in the same XML file.

The vast majority of software tools used for managing XML rely on XPath [W3C07]

as the core dialect for XML querying. Hence, web developers use XPath queries for

many of the tasks involved in the processing of XML collections. Such collections are

normally handled one document at a time, whether the document is an individual RSS1

file (used by content distributors to deliver to subscribers frequently updated content

over the Web), a single SOAP2 message, or a Wikipedia article in XHTML.

Even when XML collections have a schema (which can be either a DTD3 or an XML

Schema4), the actual structure present in each document may exhibit significant vari-

ations for several reasons. First, schemas can be very lax. One reason for this is the

1 http://www.rss-specifications.com/
2 http://www.w3.org/TR/soap/
3 http://www.w3.org/TR/REC-xml
4 http://www.w3.org/TR/xmlschema-1/

1

Chapter 1. Introduction 2

extensive use of the <xsd:choice> construct in XML schemas, which allows optional

elements to occur any number of times, including zero. Such a construct is very common

in RSS for instance. Second, a schema can be very large and only subsets are actually

used in a given instance. This is the situation with several industry specific standards

that contain hundreds of elements, such as UBL5 or HR-XML6. UBL and HR-XML are

standard libraries of XML schemas that support a variety of business processes. UBL is

designed to handle supply chain transactions such as purchase orders, shipping notices,

and invoices, whereas HR-XML contains schemas for human resource management such

as resumes, payroll information, and benefits enrollment. Finally, a schema can be ex-

tended by using the <xsd:any> XML Schema construct, which allows arbitrary content

from other schemas to appear under a given element. Such a construct enables different

user communities to pick and choose how to combine schemas. Consequently, it provides

great flexibility, but makes it harder to determine the structure of the documents that

actually appear in a given collection. Examples of the <xsd:any> extensions can be

found in a wide variety of industry standards, including RSS, UBL and HR-XML. For

instance, the UBL standard permits a contractor to represent invoice documents that

include HR-XML TimeCard elements for the contractor employee’s time and expenses.

The actual structure of invoice collections will vary significantly across contractors and

customers. If an enclosing messaging schema is used, even the UBL and HR-XML frag-

ments in the document can be replaced by other invoicing and time billing schemas. In

these scenarios, schemas alone are insufficient for understanding the structure (metadata)

of the documents in the collection for either writing or optimizing XPath evaluation.

A developer working with this type of collection faces several challenges. She must

learn enough about the structure present in the XML collection to be able to write

meaningful XPath queries. She must also develop an understanding of how the XPath

5 http://oasis-open.org/committees/ubl/
6 http://hr-xml.org

Chapter 1. Introduction 3

Figure 1.1: Wikipedia document graph (a) and its incoming path summary (b)

expressions behave across different documents in the collection. Even when a task deals

with a single document at a time, the developer needs to extrapolate the behaviour

of queries over a single document across the entire collection over which the task may

be repeatedly applied. In this context, understanding the actual metadata of a web

collection can be a significant barrier, even for collections validated against a schema.

XML structural summaries are graphs representing relationships between sets of XML

elements (i.e., extents). Unlike schemas, which prescribe what may and may not occur in

an instance, summaries provide a description of the metadata that is actually present in a

given collection. Figure 1.1 (a) shows the instance graph of a Wikipedia sample document

in which nodes correspond to XML elements in the document. Nodes have an id and are

labeled with their element names. The structure in Figure 1.1 (b) is a typical summary

that groups together instance nodes with the same incoming label paths. In such a sum-

mary, two nodes that have the same incoming label path from the root belong to the same

extent (sets located below each summary node in the figure). For instance, wikilink ele-

ments appear at the end of three different label paths – article.section.wikilink (in blue),

Chapter 1. Introduction 4

article.section.section.wikilink (in red), and article.par.wikilink (in green). Consequently,

there are three different wikilink nodes in the summary, one with extent {3, 16}, another

with extent {6, 11}, and a last one with extent {18}. Extents can also be viewed as

mappings between instance (document) nodes and summary nodes – represented in the

figure by dashed arrows linking wikilink nodes in the document graph (left) and wikilink

extents in the incoming path summary (right). An edge (si, sj) in the summary means

that at least one node in the extent of si is the parent of at least one node in the extent

of sj. For instance, an edge from node s7 to s9 means that some figure elements within

par have caption elements, but not necessarily all of them have (for this document only

node 12 has a caption element).

Describing metadata in semistructured collections was a major motivation in one of

the earliest summary proposals in the literature [NUWC97, GW97]. Since then, research

on summaries has focused on query processing, making summaries one of the most studied

techniques for query evaluation and indexing in XML (and other semistructured) data

models [MS99, KBNK02, KSBG02, QLO03, BCF+05], as well as for providing statistics

useful in XML query estimation and optimization [PG06b].

Most of the existing summary proposals define all extents using the same criteria,

hence creating homogeneous summaries. These summaries are based on common ele-

ment paths (in some cases limited to length k), including incoming paths (e.g., repre-

sentative objects [NUWC97], dataguides [GW97], 1-index [MS99], ToXin [RM01], A(k)-

index [KSBG02]), both incoming and outgoing paths (e.g., F&B-Index [KBNK02]), or

sequences of outgoing paths (e.g., Skeleton [BCF+05]). The few examples of hetero-

geneous summaries that can adapt/change their structure based on a dynamic query

workload (e.g., APEX [CMS02], D(k)-index [QLO03], XSKETCH [PG06b]) compute the

extents from statistics and workload information.

However, none of these proposals can help us to find elements based on order and

cardinality criteria. Consider again the instance in Figure 1.1. What are the par elements

Chapter 1. Introduction 5

that contain two figures? How many section elements contain a figure with caption next

to a table? How many of those contain more than one figure? These are questions that

cannot be answered with any of the summaries mentioned above.

Moreover, since these proposals are algorithmically defined, it is hard to determine

how they can be used together for processing today’s increasingly heterogeneous and

large web collections effectively. Specifically, the summary information is not defined

declaratively, limiting the ease with which these summaries can be used within standard

data management tasks.

In this thesis, we propose a novel approach for flexibly summarizing the structure of

metadata actually present in an XML collection. We introduce DescribeX, a framework

that supports constructing heterogenous summaries, where each set in the partition can

be defined by means of path regular expressions on axes, or axis path regular expression

(AxPRE, for short). AxPREs provide the flexibility necessary for declaratively defining

complex mappings between instance nodes and summary nodes capable of expressing

order and cardinality, among other properties. Each AxPRE can be specified by the user

or obtained from any expression in the complete XPath language (all the axes, document

order, use of parenthesis, etc.). Given an arbitrary XPath expression posed by the user,

DescribeX can create a partition defined by an AxPRE that captures exactly the struc-

tural commonality expressed by a query. AxPRE summaries have a unique capability

that makes them suitable for describing the structure of XML collections: they are the

first summaries capable of declaratively defining and refining the summary extents using

a powerful language. In addition, DescribeX summaries express relationships between

instance nodes that go beyond the traditional parent-child (e.g., next sibling, following,

preceding, etc.). Last but not least, DescribeX captures most summary proposals in the

literature by providing a declarative definition for them for the first time.

This thesis argues that DescribeX can significantly help not only in the understand-

ing of the structure of large collections of XML documents, but also in the evaluation

Chapter 1. Introduction 6

of XPath queries posed on them. In fact, DescribeX summaries can also be used to

significantly speed up (and scale up) XPath evaluation over existing file-at-a-time tools,

enabling fast exploration of the results of XPath workloads on large collections. The ex-

perimental results demonstrate that using a summary created from a given workload can

produce query evaluation times that are two orders of magnitude better than using exist-

ing summaries (in particular, summaries on incoming paths like 1-index [MS99], APEX

[CMS02], A(k)-index [KSBG02], and D(k)-index [QLO03]). The experiments also vali-

date that DescribeX summaries allow file-at-a-time XPath processors to be a competitive

light-weight alternative (in terms of performance) to conventional DB-like XML query

engines supporting additional functionality such as security, transaction processing, and

native storage.

DescribeX also has applications to helping a user write and understand XPath queries

on large XML collections. Several software tools have been developed to help XPath users

debug query expressions (e.g., Oxygen XML Editor7, Altova XMLSpy8, etc.) A recent

research project includes a tool, XPlainer-Eclipse [CLR07], that provides visual explana-

tions of XPath expressions. An explanation returns precisely the nodes in a document

that contribute to the answer, a useful debugging technique. However, the main limi-

tation of traditional XPath debugging tools in the context of large XML collections is

that they provide debugging mechanisms only for a single document. Understanding

queries over collections containing thousands of documents (or even 650,000 documents,

like in the Wikipedia XML Corpus [DG06]) using these tools can be an impractical and

very time-consuming task. DescribeX provides an important foundation on which such

a large-scale XML collection understanding tool could be built, as evidenced by the

DescribeX-Eclipse tool presented in Appendix B.

7 http://www.oxygenxml.com/
8 http://www.altova.com/

Chapter 1. Introduction 7

1.1 Major contributions

This thesis identifies the growing need for describing the structure of web collections

(encoded in XML) using mechanisms that go beyond providing one or more schemas.

We propose the use of highly customizable summaries that represent the actual structure

of metadata labels as used in a given collection. The following are the major contributions

of this thesis.

1.1.1 AxPRE summaries

AxPRE summaries rely on the novel concept of a summary descriptor (SD). Traditional

summaries consist of a labeled graph that describes the label paths in the instance (which

we call an SD graph) together with an extent relation between summary nodes and sets

of instance nodes. An SD incorporates three key original features:

A description of the neighborhood of a node expressed by path regular ex-

pressions on axes (i.e., binary relations between nodes), AxPREs for short

(Chapter 3). AxPREs are evaluated on an axis graph, which is an abstract represen-

tation of the XPath data model [W3C07] extended with edges that represent XPath axis

binary relations. Edges are labeled by axis names and nodes are labeled by element or

attribute names (including namespaces), or by new labels defined using XPath.

Given an axis graph A, an AxPRE α applied to a node v in A returns an AxPRE

neighbourhood of v which provides a description of the subgraph local to v that satisfies

α. The AxPRE neighbourhood of v by α is computed by intersecting the automaton

constructed from the axis graph and the automaton accepting the language generated by

the AxPRE and all its prefixes.

The AxPRE neighbourhood of a node v is used to determine to which equivalence

class v belongs. That is, if two nodes in A have similar AxPRE neighbourhoods (i.e.

they cannot be distinguished by α), they belong to the same equivalence class. This

Chapter 1. Introduction 8

way, an AxPRE can be used to define a partition of nodes in A in which each set is the

extent of a node s in the SD. The notion of similarity we use is the familiar notion of

bisimulation [PT87].

The use of AxPREs neighbourhoods supports the definition of summaries that go be-

yond the traditional parent and child hierarchical relationships covered by the abundant

literature on summaries [GW97, MS99, KBNK02, KSBG02, PG02, QLO03, BCF+05,

PG06b]. In particular, AxPREs can describe heterogeneous SDs, i.e., SDs described by

multiple AxPREs.

An extent expression (EE) capable of computing precisely the set of elements

in the extent of a given SD node (Chapter 5.1). Since an AxPRE α is used to

compute by bisimulation an entire partition, we can say that all sets in the partition

share the same AxPRE α. Thus, AxPREs cannot be used to uniquely identify each

equivalence class (extent) in such partition (unless the partition contains only one set).

For a large class of neighbourhoods, it is possible to precisely characterize the extent

of an SD node s with a new type of expression we call extent expression (EE, for short).

The EE es of s with AxPRE α is generated from the bisimilarity contraction of the α

neighbourhoods of the elements in the extent of s. (Recall that all nodes in the extent

of s have bisimilar AxPRE neighborhoods.) Thus, we pick any element in the extent

of s, compute its α neighbourhood, and then compute its bisimilarity contraction. The

representative neighbourhood thus obtained is guaranteed to be bisimilar to all neigbour-

hoods in the extent of s. A representative neighbourhood provides the sequence of axis

compositions and labels that will appear in the EE that computes the extent of s. EEs

can be expressed in XPath and function like virtual views (see Chapter 6).

The notion of AxPRE refinements of SD nodes (Chapter 5.2). Exploring

collections of XML documents typically requires knowledge of the metadata present in

the collection. SDs provide a descriptive tool for representing metadata as SD graphs.

Chapter 1. Introduction 9

The description provided by a node in the SD can be changed by an operation that

modifies its AxPRE and thus its AxPRE neighbourhood. This operation is called an

AxPRE refinement of an SD node. Refinement refers to applying summarization to

selectively produce more or less detailed SDs.

The notion of refinement is well-known in the XML literature [PT87]. Intuitively,

two nodes in the same equivalence class may be refined into different classes, and two

nodes from different classes will always be refined into separate classes. An SD node can

be refined by changing its AxPRE definition. This produces SDs that are tailored to

the exploration needs of the user. Using successive node refinements, SD nodes can be

refined to produce SDs that provide a more detailed description of the data.

Previous proposals perform global refinements on the entire SD graph [KBNK02,

KSBG02] or local refinements based on statistics or workload [QLO03, HY04, PG06b],

without the ability to define the refinement declaratively. In contrast, we can precisely

characterize the neighbourhood considered for the refinement with an AxPRE [CRV08].

The notion of refinement is tightly related to that of stabilization. An edge stabiliza-

tion determines the partition of an extent into two sets based on the participation of the

extent nodes in the axis relation the edge represents.

1.1.2 Refinement lattice

We show the existence of a hierarchical relationship between summaries and provide

a concise description of the hierarchy within the DescribeX framework based on a re-

finement lattice. A refinement lattice describes a refinement relationship between entire

summaries.

The DescribeX refinement lattice provides a mechanism for capturing earlier summary

proposals, and understanding how those proposals relate to each other and to richer SDs

that were never previously considered in the literature (see Chapter 4). Each node in

the lattice corresponds to a homogeneous SD defined by an AxPRE. The top (coarsest)

Chapter 1. Introduction 10

summary of the lattice corresponds to the label SD where each node is partitioned by

label, and the bottom (finest) summaries of the lattice each corresponds to a distinct

combination of axes.

1.1.3 System implementation

In Chapter 7, we present the implementation of the DescribeX summarization engine

for interactively creating and refining AxPRE summaries given large collections of XML

documents. Chapter 8 provides experimental results that validate the performance of

the techniques employed by DescribeX.

The engine uses Berkeley DB Java Edition9 to store and manage indexed collections,

and supports an arbitrary XPath processor for the evaluation of XPath expressions. A vi-

sual interactive tool based on the DescribeX framework, DescribeX-Eclipse (see Appendix

B), was developed as an Eclipse10 plug-in. In addition to the DescribeX summarization

engine presented in this thesis, DescribeX-Eclipse provides retrieval and visualization

tools implemented by other colleagues [ACKR08].

Our experiments (employing gigabyte XML collections) provide strong evidence of the

advantages of using DescribeX to build and exploit summaries for exploration and XPath

query evaluation. These results demonstrate that the simple mechanism of accessing a

summary extent employed by the DescribeX implementation yields speedup factors of

over two orders of magnitude over commercial and open source implementations.

1.1.4 Answering queries using extents

For evaluating a query using an SD, we need to find the SD nodes that participate in the

answer. Since our framework relies on XPath EEs for defining the extents, the problem

of answering queries using extents is related to that of XPath containment [Sch04].

9http://www.oracle.com/technology/products/berkeley-db/je/index.html
10http://www.eclipse.org/

Chapter 1. Introduction 11

DescribeX can derive AxPREs from queries and use them to change the descrip-

tion provided by the SD. Since AxPREs describe only structural constraints and XPath

queries may contain predicates on values, extents resulting from AxPRE manipulation

rarely provide the exact answer without further filtering. The main reason for this is that

the addition of an XPath value predicate either reduces the size of the answer or leaves

the answer unchanged. Thus, DescribeX finds first the SD nodes that participate in the

answer (i.e., those whose extents contain at least part of the answer), then evaluate the

entire expression on them and take the union of the results to get the exact answer (see

Chapter 6.4). The experimental results provided in Chapter 8.4 considerably expand the

preliminary results presented in [CR07].

1.2 Motivating example: exploring RSS feeds with

summaries and XPath queries

This section walks through a concrete example to illustrate how DescribeX summaries

can help developers perform collection-wide exploration and XPath query evaluation.

Consider a developer, Sue, who has to implement a web application that retrieves

RSS feeds from several content providers to produce an aggregated meta-feed. The feed

may span several days or weeks, and there might be more than one item in the feed per

day. Figure 1.2 shows the instances of two sample RSS feeds represented as axis graphs.

An axis graph can display selected binary relations between elements in an XML

document tree, like doc, c, fs , and fc shown in the figure (shorthands for XPath axes

document, child, following-sibling, and for the derived axis firstchild, respectively). The

semantics of these axes is straightforward: the edge from element 6 to 7 labeled fc means

that 7 is the first child of 6 in document order, and the edge from element 18 to 24

labeled fs means that 24 is a following sibling of 18 in document order. For simplicity,

even though every first child is also a child, we do not draw the c edge between two

Chapter 1. Introduction 12

Figure 1.2: Axis graphs of RSS feed samples

nodes when an fc edge exits between them. Being binary relations, axes have inverses,

e.g., the inverse of c is p (shorthand for parent) and the inverse of fs is ps (shorthand for

preceding-sibling). These inverses are not shown in the figure.

Using DescribeX, Sue can create a summary descriptor (SD for short) like the one

shown on Figure 1.3 (a). This label SD, created from the two feeds in Figure 1.2, partitions

the elements in the feeds by element name. For example, SD node s6 represents all the

item elements in the two documents, {6, 18, 24} (this set is called the extent of s6).

An SD edge is labeled by the axis relation it represents. For instance, edge (s6, s5) is

labeled by c, which means that there is a c axis relation between elements in the extent

of s6 and s5. Figure 1.3 (a) shows three kinds of edges, depending on properties of the

sets that participate in the axis relation: dashed, regular, and bold. Dashed edges, like

(s6, s5) labeled c, mean that some element in the extent of s6 has a child in the extent

of s5. Regular edges, like (s6, s3) labeled fc, mean that every element in the extent of s6

has a first child in the extent of s3. Finally, bold edges, like (s6, s8) labeled c, mean that

every element in the extent of s8 is a child of some element in the extent of s6 and that

every element in the extent of s6 has some child in the extent of s8.

From the label SD Sue learns that channel elements in the collection always contain

Chapter 1. Introduction 13

Figure 1.3: Label SD (a), and heterogeneous SD (b) of the RSS feed samples

title, link, description, and item subelements. However, the structure of item elements

may vary. An item in the two sample feeds always includes title and enclosure elements,

but may contain any combination of description and pubDate elements. Note that the

label SD does not provide information on exactly which combinations actually appear.

At this point Sue has two options:

1. She can interactively refine the SD node s2 in the label SD in order to learn how

many different types of channels exist in the collection (i.e., how many subsets of

title, enclosure, description and pubDate are present within item elements).

2. Since she already knows that some item elements have a pubDate from the label

SD and she is interested in channels that contain such items, she can write query

Q1 to retrieve them.

Q1 = /rss/channel[item[pubDate]]

Chapter 1. Introduction 14

Sue can now decide either to run Q1 using the current SD or to make DescribeX

adapt the current SD to Q1. If she picks the former option, DescribeX finds the only SD

node that contains a superset of the answer (s2) and runs Q1 on its entire extent. If Sue

chooses the latter option, DescribeX changes the SD by partitioning the single channel

node s2 in Figure 1.3 (a), which represents all channels in the collection, into two channel

nodes: one with a pubDate within their item elements and another without a pubDate

(s22 and s21 in Figure 1.3 (b), respectively). Both SDs can be used to evaluate query

Q1, but notice this latter refinement (the SD of Figure 1.3 (b)) will yield a more efficient

evaluation.

Summaries in DescribeX are defined and manipulated via AxPREs. AxPREs describe

the neighbourhood of the elements in a given extent. A neighbourhood of an element v

for an AxPRE α is the subgraph local to v that matches α. For instance, the p∗ AxPRE

describes the neighbourhood of v containing all label paths from v to the root, c∗ all

label paths from v to the leaves, and fc.ns∗ the sequence of v’s child labels. AxPREs

can also be derived from a query in order to adapt an SD to it. For example, the

[channel].c.c AxPRE of node s21 in Figure 1.3 (b) was derived from Q1 and describes the

neighbourhood of channel elements with common outgoing label paths of length 2 (more

on this in Chapter 3). Sue could have written the [channel].c.c herself had she wanted

to refine the channel node s2 according to the substructure of the channel elements in

the extent of s2 (since she knows from the label SD that the variability within channel

elements may only come from description and pubDate within item subelements, the c.c

AxPRE representing outgoing label paths of length 2 suffices).

Suppose further that Sue is also interested in item elements containing both title and

enclosure subelements, but she does not know whether such items exist in the collection

and, if they do, how common they are. In addition, she wants those items to be part of

a series (i.e., to belong to channel elements that contain more than one item element, as

done in feeds for podcasts published daily). Therefore, she writes another query:

Chapter 1. Introduction 15

Q2 = /rss/channel[item/following-sibling::item]

[not(pubDate=../item[1]/pubDate)]/item[title][enclosure]

Q2 contains structural (in black) and non-structural (in grey) XPath constructs. The

expression that results from removing all non-structural constraints is called the structural

subquery of Q2. A structural subquery provides insight into the behaviour of the entire

query and can be used by DescribeX to refine an SD.

As with Q1, Sue can decide to either evaluate Q2 on the current SD (the label

SD with the refined channel node) or to add Q2 to the workload and make DescribeX

adapt the current SD. Assuming she chooses the second option, the system partitions

the item node s6 from Figure 1.3(a) into the nodes s61 and s62 in Figure 1.3(b) that

describe the structure of the collection with respect to the workload including Q2 and

Q1. Note that the extent of node s62 is exactly the answer to the structural subquery

of Q2, and thus a superset of the answer of Q2. The elements in this extent are called

candidate elements. Hence, by adapting the SD to the structural subquery, DescribeX

has considerably reduced the search space for computing the entire query.

In a document-at-a-time approach to query evaluation, adapting an SD to a work-

load can reduce the number of documents on which queries in the workload need to

be evaluated, potentially yielding a significant speedup (see Chapter 8). That is, after

adapting the SD to a given query Q, DescribeX can evaluate Q only on those documents

(called candidate documents) that are guaranteed to provide a non-empty answer for the

structural subquery of Q. Those candidate documents that do contain an answer for the

entire query are called answer documents.

It is important to note that DescribeX can recognize two kinds of channels with

different structure beyond the elements directly contained by them, a capability not

available using DTD’s (unless channel elements are renamed, which is not a possibility

when the original DTD or the instances cannot be modified). In particular, proposals to

infer a DTD from an instance (such as [BNST06, GGR+03]) by suggesting (general, but

Chapter 1. Introduction 16

succinct) regular expression from the strings of child elements, do not help to identify

the two kinds of channels as done above. For instance, the DTD expression <!ELEMENT

channel (title, link, description, item)> can be inferred for the channel elements

occurring in the instances shown in Figure 1.2. However, a DTD can only give a rule for

the children of channel, there is no mechanism for giving rules relating channel elements

to their grandchildren (or any other elements farther away). In contrast, the AxPRE

summary in Figure 1.3 (b) can distinguish between a channel containing an item with a

pubDate element from those that contain a description, and also between item elements

that belong to a multi-item channel from single-item ones.

As we will show in this thesis, DescribeX is not only more expressive than DTD’s

and XML Schemas, but also more expressive than other summary proposals making it a

robust foundation for managing large document collections.

1.3 Organization

This thesis is structured as follows. Chapter 2 gives an overview of the large body of

related work in the literature. Chapter 3 introduces the DescribeX framework, includ-

ing the AxPRE language and some basic notions such as neighbourhood, bisimilarity,

and summary descriptor (SD). Chapter 4 revisits some of the related work discussed in

Chapter 2 and explains how they can be captured by the DescribeX framework and how

DescribeX offers significant new functionality. Chapter 5 presents two new operations,

AxPRE refinement and stabilization, for declaratively changing the description provided

by an SD using AxPREs. Refinement and stabilization are central to the use of sum-

maries for both structure understanding and query processing. Chapter 6 introduces a

novel mechanism to characterize an SD node with an XPath expression whose evaluation

returns exactly the elements in the extent. It also discusses how to compute AxPRE re-

finements and stabilizations with XPath expressions and how to evaluate XPath queries

Chapter 1. Introduction 17

using DescribeX summaries. Chapter 7 describes the implementation of the DescribeX

summarization engine for creating and manipulating SDs of XML collections. Chapter 8

provides experimental results, using gigabyte size XML collections, that validate the per-

formance of the techniques employed by our framework. We conclude in Chapter 9 by

presenting some future research issues. In addition, Appendix A provides a concise defi-

nition of the formal semantics of XPath 1.0, and Appendix B presents a visual interactive

tool built on top of the DescribeX summarization engine.

Chapter 2

Related work

In this chapter, we discuss contributions from the literature on structural summaries

and other areas related to our work, such as path summaries for object-oriented data,

hierarchical encodings, answering XML queries using views, and validating summaries.

2.1 Structural summaries

The large number of summaries that have been proposed in recent years clearly establishes

the value and usefulness of these structures for describing semistructured data, assisting

with query evaluation, helping to index XML data, and providing statistics useful in

XML query optimization.

Most of the summary proposals in the literature define synopses of predefined sub-

sets of paths in the data. They construct a labeled graph that represents relation-

ships between sets of XML elements. Examples of such summaries are region inclu-

sion graphs (RIGs) [CM94], representative objects (ROs)[NUWC97], dataguides [GW97],

reversed dataguides [LS00], 1-index, 2-index and T-index [MS99], and more recently,

ToXin [RM01], A(k)-index [KSBG02], F-Index, B-index, and F&B-Index [KBNK02].

Dataguides and ROs group nodes into sets according to the label paths incoming to

them (each node may appear more than once in the dataguide if the document in-

18

Chapter 2. Related work 19

stance is not just a tree). RIGs, 1-index, T-index, ToXin, F&B-Index, and F+B-Index,

on the other hand, partition the data nodes into equivalence classes (called extents in

the literature) so that each node appears only once in the summary. The partition is

computed in different ways: according to the node labels (RIGs), the label paths in-

coming to the nodes (1-index, ToXin, A(k)-index), the label paths going out from the

nodes (reversed dataguides), or label paths both incoming and outgoing (F&B-Index and

F+B-Index). The length of the paths in the summary also varies: ToXin, 1-index and

F&B-Index/F+B-Index summarize paths of any length, whereas A(k)-index is a synop-

sis of paths of a fixed length. Updates to structural summaries have been studied in

[KBNS02] and [YHSY04].

RIGs were one of the first summaries proposed in the literature, introduced in the

context of region algebras [CM94, YLT03]. Dataguides [GW97] group nodes in a rooted

data graph into sets called target sets according to the label paths from the root they

belong to. Since the label paths form a language, its deterministic finite automaton

(DFA) is used as a more concise representation of the label paths. The construction of

a dataguide from a data graph is equivalent to the conversion of a NFA (the XML tree)

into a deterministic finite automaton (the dataguide) [NUWC97].

An index family was presented in [MS99] (1-index, 2-index, and T-index). Like

dataguides, the 1-index summarizes root-to-leaf paths. In the 1-index, the nodes of a

XML tree are partitioned into equivalence classes according to the label paths they be-

long to. Since the 1-index extents constitute a partition of the XML nodes, the number

of 1-index nodes can never be bigger than the XML tree. The extreme case is the one in

which every XML node belongs to a separate equivalence class (which is in fact the data

instance). The 1-index partition is computed by using bisimulation [PT87].

Based also on bisimulation, the A(k)-index was introduced in [KSBG02]. The con-

struction of the summary is based on k-bisimilarity (bisimilarity computed for paths of

length k). Thus, the A(0)-index creates the partition based on the labels of the nodes

Chapter 2. Related work 20

(0-bisimilarity), and the A(h)-index uses h-bisimilarity which creates the partition based

on incoming label paths of length h.

Another index family was introduced in [KBNK02]. The F&B-Index construction uses

bisimulation like the 1-index, but applied to the edges and their inverses in a recursive

procedure until a fix-point. With this construction, the F&B-Index’s equivalence classes

are computed according to the incoming and outgoing label paths of the nodes. The

same work introduces the F+B-index, which applies the recursive procedure only twice,

once for the edges and another reversing the edges. Both F&B-Index and F+B-index are

special cases of the BPCI(k,j,m) index, where k and j controls the lengths of the paths

and m the iterations of the bisimulation on the edges and their inverses.

ToXin consists of three index structures: the ToXin schema, the path index, and the

value index. The ToXin schema is equivalent to a strong dataguide. The path index

contains additional structures that keep track of the parent-child relationship between

individual nodes in different extents. A recent proposal, TempIndex [MRV04] extends

ToXin with the temporal dimension in order to speed-up path queries on a temporal

XML data model. TempIndex summarizes incoming paths that are valid continuously

during a certain time interval and is part of the TSummary framework [RV08].

Based on the A(k)-index, a recent proposal [FGW+07] defines partitions of paths,

rather than nodes, called P(k)-partitions – where k is the maximum length of the paths

summarized. This work also introduces an algebraization of the navigational core of

XPath in order to define XPath fragments that can be coupled to P(k)-partitions for

fast evaluation of queries in the fragments. Since this proposal is based on navigational

XPath, it supports only expressions containing composition of parent, ancestor, child,

and descendant axes. In contrast, DescribeX can be used to evaluate expressions in the

complete XPath language (with all the axes, functions, use of parenthesis, etc.).

Other summaries are augmented with statistical information of the instance for selec-

tivity estimation, including path/branching distribution (XSKETCH [PG02, DPGM04]),

Chapter 2. Related work 21

value distributions (XCLUSTER [PG06a]), and additional statistical information for ap-

proximate query processing (TREESKETCH [PGI04]).

A few adaptive summaries like APEX [CMS02], D(k)-index [QLO03], and M(k)-index

[HY04] use dynamic query workloads to determine the subset of incoming paths to be

summarized. APEX is a summary of frequently used paths that summarizes incoming

paths to the nodes and adapts to changes in the workload by changing the set of path

considered in the synopsis. That is, instead of keeping all paths starting from the root,

it maintains paths that have some “support” (i.e., paths that appear a number of times

over a certain threshold in the workload). The workload APEX considers are expressions

containing a number of child axis composition that may be preceded by a descendant

axis, without any predicate. APEX summarizes incoming paths to the nodes and adapts

to changes in the workload by changing the set of paths summarized. D(k)-index and

M(k)-index, in contrast, summarize variable-length paths based on both the workload

and local similarity (the length of each path depends on its location in the XML instance).

There has been almost no work on summaries that capture the node ordering in the

XML tree: the only proposals we are aware of are the early region order graphs (ROGs)

[CM94] and the Skeleton summary [BCF+05] that clusters together nodes with the same

subtree structure. Skeleton has additional structures that store relationships between

individual nodes that belong to different equivalence classes.

In contrast to these proposals, DescribeX is capable of declaratively defining complex

mappings between instance nodes and summary nodes for expressing order, cardinality,

and relationships that go beyond the traditional parent-child (e.g., next sibling, following,

preceding, etc.) In addition, DescribeX provides a declarative definition for the first time

for most of the proposals discussed above (for more details on how DescribeX captures

other structural summaries see Chapter 4).

Chapter 2. Related work 22

2.2 Path summaries for OO data

We can trace the origin of structural summaries for XML to the OODB community. This

community has been quite active in the past in the area of path summaries for object-

oriented data. Examples are path indexes [Ber94], access support relations [KM90],

and join index hierarchies [XH94]. All three proposals materialize frequently traversed

paths in the database. Access support relations are designed to support joins along ar-

bitrary reference chains leading from one object instance to another. They also support

collection-valued attributes by materializing frequently traversed reference chains of ar-

bitrary length. Access support relations are a generalization of the binary join indices

originally proposed for the relational model [Val87]. One fundamental difference with

respect to join indices, however, is that rather than relating only two relations (or object

types), access support relations materialize access paths of arbitrary length.

A path index can materialize the same class of paths as an access support relation. It

stores the sequence of nodes (objects) that define a given path. In contrast, a join index

hierarchy constructs hierarchies of join indices to optimize navigation via a sequence of

objects and classes. A join index stores the pairs of identifiers of objects of two classes

that are connected via logical relationships. Since all these OODB approaches are based

on the paths found in the OO schema, they can only be adapted to XML documents

for which either a DTD or an XML Schema is present. In contrast, DescribeX permits

summarization of collections without any schema.

2.3 Hierarchical encodings

We should mention that, in addition to the use of summaries, query evaluation can be

facilitated by encoding the hierarchical structure of an XML instance. Node encoding

evaluations use some sort of interval encodings [SK85] to label each node with its posi-

tional information within the XML instance. This positional information is used by join

Chapter 2. Related work 23

algorithms to efficiently reconstruct paths and label paths. Recent proposals for node

encoding evaluations are region algebras [CM94, YLT03], path joins (XISS) [LM01], rel-

ative region coordinates [KYU01], structural joins [AKJP+02, CVZ+02], holistic twig

joins [BKS02, JWLY03], partition-based path joins [LM03], XR-Tree [JLWO03], PBi-

Tree [WJLY03, VMT04], extended Dewey encoding for holistic twig joins [LLCC05], and

FIX [ZÖIA06], a feature-based indexing technique.

Structural encoding proposals are based on mapping the XML tree structure into

strings and use efficient string algorithms for query processing. Since the size of each

string grows with the length of the encoded path, many approaches use some sort of

compression to offset this overhead. Examples of those are Index Fabric [CSF+01], tree

signatures [ADR+04], materialized schema paths [BW03], PathGuides [CYWY03], and

tree sequencing (ViST [WPFY03], PRIX [RM04], and NoK [ZKÖ04]). These encodings

can be used in conjunction with structural summaries to improve query evaluation per-

formance. In fact, the availability of summaries can be of great assistance to an XML

optimizer [BCM05].

DescribeX uses an interval encoding derived from [SK85] in which each element in

the collections is represented by its start and end positions (the character offset from the

beginning of the document they belong to).

2.4 Answering XML queries using views

Another area closely related to summarization is answering queries using views. As

in traditional database systems, the performance of XML queries can be improved by

rewriting them using caching and materialized views containing information relevant to

the computation of the query. A recent contribution in this area includes a framework

for XPath view materialization and query containment [BOB+04] that uses value and

structure indexes on views. Another framework was proposed in [MS05] for maintaining

Chapter 2. Related work 24

a semantic cache of XPath query results as materialized views used to speed-up query

processing. Other work has considered the problem of deciding the existence of a query

rewriting and finding a minimal rewriting using XPath views [XÖ05], and computing

maximal contained rewriting for tree pattern queries (a core subset of XPath) [LWZ06].

For XQuery, query rewriting poses additional challenges. One of them is that queries

may be nested. Another challenge comes from the mix of list, bag and set semantics

supported by XQuery, which makes testing equivalence more difficult. In this context,

there has been some work on query rewriting for nested XQuery queries using nested

XQuery views [ODPC06]. A recent contribution for extended tree patterns views (a

subset of XQuery) proposes containment and equivalent rewriting strategies based on a

dataguide enhanced with integrity constraints [ABMP07]. This proposal considers only

queries described by tree patterns.

We must point out here that most of the work in this area could be applied to our

framework to expand the query evaluation techniques we present in Chapter 6.

2.5 Validating summaries

DTDs1 and XML Schemas2 are proposals used for validation and verification of XML

documents. A DTD is a context-free grammar and an XML Schema is a typed definition

language. Both are schemas in the database sense, and thus describe classes of documents

and constrain their structure. However, they provide only a limited description of the

instances that satisfy them and no mechanism to locate specific instance fragments. In

contrast, summaries are constructed for a particular instance and consequently provide a

tighter description of the data. They also contain the necessary information for locating

the instance fragments they describe. DTDs and XML Schemas can be used to constrain

the construction of summaries but they are no substitute for them. Moreover, summaries

1 http://www.w3.org/TR/REC-xml
2 http://www.w3.org/TR/xmlschema-1/

Chapter 2. Related work 25

Figure 2.1: Label SD fragment with XML graph schema model annotations

can be constructed even when DTDs and XML Schemas are not present.

In addition to describing an instance, DescribeX summaries could potentially be used

for prescribing or constraining the data by adding schema constructs. Figure 2.1 shows

a fragment of the label SD from Figure 1.3 (a) annotated with XML graph schema

constructs [MS07] in blue. These constructs, which contain choice and sequence nodes

(and others not shown in the figure), are able to express XML schema languages like

DTDs, XML Schemas, and Relax NG3. (For a survey on XML schema languages see

[MLMK05].) The SD of Figure 2.1 represents channels that contain exactly one title, one

description and one or more items that contain themselves one title and a sequence of

zero or more description elements. In the figure, choice and sequence nodes are used to

represent the number of occurrences of an element, which can be zero, one, or unbounded.

The DTD corresponding to the elements that appear in Figure 2.1 is the following:

<!ELEMENT channel (title, item+, description)>

<!ELEMENT item (title, description?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT pubDate (#PCDATA)>

3 http://www.oasis-open.org/committees/relax-ng/spec-20011203.html/

Chapter 2. Related work 26

In an SD, schema annotations have to be consistent with instance descriptions. For

example, the existential edge (s6, s5) is compatible with an schema permitting any number

of occurrences of s5 (even zero). In contrast, the same edge is incompatible with an

schema requiring at least one s5 element because the dashed edge allows some items to

have no descriptions.

This is just an example of how schema constructs can be integrated with DescribeX

summaries. There are many other ways of approaching the subject, but we do not

consider it further in this thesis.

This chapter provided a discussion of related work on structural summaries and four

other areas close to our work: path summaries for OO data, hierarchical encodings,

answering XML queries using views and validating summaries. In the next chapter, we

begin introducing one of the major contributions of this thesis, the DescribeX framework.

We will show how DescribeX generalizes and extends both structural and path summaries,

and how DescribeX summaries can be used in query processing.

Chapter 3

AxPRE summaries

This chapter provides an overview of the DescribeX framework. The framework includes

a powerful language based on axis path regular expressions (AxPREs) for describing each

set in a partition of instance nodes (extents). AxPREs provide the flexibility necessary for

declaratively specifying the mapping between instance nodes and summary nodes for a

given collection. These AxPRE mappings are capable of expressing order and cardinality,

among other properties. AxPREs are evaluated on a graph (called axis graph) in which

nodes are XML elements and edges are binary relations between them. Hence, AxPREs

can be viewed as path regular expressions on binary relations. These relations include

all XPath axes and additional ones that can be expressed in XPath.

Extents are defined using a novel approach: selective bisimilarity applied to subgraphs

described by AxPREs (i.e., AxPRE neighbourhoods). This particular use of bisimulation

supports the definition of summaries that go beyond the traditional parent and child

hierarchical relationships covered by the abundant literature on summaries. Intuitively,

nodes that have bisimilar subgraphs “around” them (i.e., neighbourhoods) belong to the

same extent. For instance, DescribeX can define extents containing only nodes with the

same set of outgoing label paths matching a given sequence of axes. Neighbourhoods are

a key mechanism in the declarative definition of DescribeX summaries.

27

Chapter 3. AxPRE summaries 28

Figure 3.1: The axis graph of two PSI-MI interactions

3.1 A regular expression language on axes

In this section, we introduce the AxPRE language for describing neighbourhoods in an

SD. For representing an XML instance, DescribeX uses a labeled graph model called an

axis graph.

Definition 3.1 (Axis Graph) An axis graph A = (Inst , Axes, Label, λ) is a structure

where Inst is a set of nodes, Axes is a set of binary relations {EA
1 , . . . , EA

n } in Inst×Inst

and their inverses, Label is a finite set of node names, and λ is a function that assigns

labels in Label to nodes in Inst. Edges are labeled by axis names. �

An axis graph is an abstract representation of the XPath data model [W3C07] ex-

tended with edges that represent XPath binary relations between elements. It can

also include additional axes, such as fc (where fc := child :: ∗[1]), ns (where ns :=

following-sibling :: ∗[1]), id-idrefs or any binary relation that can be expressed in XPath.

When representing an XML instance, axis graph nodes are labeled by element or attribute

names (including namespaces).

Chapter 3. AxPRE summaries 29

Example 3.1 (PSI-MI Axis Graph) Figure 3.1 shows an axis graph for our running

example, which is a sample of a protein-protein interaction (PPI) dataset in PSI-MI1

format. PSI-MI stands for Proteomics Standards Initiative Molecular-Interaction and is

the de-facto model for PPI used by many molecular interaction databases such as Bi-

oGRID2, Human Protein Reference Database (HPRD)3, and IntAct4. The PSI-MI XML

schema has a large number of optional elements to allow flexibility, with the result that

PSI-MI data can be very heterogeneous. Since different databases use different fragments

of the schema, finding common instance patterns and understanding schema usage can

be challenging [SCKT07].

Each interaction consists of an experimentList element with all the experiments in

which the interaction has been determined, a participantList element with the molecules

that participate in the interaction and some optional elements like the name of the inter-

action and a reference (xref) to an interaction database. Each participantList contains

two or more participants, which are the molecules participating in the interaction. A par-

ticipant element contains a description of the molecule, either by reference to an element

of the interactorList, or directly in an interactor element. In addition, each participant

contains a list of all the roles it plays in the experiments (e.g., bait, prey, neutral, etc.)

Note that, for the sake of clarity, we have omitted many edges depicting relations

that actually exist. For example, the fc (firstchild) relation is included in the c (child)

relation, so any fc edge is also a c edge. The inverses of each relation are not shown in

the figure, e.g., for each c relation, a p (parent) relation exists (since p = c−1). �

An AxPRE gives a declarative description of a partition of elements in an SD, some-

thing not provided by any other proposal in the literature.

1http://psidev.sourceforge.net/mi/xml/doc/user/
2http://www.thebiogrid.org/
3http://www.hprd.org/
4http://www.ebi.ac.uk/intact/

Chapter 3. AxPRE summaries 30

In an axis graph we define paths and label paths as usual. We call a path defined on

edges an axis path, and the string resulting from the concatenation of its labels is an axis

label path.

Definition 3.2 (Axis Path and Axis Label Path) Let N be a connected subgraph

of an axis graph A, and v, vn be two nodes in N such that there is a path p = (v, axis1,

v1, axis2, . . . , axisn, vn) from v to vn. The axis path of p is the string ap = axis1.axis2. . . .

.axisn. The axis label path of p is the string λ(p) = axis1[λ(v1)].axis2[λ(v2)]. axisn

[λ(vn)]. �

Example 3.2 Consider the axis graph of Figure 3.1. Two of the paths from node 6 to 11

are p = (6, c, 8, fc, 9, ns, 11) and p′ = (6, c, 8, c, 11). Their axis paths are ap = c.fc.ns and

ap′ = c.c, respectively. Finally, the axis label paths of p and p′ are λ(p) = c[expRoleList].

fc[expRole]. ns[expRole] and λ(p′) = c[expRoleList]. c[expRole], respectively. �

Definition 3.3 (Axis Path Regular Expressions) An axis path regular expression

(AxPRE) is an expression generated by the grammar

E ←− axis | axis[B(l)] | (E | E) | (E)∗ | E.E | ε | [B(l)]

where axis ∈ Axes and ε is the symbol representing the empty expression. �

Definition 3.3 describes the syntax of path regular expressions on the binary relations

(labeled edges) of the axis graph including node label tests. The function B(l) is a

boolean function on a label l ∈ Label that supports elaborate tests beyond just matching

labels.

An AxPRE defines a pattern we want to find in an instance. We need a way of

computing all occurrences of such pattern in an axis graph – each occurrence will be

called a neighbourhood. We do this by computing an automaton for the AxPRE, another

for the axis graph, and then taking the intersection. Finally, a summary will group nodes

Chapter 3. AxPRE summaries 31

Figure 3.2: Axis graph fragment from node 8 (a) and its automatonMA(8) (b)

with similar patterns together into an extent (DescribeX uses bisimulation as the notion

of similarity).

The AxPRE semantics (Definition 3.8) is given by the notion of AxPRE neighbourhood

of a node (Definition 3.7). In order to compute an AxPRE neighbourhood we need first

to define an automaton from the axis graph. Such an automaton will have two states

for each node in the axis graph, one named head and the other tail. In addition, edges

in the graph will be represented as transitions between tail and head states, and node

labels as transitions between head and tail states.

Definition 3.4 (Axis Graph Automaton) Let A = (Inst , Axes, Label, λ) be an

axis graph and v a node in A. The axis graph automaton of A from v, MA(v) =

{Q, Σ, δ, q0, F}, is an automaton [HU79] defined as follows:

• For each node w ∈ Inst there is a state head(w) ∈ Q, a state tail(w) ∈ Q and a

transition δ(head(w), [λ(w)]) = tail(w);

• For each edge (wi, wj) labeled axis in A there is a transition δ(tail(wi), axis) =

head(wj);

Chapter 3. AxPRE summaries 32

• All tail(w) states in Q, w ∈ Inst, are final states in F , and head(v) is the initial

state q0.

�

Example 3.3 Consider node 8 of our running example. Figure 3.2 shows on the left

hand side a fragment of the axis graph that contains node 8. The axis graph automaton

from node 8 (on the right hand side of the figure) has head(8) as initial state and all

tail states as final. Each node in the axis graph fragment is unfolded into a head and

a tail states in the automaton and its label is represented by a transition between them.

Consider node 11 with label expRole that has ns and c incoming edges and a fc outgoing

edge in the axis graph. In the automaton, 11 is represented by a head(11) state that

has ns and c incoming transitions and an outgoing transition [expRole] to tail(11). The

outgoing fc edge is translated into a fc transition from tail(11) to the head state of the

corresponding node, which is 12. �

An automaton can be obtained from an AxPRE following the usual Thompson’s

construction for regular expressions with a minor change to the basis steps to account for

AxPRE semantics (which require accepting all prefixes of the language). The language

accepted by the so called AxPRE automaton thus constructed will always be prefix-

closed. (A language L is said to be prefix-closed if, given any word l ∈ L, all prefixes of

l are also in L [HU79].)

Definition 3.5 (AxPRE Automaton) Let α be an AxPRE. The AxPRE automaton

of α is an automaton Mα obtained from α with a modified Thompson’s construction

[HU79] for accepting all prefixes (Figure 3.3), in which only the final states of the basis

rules are kept as final in the resulting automaton (the inductive rules for concatenation,

disjunction and Kleene closure do not mark any additional state as final). The transition

function δ̂(qα, axis) returns the states that can be reached by an axis transition after

following an arbitrary number (possibly zero) of ε transitions. �

Chapter 3. AxPRE summaries 33

Figure 3.3: Rules of the modified Thompson’s construction

Figure 3.4: AxPRE automatonM[expRoleList].fc.ns∗

Chapter 3. AxPRE summaries 34

Figure 3.5: Intersection automatonMA(8)∩M[expRoleList].fc.ns∗ (a) and resulting AxPRE

neighbourhood N[expRoleList].fc.ns∗(8) (b)

Example 3.4 Consider the AxPRE [expRoleList].fc.ns∗ and its automaton in Figure

3.4. The application of rule axis[l] of the modified Thompson’s construction creates

states q0, q1 and the [expRoleList] transition between them. The application of rule axis

creates q2, q3, q5, q6, and the [l1], . . . , [lm] transitions from q2 to q3 and from q5 to q6

(there is one transition [li] for each string in Label). The final automaton is obtained by

applying the concatenation and Kleene closure rules. �

An automaton for the intersection of two languages can be constructed by taking the

product of the automata for the two languages [MW95, Yan90].

Definition 3.6 (Intersection Automaton) Let MA(v) be the automaton of an axis

graph A from a node v, and Mα be the automaton of an AxPRE α. The intersection

automatonMA(v)∩Mα is an automaton in which states are pairs (qA, qα) consisting of

a state qA ∈MA(v) and a state qα ∈Mα, and there is a transition δ((qA, qα),X) = (q′A,

q′α) if there are transitions δ(qA,X) = q′A in MA(v) and δ̂(qα,X) = q′α in Mα, where X

is either an axis or a label. A state 〈qA, qα〉 is final (initial) if both qA and qα are final

(initial). �

The machinery introduced in Definitions 3.4 through 3.6 is required for computing

AxPRE neighbourhoods of nodes in the axis graph. The neighbourhood of a node v by

Chapter 3. AxPRE summaries 35

α can be obtained by taking the intersection between the axis graph automaton from v

and the AxPRE automaton of α, and then converting the resulting automaton to an axis

graph fragment as described in Definition 3.7.

Definition 3.7 (AxPRE Neighbourhood of a Node) Let A = (Inst , Axes, Label,

λ) be an axis graph, v a node in A, α an AxPRE, and MA(v) ∩Mα the intersection

automaton of MA(v) and Mα. The AxPRE neighbourhood of v by α, denoted Nα(v),

is the subgraph of A defined as follows:

• For each transition δ((head(w), qα), l) = (tail(w), q′α), where (tail(w), q′α) is a final

state, there is a node w with label l in A;

• For each transition δ((tail(wi), qα), axis) = (head(wj), q
′
α), where (tail(wi), qα) is a

final state, there is an edge (wi, wj) labeled axis in A.

�

Example 3.5 (AxPRE Neighbourhood of a Node) Consider node 8 of our run-

ning example. The intersection automaton MA(8) ∩ M[expRoleList].fc.ns∗ is depicted in

Figure 3.5 (a). States are labeled by pairs (qA, qα), where qA is a state in automaton

MA(8) and qα is a state in automaton M[expRoleList].fc.ns∗. The intersection has been

computed following Definition 3.6. The figure shows only the states that have some in-

coming or outgoing transition. Note that transition c between tail(8) and head(11) is not

part of the intersection because fc is the only outgoing transition from q1 in qα.

Figure 3.5 (b) shows the AxPRE neighbourhood of node 6, N[participant]c.fc.ns∗(6), ob-

tained by converting the intersection automaton to an axis graph fragment as described in

Definition 3.7. Note that transitions from (head(v), . . .) to (tail(v), . . .) in the intersec-

tion are node labels in the AxPRE neighbourhood and that transitions from (tail(v), . . .)

to (head(w), . . .) are edge labels (axes) in the neighbourhood.

Consider now the five [participant].c.fc.ns∗ neighbourhoods depicted in Figure 3.6.

Neighbourhood (a) matches a prefix of the AxPRE ([participant].c) whereas (b) through

Chapter 3. AxPRE summaries 36

Figure 3.6: All [participant].c.fc.ns∗ neighbourhoods

(e) match the entire AxPRE but with a different number of iterations in the Kleene closure

for ns: 1 for (b) and (e), and 0 for (c) and (d). �

We formalize next the notion of AxPRE semantics based on AxPRE neighbourhoods.

Definition 3.8 (AxPRE Semantics) Let A = (Inst , Axes, Label, λ) be an axis graph

and v a node in A. The evaluation of an AxPRE α on v returns the AxPRE neighbourhood

of v by α. �

3.2 Neighbourhoods and bisimulation

AxPRE neighbourhoods allow us to define a notion of similarity between nodes in an axis

graph. The idea underlying DescribeX is that nodes with similar AxPRE neighbourhoods

will be grouped together. In particular, DescribeX uses the familiar concept of labeled

bisimulation applied to AxPRE neighbourhoods, formalized by Definition 3.9.

Definition 3.9 (Labeled Bisimulation and Bisimilarity) Let Nα(v0) and Nβ(w0)

be two AxPRE neighbourhoods of an axis graph A = (Inst , Axes, Label, λ), such that

Axesα ⊆ Axes and Axesβ ⊆ Axes. A labeled bisimulation between Nα(v0) and Nβ(w0)

is a symmetric relation ≈ such that for all v ∈ Nα(v0), w ∈ Nβ(w0), Eα
i ∈ Axesα,

and Eβ
i ∈ Axesβ: if v ≈ w, then λ(v) = λ(w); if v ≈ w, and 〈v, v′〉 ∈ Eα

i , then

Chapter 3. AxPRE summaries 37

〈w, w′〉 ∈ Eβ
i and v′ ≈ w′. Two nodes v ∈ Nα(v0), w ∈ Nβ(w0) are bisimilar, in no-

tation v ∼ w, iff there exist a labeled bisimulation ≈ between Nα(v0) and Nβ(w0) such

that v ≈ w. Similarly, two neighbourhoods Nα(v0) and Nβ(w0) are bisimilar, in notation

Nα(v0) ∼ Nβ(w0), iff v0 ∼ w0. �

Definition 3.9 captures outgoing label paths from the nodes. Bisimulation provides

a way of computing a double homomorphism between graphs. The widespread use of

bisimulation in summaries is motivated by its relatively low computational complex-

ity properties. The bisimulation contraction of a labelled graph can be done in time

O(m log n) (where m is the number of edges and n is the number of nodes in a labelled

graph) as shown in [PT87], or even linearly for acyclic graphs, as shown in [DPP04].

Using bisimulation also allows us to capture all the existing bisimulation-based proposals

in the literature (Chapter 4).

Example 3.6 Let us consider the nodes 6 and 18 in the axis graph of Figure 3.1. Their

[participant].c.fc.ns∗ neighbourhoods are depicted in Figure 3.6 (b) and (c), respectively.

Based on Definition 3.9, we can define a labeled bisimulation ≈ between nodes 7 and 19

because they have the same labels and they do not have outgoing edges. For the same

reasons we have 11 ≈ 21. However, it is not possible to define a labeled bisimulation

between 9 and 21 because, even though they have the same labels, 9 has one outgoing edge

whereas 21 does not. Thus, 9 6≈ 21. This prevents us from defining a label bisimulation

between 8 and 20 because they each have only one outgoing fc edge, but to nodes 9 and

20, which are not bisimilar. Therefore, 8 6≈ 20. Similarly, 6 6≈ 18 because they have

edges with the same labels (c) to nodes that are not bisimilar (8 and 20). Consequently,

neighbourhoods (b) and (c) of Figure 3.6 are not bisimilar.

In contrast, let us compare now nodes 6 and 18 but with respect to their [participant].c∗

neighbourhoods, which are depicted in Figure 3.7 (b) and (c), respectively. In this case

we can have 9 ≈ 21 and 11 ≈ 21 because all of them are leaves and have the same

Chapter 3. AxPRE summaries 38

Figure 3.7: All [participant].c∗ neighbourhoods

label. Therefore, 8 ≈ 20 because the outgoing edges from 8 go to nodes 9 and 11, which

are bisimilar to the target node (21) of the only outgoing edge from 20. Thus, 6 ≈ 18

because they have edges with the same labels (c) to nodes that in this case are bisimilar

(7 ≈ 19 and 8 ≈ 20). Consequently, neighbourhoods (b) and (c) of Figure 3.7 are in fact

bisimilar. �

Definition 3.10 (AxPRE Bisimilarity) Let A = (Inst , Axes, Label, λ). When two

nodes v0 and w0 in A have bisimilar neighbourhoods by the same AxPRE α, that is

Nα(v0) ∼ Nα(w0), we say that v0 and w0 are AxPRE bisimilar by α or α-bisimilar, in

notation v0 ∼α w0. �

Example 3.7 Consider again the neighbourhoods in Figure 3.6. Nodes 6 and 18 have

non-bisimilar [participant].c.fc.ns∗ neighbourhoods and thus 6 6∼α 18, where AxPRE α =

[participant].c.fc.ns∗. However, if we consider now their [participant].c∗ neighbourhoods,

which are bisimilar, then 6 ∼α′
18 for AxPRE α′ = [participant].c∗. �

AxPRE bisimilarity is used for defining partitions of an axis graph. Intuitively, a so

called AxPRE partition assigns two nodes v and w in an axis graph to the same class if

their AxPRE neighbourhoods by a given α are bisimilar. This is formalized by Definition

3.11.

Chapter 3. AxPRE summaries 39

Definition 3.11 (AxPRE Partition) Let A = (Inst , Axes, Label, λ) be an axis graph

and α an AxPRE. An AxPRE partition of Inst by α, denoted Pα, is a set of pairwise

disjoint subsets of Inst whose union is Inst defined as follows: two nodes v, w ∈ Inst

belong to the same set P i
α ∈ Pα iff v ∼α w.

Definition 3.12 (Positive Classes) Let A = (Inst , Axes, Label, λ) be an axis graph,

α an AxPRE and P ∅
α = {v ∈ Inst | Nα(v) = ∅} the set of the empty neighbourhoods in

the AxPRE partition of Inst by α. Then, P+
α = Pα − P ∅

α is the set of positive classes of

Pα. �

Since all nodes that have an empty AxPRE neighbourhood belong to the same equiv-

alence class, Pα and P+
α differ in at most one set.

Example 3.8 Consider the AxPRE partitions by [l1], . . . , [ln], where l1, . . . , ln are the

different node labels that appear in the axis graph, have one positive class each because

each neighbourhood represents a different node label. (Note that the n different positive

classes do not overlap.) Moreover, the union of those n sets (each coming from a different

partition) also constitute a partition of Inst. In contrast, if we take only a proper subset

of m node labels, m < n, the m positive classes of the resulting AxPRE partitions do not

constitute a partition because their union does not have all nodes in Inst. �

Given an AxPRE, the positive classes plus one additional class for the empty neigh-

bourhood forms a partition. If we have another AxPRE whose positive classes fall ex-

clusively within this empty neighbourhood class, then these two AxPREs may be used

together to summarize an axis graph. We are interested in sets of AxPREs whose positive

classes define a partition of Inst , which is formalized next.

Definition 3.13 (Positive Partition) Let A = (Inst , Axes, Label, λ) be an axis graph.

A set A = {α1, . . . , αn} of AxPREs defines a positive partition of A, denoted PA, iff⋃
iP+

αi
is a partition of Inst. �

Chapter 3. AxPRE summaries 40

The intuition behind the notion of positive partition from a set of AxPREs A =

{α1, . . . , αn} can be explained as follows. We know, by Definition 3.13, that each αi in A

defines an AxPRE partition which has positive classes and a unique empty neighbourhood

class. In order for the set A to define a positive partition, the empty neighbourhood class

of αi has to be further partitioned by some αj in A. In other words, when the entire set

A is considered, every node that belongs to the empty neighbourhood of some αi also

belongs to some positive class of some αj.

Example 3.9 (Positive Partition) Positive partitions play a key role in our frame-

work. This requires a thorough understanding of the semantics of the AxPREs, and the

partitions they define. We discuss now some particular cases of our running example of

Figure 3.1.

Let us consider first the AxPRE ε, which evaluated on each axis graph node will pro-

duce as many different neighborhoods as there are different labels in the axis graph (each

neighbourhood containing a single node). Since all nodes with bisimilar neighbourhoods

will belong to the same class, if there are n different labels in the axis graph the ε positive

partition will contain n classes (Figure 3.8 shows below each SD node the sets of the

partition for our running example). The same positive partition can be obtained with the

set of expressions A = {[l1], . . . , [ln]}, where l1, . . . , ln are all the different node labels that

appear in the axis graph. In our running example, the set of expressions equivalent to ε

would contain [interaction], [participant], etc.

Let us consider now the AxPRE [participant]. The partition by [participant] is ob-

tained as follows: for each node in the axis graph, we compute the AxPRE neighbour-

hood corresponding to [participant], and all nodes with bisimilar neighbourhoods (i.e., all

nodes that are [participant]-bisimilar) will belong to the same class. Thus, the partition

will consist of two classes: one containing all the nodes v such that λ(v) = participant,

which is the set {4, 6, 18, 23, 28} (the positive class), and the other one with the remaining

nodes (the empty neighbourhood class). On the other hand, the [¬participant] partition

Chapter 3. AxPRE summaries 41

will create as many classes as nodes v with labels λ(v) 6= participant exist in Inst. In

our running example, the [¬participant] partition will have nine positive classes (one per

label different from “participant”) whereas all nodes with “participant” label will belong to

the empty neighbourhood class. The two AxPREs [participant] and [¬participant], when

put together, define a positive partition with ten classes (one for each label). �

3.3 Describing summaries with AxPREs

In the previous sections, we have introduced the basic machinery we need to define

summary descriptor (SD, for short). An SD is defined from an axis graph and a set of

AxPREs. Intuitively, an SD consists of an axis graph in which each node has associated

an AxPRE and a set in its AxPRE partition, and whose edges represent axis relationships

between those sets.

Definition 3.14 (Summary Descriptor) Let A = (Inst , Axes, Label, λ) be an axis

graph of an instance. A summary descriptor (SD for short) of A is a structure DA =

(A,G, axpre, extent) that consists of:

• a set A = {α1, . . . , αn} of AxPREs such that PA is a positive partition of A by A;

• an axis graph G = (Sum, AxesD, Label, λD), called SD graph, representing axis

relationships between nodes in the sets (extents) of the positive partition PA where:

– Sum is a set of nodes;

– AxesD is a set of binary relations {ED
1 , . . . , ED

n } in Sum×Sum such that there

is a tuple 〈sj, sk〉 in ED
i iff ∃EA

i ∈ Axes, ∃v ∈ extent(sj),∃w ∈ extent(sk) ∧

〈v, w〉 ∈ EA
i (edges are labeled by axis names);

– Label is the set of node labels from A;

– λD is a function that assigns labels in Label to nodes in Sum.

Chapter 3. AxPRE summaries 42

• a bijective function axpre that assigns AxPREs from A to nodes in Sum;

• a bijective function extent that assigns a set from the positive partition PA to each

node in Sum (the set assigned is called the extent of the node).

�

An SD has some particular characteristics. The set A uniquely defines the extents

of the SD, and therefore its nodes, for any particular axis graph instance. In other

words, given an axis graph A and the set A we can create the SD of A by A. On the

other hand, not any set of AxPREs define a positive partition and thus an SD. The

first SDs we can distinguish are those that are defined by a unique AxPRE from those

that have a multi-AxPRE definition. We denote the former ones as homogeneous SDs

because all their nodes are defined uniformly. Homogeneous SDs are the most common in

the summary literature (e.g., dataguides [GW97], 1-index [MS99], ToXin [RM01], A(k)-

index [KSBG02], F&B-Index [KBNK02], Skeleton [BCF+05]). SDs defined by multiple

AxPREs are called heterogeneous.

Definition 3.15 (Homogeneous and Heterogeneous SDs) When the extents of all

nodes in a SD D are defined with the same AxPRE α (i.e., |A| = 1), we say that the

corresponding SD is homogeneous. In this case we say that D is an α SD. In contrast,

if at least two different nodes are defined with different AxPREs (i.e., |A| > 1) we have

a heterogeneous SD. �

Proposition 3.1 Given an axis graph A, and a set A of AxPREs. If each αi ∈ A

contains only AxPREs of the form [l], l ∈ Label different from each other, such that there

is an AxPRE for each label in A, then A defines an heterogeneous SD. Such an SD is

denoted label SD. �

Proof 3.1 It is easy to see that if A contains all the labels in A, each AxPRE [l] will

create a positive class labeled Pl associated to a different SD node sl such that all nodes

Chapter 3. AxPRE summaries 43

in A with label l will belong to the extent of sl. Since A contains all the labels in the

document, the set P =
⋃

iP+
αi

will be a partition of Inst. �

Note that we need to know the instance in advance in order to define the set A

accordingly. However, the label SD can also be defined by the AxPRE ε, which makes

the label SD homogeneous and its definition independent of the axis graph. The ε SD

will produce exactly the same equivalence classes that the set A of Proposition 3.1.

Example 3.10 (Summary Descriptor) Figure 3.8 shows a label SD for our running

example. Since there are ten different labels in the axis graph of the instance, there are

ten summary nodes in the label SD. Nodes in the figure are labeled by their AxPREs, so

we are considering a heterogeneous label SD in which A contains an AxPRE per label.

The extent of each node is depicted below it. Edges represent summary axis relations.

For instance, there is an edge from s2 to s10 labeled c, because there is a c edge in the

axis graph from node 14 (in the extent of s2) to node 16 (in the extent of s10).

There are three kinds of edges in the figure, depending on properties of the sets that

participate in the axis relation: dashed, regular, and bold. Dashed edges, like (s2, s10)

with label c, mean that some element in the extent of s2 has a child in the extent of s10.

Regular edges, like (s6, s7) with label fc, mean that every element in the extent of s6 has

a first child in the extent of s7. (Since c includes fc, we do not draw a c edge when an

fc edge exists.) Finally, bold edges, like (s4, s5) with label fc, mean that every element in

the extent of s5 is a first child of some element in the extent of s4 and that every element

in the extent of s4 has a first child in the extent of s5. The nodes and edges in the figure

constitute the SD graph of the label SD.

Figure 3.9 shows another heterogeneous SD with a different set A where [participant],

[expRoleList] and [expRole] from Figure 3.8 have been replaced by [participant].c.fc.ns∗,

[expRoleList].fc.ns∗ and [expRole].ns∗, respectively. �

Chapter 3. AxPRE summaries 44

Figure 3.8: Label SD for the PSI-MI samples

Figure 3.9: A refined SD for the PSI-MI samples

Chapter 3. AxPRE summaries 45

Definition 3.16 (Summary Axis Stability) Let e = 〈si, sj〉 be an SD graph edge with

label axis. We say that e is an existential edge if ∃x ∈ extent(si),∃y ∈ extent(sj) ∧

〈x, y〉 ∈ axis, and a forward-stable edge if ∀x ∈ extent(si),∃y ∈ extent(sj) ∧ 〈x, y〉 ∈

axis. �

Definition 3.16 captures the relationship between edges in the SD graph and the

axis graph, and generalizes to several axes the edge stability representation in XSketch

[PG06b]. Note that all forward-stable edges are also existential. In Figures 3.8 and 3.9,

existential edges are represented by dashed lines and forward-stable edges by solid lines.

A dashed line does not necessarily mean that an edge is not forward-stable, it might be

that stability has not been checked on that edge (existential edges in Figures 3.8 and 3.9

have been checked and are not forward-stable). When an edge e and its inverse are both

forward-stable, e is shown in bold lines.

Algorithm 3.1 computes an SD D from an axis graph A and a set X of AxPREs that

define a positive partition of A. Essentially, the algorithm creates the positive partition

in one pass over A (outer loop spanning steps 2-18). Loop 3-18 computes the AxPRE

neighbourhood of v for each α in X (step 5) in order to find the α for which the AxPRE

neighbourhood of v is non-empty. Since X defines a positive partition as a precondition,

then for every v there is one and only one α in X such that Nα(v) 6= ∅. This guarantees

that condition in step 6 is true exactly once for every v in A.

The next task in the algorithm is to find the extent where v belongs. Loop 7-11

compares by bisimulation Nα(v) with every node in D that has the same AxPRE α. If

there is a node s in D with α but the α neighbourhoods of v and s are not bisimilar

(step 10), then a new node s is created and v is added to its extent (steps 12-16). The

same happens if there is no s in D with α at all. Since each v in A may be in an axis

relationship with nodes in any extent, the final loop 17-18 checks edge existence (for the

input set of axes AxesD) between the node s such that v ∈ extent(s) and every other

node in D. The result of the algorithm is an SD D where each s in D has associated a

Chapter 3. AxPRE summaries 46

set in the positive partition of A by X and the axes in AxesD satisfy the conditions in

Definition 3.16.

As shown, loop 2-18 performs |Inst | iterations. At any given moment, there is at

most the same number of nodes in D as in A (each extent having only one node) and

all have the same AxPRE. Therefore, loop 7-11 performs |Inst | iterations in the worst

case. Each iteration computes an AxPRE bisimulation (step 10) with time complexity

O(m.log|Inst |), where m is the total number of tuples (edges) in all axes in Axis. The

worst case for loop 17-18 is the same as that of loop 7-11, so it also performs |Inst |

iterations. Thus, the total time complexity of Algorithm 3.1 is O(|Inst |.m.log|Inst |).

The notion of an AxPRE neighbourhood can also be defined for an SD graph, and

it is called summary AxPRE neighbourhood of a node. Since an SD Graph is in fact

an axis graph G = (Sum, AxesD, Label, λD), for any given SD node s and AxPRE α

we can define its SD graph automaton MG(s) (Definition 3.4) and intersect it with the

AxPRE automaton Mα (Definition 3.5) in order to obtain an AxPRE neighbourhood

(Definition 3.7) of s.

Definition 3.17 (Summary Neighbourhood) Let DA = (A, G, axpre, extent) be

an SD, axis graph G = (Sum, AxesD, Label, λD) its SD graph, s a node in G, α an

AxPRE, andMG(s)∩Mα the intersection automaton ofMG(s) andMα. The summary

neighbourhood of s by α, denoted N G
α (s), is the subgraph of G as in Definition 3.7. �

Definition 3.18 (Partition Refinement) Let A = (Inst , Axes, Label, λ) be an axis

graph. If PA and PB are positive partitions of A, PA is a partition refinement of PB if

every set of PA is contained in a set of PB. �

Definition 3.19 (SD Refinement) Let A = (Inst , Axes, Label, λ) be an axis graph

and DA = (A,G, extent) and DB = (B,G ′, extent′) be two SDs of A. DA is an SD

refinement of DB if PA is a partition refinement of PB. �

Chapter 3. AxPRE summaries 47

Algorithm 3.1
createSD(A, X)

Input: An axis graph A, a set X of AxPREs that defines a positive partition of A, and

a set AxesD of SD axes where each axis contains only the empty tuple

Output: An SD D

1: create empty SD D

2: for every v in A do

3: candidate := ∅

4: for every α in X do

5: compute the α neighbourhood of v: Nα(v)

6: if Nα(v) 6= ∅ then

7: for every node s in D such that axpre(s) := α do

8: let w be a node in extent(s)

9: compute the α neighbourhood of w: Nα(w)

10: if v ∼α w (i.e., Nα(v) ∼ Nα(w)) then

11: candidate := s

12: if candidate = ∅ then

13: create a new node candidate in D

14: axpre(candidate) := α

15: λD(candidate) := λ(v)

16: add v to extent(s)

17: for every node s′ 6= s in D do

18: add tuple 〈s, s′〉 and 〈s′, s〉 to the corresponding axis in AxesD if conditions

in Definition 3.16 are satisfied

Chapter 3. AxPRE summaries 48

Figure 3.10: [participant].c.fc.ns∗ neighbourhoods of Figure 3.8 (a) and Figure 3.9 (b)

SDs

Proposition 3.2 Let A = (Inst , Axes, Label, λ) be an axis graph, α and β be AxPREs,

and Pα and Pβ be AxPRE partitions of A. If α is contained in β then Pβ is a refinement

of Pα. �

Proof 3.2 (sketch) The proof follows from the notion of AxPRE neighbourhoods. If α

is contained in β then for any given node v, its α neighbourhood is contained in its β

neighbourhood. Consequently, two nodes that are not distinguished by α (i.e., they are

α-bisimilar) may be distinguished by β, but not the other way around. This guarantees

that β creates either the same partition as α or a refinement. �

Corollary 3.1 Let A = (Inst , Axes, Label, λ) be an axis graph and DA = (A,G, extent)

and DB = (B, G′, extent′) be two SDs of A. If every β ∈ B is contained in some α ∈ A

then DA is an SD refinement of DB. �

Example 3.11 (SD Refinement) Let us consider the label SD of Figure 3.9. Recall

that in the label SD, A = {[l1], ..., [ln]}, where li ∈ Label, li 6= lj ∀ i, j, and
⋃

i li = Label.

Suppose we want to refine node s4. For this node, the partition represented in the figure

was produced by the AxPRE [participant]. If we replace this AxPRE by [participant].c

Chapter 3. AxPRE summaries 49

in A, and apply this set of AxPREs to Inst, two nodes will be produced, let us call these

nodes s41 and s42, with extents {4} and {6, 18, 23, 28}, respectively (s4 will not appear

because the AxPRE which produced it was replaced by the new one). This occurs because

node 4 in the axis graph has one child (namely interactorRef) while the other four nodes

have two children each (interactorRef and expRoleList). Thus, applying [participant]c

we obtain two different AxPRE neighbourhoods, plus the empty neighbourhood, which is

itself partitioned by the remaining AxPREs.

Analogously, if we want to refine the extent of s42 further using the AxPRE c.ns,

we will replace the AxPRE [participant].c by [participant].c.c.ns. This will produce three

sets, with extents: {4}, {6, 28}, {18, 23}.

Finally, suppose now that the label SD is defined using A = ε, and we want to refine

node s4 with [participant].c. In this case, just adding the new AxPRE does not suffice,

because we would not obtain an SD: the union of positive partitions will not be a partition

of Inst because ε will still produce its own partitions. We solve this adding the AxPRE

[¬participant], which will produce the remainder of the label SD and will send all nodes

labeled participant to the empty neighbourhood class. �

The notions of partition and SD refinement, besides describing the axis structure

of an axis graph, allows us to define a hierarchy of SDs. This provides the basis for

recognizing a lattice among different SDs, where each node corresponds to a different

AxPRE definition. We will show that this lattice covers all the summaries addressed in

the literature, plus more complex new ones. At the top of this hierarchy (i.e., the coarsest

partition), the empty AxPRE defines a SD where each node is partitioned by label (as

shown in Figure 4.1), a typical summary found in the literature [CM94, NUWC97].

The bottom of the lattice may vary, although the finest partition granularity can be

represented by the expression (fc.ns∗)∗, that produces a partition in which each node in

the axis graph will belong to a different equivalence class.

Chapter 3. AxPRE summaries 50

Definition 3.20 (DescribeX Lattice) A DescribeX lattice with respect to a set of axes

A = {a1, . . . , an} is defined as follows: each node corresponds to an AxPRE generated by

the grammar of Definition 3.3 when the terminal axis is one of a1, ..., an. Also, there is

an edge (n1, n2) in the lattice if and only if the AxPRE of n2 is contained in the AxPRE

of n1. �

From Definition 3.20 it follows that the coarsest partition that the lattice may define

is the label SD. The finest partition depends on the chosen set of axes.

This chapter provided an overview of the DescribeX framework, including the AxPRE

language and some fundamental notions like neighbourhood, bisimilarity, and summary

descriptor (SD). In the next chapter we will discuss how the DescribeX lattice captures

and generalizes many proposals in the literature.

Chapter 4

Capturing earlier literature

proposals with DescribeX

DescribeX summaries can be classified in a lattice that describes a refinement relationship

between entire summaries (Definition 3.20). In this chapter we revisit some of the related

work discussed in Chapter 2 that can be captured in such a lattice by the DescribeX

framework.

Figure 4.1 shows a fragment of a DescribeX summary lattice that captures earlier

proposals based on the notion of bisimilarity (in green) and ad-hoc constructions (in

red). Each node in the figure corresponds to a homogeneous SD defined by an AxPRE.

DescribeX not only captures most summary proposals but also provides a declarative

way of defining entirely new ones: nodes and edges in blue are a sample of the richer

SDs that were never considered in the literature, like the one that appears in Figure 3.9

(c.fc.ns∗) and in Chapter 8 (p∗|c.fs).

4.1 Bisimilarity-based proposals

The earliest bisimilarity-based summary proposal is the family presented in [MS99], which

contains a p∗ summary: the 1-index. The 1-index partition is computed by using bisim-

51

Chapter 4. Capturing earlier literature proposals with DescribeX 52

Figure 4.1: AxPRE summary lattice capturing earlier homogeneous proposals

ulation as the equivalence relation. The F&B-Index [KBNK02], is an example of a (p|c)∗

SD. The F&B-Index construction uses bisimulation like the 1-index, but applied to the

edges and their inverses in a recursive procedure until a fix-point. With this construc-

tion, the F&B-Index’s equivalence classes are computed according to the incoming and

outgoing label paths of the nodes. The same work introduces the F+B-index (a p∗|c∗ Ax-

PRE summary constructed by applying bisimulation to the edges and their inverses only

once) and the BPCI(k,j,m) index (a (pk|cj)m AxPRE summary, where k, and j controls

the lengths of the paths and m the iterations of the bisimulation on the edges and their

inverses). The F+B-index and the F&B-index are BPCI(∞,∞, 1) and BPCI(∞,∞,∞)

respectively. The A(k)-index [KSBG02] is a pk AxPRE summary based on k-bisimilarity

(bisimilarity computed for paths of length k). Thus, the A(0)-index is a label SD, the

A(1)-index is a p SD, the A(2)-index is a p.p SD, and the A(h)-index is the ph SD. We

discuss some of these proposals in more detail.

Chapter 4. Capturing earlier literature proposals with DescribeX 53

Unlike standard definitions in the bisimulation literature [PT87, DPP04], 1-index,

A(k)-index, F&B-index, and BPCI(k,j,m) use a bisimulation defined backwards in order

to capture incoming paths to the nodes. We provide next a definition of backwards

bisimulation and bisimilarity for completeness. In the literature, the only axes considered

are c and idref .

Definition 4.1 (Backwards Bisimulation and Bisimilarity) Let G1 and G2 be two

rooted subgraphs of an axis graph A = (Inst , Axes, Label, λ), such that AxesG1 ⊆ Axes

and AxesG2 ⊆ Axes, and let r1, r2 ∈ Inst be the roots of G1 and G2 respectively. A

backwards bisimulation between G1 and G2 is a symmetric relation ≈b such that for all

v ∈ G1, w ∈ G2, EG1
i ∈ AxesG1, and EG2

i ∈ AxesG2: if v ≈b w, then λ(v) = λ(w); if

v ≈b w, and 〈v′, v〉 ∈ EG1
i , then 〈w′, w〉 ∈ EG2

i and v′ ≈b w′. Two nodes v ∈ G1, w ∈ G2

are backward bisimilar, in notation v ∼b w, iff there exist a backwards bisimulation ≈b

between G1 and G2 such that v ≈b w. �

It is easy to see that the backwards bisimulation is an equivalence relation. The

F&B-Index construction uses backwards bisimulation like the 1-index, but applied to c

and idref edges and their inverses. Algorithm 4.1 computes the equivalence classes for

the F&B-Index according to both incoming and outgoing label paths of the nodes.

Proposition 4.1 Let G be an axis graph with Axes = {c} (or Axes = {c, idref }). The

F&B-index of G is a (p|c)∗ SD (or a (p|c|idref |idref −1)∗ SD). �

Proof 4.1 The input data graph used in the F&B-index construction (Algorithm 4.1)

can be viewed as an axis graph with the c axis, in which the reversed edges of lines 4 and

6 correspond to the c−1 axis (equivalent to a p axis). Therefore, for simplicity, instead

of reversing edges we use an axis graph G with Axes = {c} and take its inverse when

necessary. If id-idrefs are considered, then Axes = {c, idref }.

Chapter 4. Capturing earlier literature proposals with DescribeX 54

Algorithm 4.1
F&B−construction(G)

Input: Data graph G

Output: F&B-index I

1: let P be a partition of the nodes in G

2: P ← label SD partition of G

3: repeat

4: reverse all edges in G

5: P ← compute the backwards bisimilarity partition of G initializing the computa-

tion with P

6: reverse all edges in G, obtaining the original G

7: P ← compute the backwards bisimilarity partition of G initializing the computa-

tion with P

8: until P does not change (fix point)

9: for each equivalence class Pi ∈ P do

10: create an index node s ∈ I

11: extent(s)← Pi

12: for each edge from v to w in G do

13: let s ∈ I be an index node such that v ∈ extent(s)

14: let s′ ∈ I be an index node such that w ∈ extent(s)

15: if there is no edge from s to s′ then

16: create an edge from s to s′

Chapter 4. Capturing earlier literature proposals with DescribeX 55

Let us consider first the case of Axes = {c}. We start with the label SD in Line 2,

which is an ε SD. Lines 4 and 5 are equivalent to refining all nodes in the initial ε SD by

the c∗ AxPRE. This produces a c∗ SD. Then, lines 6 and 7 produce a refinement of all

c∗ nodes by the p∗ AxPRE, thus obtaining a c∗.p∗ SD. The iterative process until the fix

point can be represented in our framework as a Kleene closure of the c∗.p∗ AxPRE, which

yields a (c∗.p∗)∗ SD. It is easy to see that AxPRE (c∗.p∗)∗ produces the same SD as (p|c)∗

(by identity of regular expressions). The remainder of the algorithm (lines 9-16) creates

existential edges like in Definition 3.16.

When Axes = {c, idref }, the argument is similar but with AxPREs (c|idref)∗ and

(p|idref −1)∗ instead of c∗ and p∗, respectively. In this case, the final AxPRE for the SD

is (p|c|idref |idref −1)∗. �

The notion of k-bisimilarity used in the A(k)-index was defined to capture incoming

paths on c and idref edges of length up to k. We provide next a more general definition

for axis graphs that supports paths on all types of axes.

Definition 4.2 (Backwards k-Bisimulation and k-Bisimilarity) Let G1 and G2 be

two rooted subgraphs of an axis graph A = (Inst , Axes, Label, λ), such that AxesG1 ⊆

Axes and AxesG2 ⊆ Axes, and let r1, r2 ∈ Inst be the roots of G1 and G2 respectively.

A backwards k-bisimulation between G1 and G2 is a symmetric relation ≈k
b such that for

all v ∈ G1, w ∈ G2, EG1
i ∈ AxesG1, and EG2

i ∈ AxesG2: if v ≈0
b w, then λ(v) = λ(w); if

v ≈k
b w, and 〈v′, v〉 ∈ EG1

i , then 〈w′, w〉 ∈ EG2
i and v′ ≈k−1

b w′. Two nodes v ∈ G1, w ∈ G2

are backward k-bisimilar, in notation v ∼k
b w, iff there exist a backwards k-bisimulation

≈k
b between G1 and G2 such that v ≈k

b w. �

Note that backwards k-bisimilarity defines an equivalence relation on the nodes in

the axis graph. The partition created by the backwards k-bisimilarity corresponds to

the A(k)-index, where k is a parameter that represents the length of the incoming paths

summarized by the index.

Chapter 4. Capturing earlier literature proposals with DescribeX 56

Algorithm 4.2
BPCI−construction(G, kin, kout, td)

Input: Data graph G, local similarities kin and kout, tree depth td

Output: BPCI(kin, kout, td) I

1: let P be a partition of the nodes in G

2: P ← label SD partition of G

3: for i=1 to td do

4: reverse all edges in G

5: P ← compute the backwards kin-bisimilarity partition of G initializing the com-

putation with P

6: reverse all edges in G, obtaining the original G

7: P ← compute the backwards kout-bisimilarity partition of G initializing the com-

putation with P

8: for each equivalence class Pi ∈ P do

9: create an index node s ∈ I

10: extent(s)← Pi

11: for each edge from v to w in G do

12: let s ∈ I be an index node such that v ∈ extent(s)

13: let s′ ∈ I be an index node such that w ∈ extent(s)

14: if there is no edge from s to s′ then

15: create an edge from s to s′

Chapter 4. Capturing earlier literature proposals with DescribeX 57

Proposition 4.2 Let G be an axis graph with Axes = {c} (or Axes = {c, idref }). The

A(k)-index of G is a pk SD (or a (p|idref)k SD). �

Proof 4.2 Consider an axis graph G with Axes = {c}. Two nodes v, w belong to the

same extent in the pk SD iff they are pk-bisimilar. In addition, we know that v ∼pk w

iff there exists neighbourhoods Npk(v) and Npk(w) such that v ∼ w. This means we can

define a backwards k-bisimulation ≈k
b between Npk(v) and Npk(w) such that v ≈k

b w and

thus v ∼k
b w. �

The BPCI(kin, kout, td)-index is another proposal based on the notion of backwards

k-bisimulation. Algorithm 4.2 constructs a BPCI(kin, kout, td)-index. Algorithm 4.2 is

similar to Algorithm 4.1 but uses kin-bisimilarity for the reversed edges (line 5), kout-

bisimilarity for the original edges (line7), and a td number of iterations instead of a fix

point (lines 3 to 7).

Proposition 4.3 Let G be an axis graph with Axes = {c} (or Axes = {c, idref }). The

BPCI(kin, kout , td)-index of G is a (pkin|ckout)td SD (or a (pkin|ckout |idref kout |(idref −1)kin)td

SD). �

Proof 4.3 Like for F&B-index construction (Algorithm 4.1) the input data graph G can

be viewed as an axis graph with the c axis, in which the reversed edges correspond to the

c−1 (or p) axis. If id-idrefs are considered, then Axes = {c, idref }.

Let us consider first the case of Axes = {c}. Lines 4 and 5 are equivalent to re-

fining all nodes in the initial ε SD (line 2) by the ckout AxPRE. This produces a ckout

SD. Then, lines 6 and 7 produce a refinement of all ckout nodes by the pkin AxPRE, thus

obtaining a ckout .pkin SD. The iterative process is repeated td times, which is equivalent

to a (ckout .pkin)td SD. Again, by identity of regular expressions (ckout .pkin)td is equiva-

lent to as (ckout|pkin)td. The remaining of the algorithm (lines 9-16) creates existential

edges like in Definition 3.16. When Axes = {c, idref }, the final AxPRE for the SD is

(ckout|pkin|idref kout|(idref −1)kin)td. �

Chapter 4. Capturing earlier literature proposals with DescribeX 58

The Skeleton summary [BCF+05] clusters together nodes with the same subtree struc-

ture, thus capturing node ordering in subtrees. Skeleton uses an entirely different con-

struction approach, but its essence can be captured by the (fc.ns∗)∗ AxPRE.

The D(k)-index [QLO03], and M(k)-index [HY04] are heterogeneous SD proposals.

All nodes si are described by pk AxPREs with a different k per si. They use different

construction strategies based on dynamic query workloads and local similarity (i.e., the

length of each path depends on its location in the XML instance) to determine the subset

of incoming paths to be summarized.

XSketch [PG06b] manages summaries capturing many (but not all) heterogeneous

SD’s along the p and c axis, ranging from the label summary to the F&B-Index. How-

ever there is no control over the refinements chosen, nor a description of the intermediate

summaries obtained. This makes sense given that XSketch objective is to provide selec-

tivity estimates. As such, its construction algorithm is guided by heuristics to optimize

the space/accuracy trade-off.

4.2 Ad-hoc construction proposals

Region inclusion graphs (RIGs) [CM94] and representative objects of length 1 (1-RO)

[NUWC97] are label SDs, that is ε SDs (because all their nodes si are described by the ε

AxPRE). In general, representative objects are pk SDs for XML tree instances. Therefore,

the 1-RO is a label SD, the 2-RO is a p SD, the 3-RO is a p.p SD, and the FRO (full

representative object) is the p∗ SD.

Dataguides [GW97] group instance nodes into sets called target sets according to

the label paths from the root they belong to. The dataguide construction is basically

a nondeterministic-to-deterministic automaton translation. When the data instance is

a tree, the dataguide’s target sets are equivalent to the extents in our framework: a

dataguide of an XML tree is a p∗ SD.

Chapter 4. Capturing earlier literature proposals with DescribeX 59

ToXin [RM01] also has a component that can be viewed as an p∗ SD. ToXin consists

of three index structures: the ToXin schema, the path index, and the value index. The

ToXin schema is defined only for tree instances, and it is equivalent to a p∗ SD graph.

In this chapter, we discussed how DescribeX uses AxPREs to capture many summary

proposals in the literature by providing a declarative definition for them for the first time.

In the next chapter, we will show how SDs can be declaratively updated by means of two

basic operations, refinement and stabilization applied to neighbourhoods.

Chapter 5

Describing extents and

neighbourhoods

We have seen that several SD nodes can share the same AxPRE α. The reason for this is

that each SD node with the same α corresponds to a different extent in the α partition.

In the first section of this chapter, we provide mechanisms for describing each extent in

the partition based on neighbourhoods, sets of axis label paths, and AxPREs.

The description provided by a node in the SD can be changed by an operation that

modifies its AxPRE and thus the AxPRE neighbourhood of the nodes in its extent.

When the new AxPRE partition thus obtained constitutes a refinement of the old one,

the operation is called an AxPRE refinement. The notion of refinement is tightly related

to that of stabilization. An edge stabilization determines the partition of an extent into

two sets based on the participation (total or partial) of the extent nodes in the axis

relation the edge represents. In the second section of this chapter, we discuss in detail

our approaches to refinement and stabilization based on AxPREs.

60

Chapter 5. Describing extents and neighbourhoods 61

Figure 5.1: The two [interaction].c[participantList].(c|p) neighbourhoods (a) and their

representative neighbourhood (b) from our running example

5.1 Concise descriptions

Since several SD nodes can share the same AxPRE, we need a mechanism for uniquely

describe each SD node and its extent. The most straightforward way to do that would

be just to list all nodes that belong to the extent (extensional definition). A more concise

description is provided by the α neighbourhood of any node in the extent. Since all nodes

in an extent are bisimilar, any α neighbourhood can be used to find all the other nodes

in the extent by bisimulation.

In order to get the most concise description, we need to find the smallest (in terms

of number of nodes) neighbourhood in the extent of s that is bisimilar to all the others.

We can do this by computing a bisimulation contraction over all neighbourhoods in the

extent of s. The bisimulation contraction of a given graph is the smallest graph that is

bisimilar to it, which can be computed in time O(m log n) (where m is the number of

edges and n is the number of nodes) [PT87], or even linearly for acyclic graphs [DPP04].

Based on bisimulation contraction we define the notion of representative neighbourhood.

Definition 5.1 (Representative Neighbourhood) Let D be an SD and s a node in

D such that axpre(s) = α. The representative neighbourhood of s for α, denoted Rα(s),

is an axis graph that is the bisimulation contraction of all neighbourhoods Nα(vi), where

vi ∈ extent(s). Rα(s) has a single root node v0 that is bisimilar to all vi ∈ extent(s). �

Chapter 5. Describing extents and neighbourhoods 62

Note that the bisimulation contraction is not necessarily one of the neighbourhoods in

the extent – it could be smaller than any of them. Rather, a representative neighbourhood

is an entirely new axis graph that happens to be the smallest that is bisimilar to all

neighbourhoods in an extent.

Example 5.1 (Representative Neighbourhood) Consider the AxPRE partition of

our running example described by AxPRE [interaction].c[participantList].(c|p). It has

only one set containing nodes 2 and 14, whose neighbourhoods are shown in Figure 5.1 (a).

Its representative neighbourhood R[interaction].c[participantList].(c|p)(s) is the graph shown in

Figure 5.1 (b). Note that such a neighbourhood does not belong to the extent of s (there

is no participantList in the axis graph with only one participant node). �

For some neighbourhoods, deciding bisimilarity is equivalent to comparing the sets

of simple label paths from their roots to their leaves. (A path is simple when it has no

repeated edges.) In those cases, neighbourhoods can be described by an extent expression

(EE for short), which is capable of computing precisely the set of elements in the extent of

a given SD node and functions like a virtual view. In Chapter 6 we provide a mechanism

for expressing EEs in XPath.

Definition 5.2 (Path and LPath Sets) Let N be a neighbourhood in an axis graph

A, and v a node in N . We denote by Path(v) and LPath(v) the set of simple axis paths

and simple axis label paths from v, respectively. �

Example 5.2 Consider the neighbourhoods of Figure 5.1 (a). The Path and LPath sets

are defined as follows: Path(2) = {c, c.c, c.p} = Path(14), and LPath(2) = {c[participant

List], c[participantList].c[participant], c[participantList].p[interaction]} = LPath(14).

Note that both sets include all the prefixes. �

If deciding bisimilarity between a given set of neighbourhoods is equivalent to com-

paring their LPath sets, we say that such neighbourhoods are LPath distinguishable.

Chapter 5. Describing extents and neighbourhoods 63

Figure 5.2: Two [expRoleList].c.f [expRole] neighbourhoods from our running example

Definition 5.3 (LPath Distinguishable) Let N1(v1), . . . ,Nm(vm) be neighbourhoods

in an axis graph A. We say that N1, . . . ,Nm are LPath distinguishable when, for all

1 ≤ i, j ≤ m : Ni(vi) ∼ Nj(vj) iff LPath(vi) = LPath(vj). �

Although the axis graph neighbourhoods we have considered so far are all LPath

distinguishable, some combination of axes may produce neighbourhoods that are not, as

illustrated by the next example.

Example 5.3 (LPath Distinguishable) Consider the two acyclic neighbourhoods of

Figure 5.2, which correspond to nodes 25 and 30 in Figure 3.1, respectively. Both neigh-

bourhoods have the same LPath set {c[expRole], c[expRole].f [expRole]}. However, it is

easy to see they are not bisimilar: node 33 in neighbourhood (b) has c and f incoming

edges, whereas all expRole nodes in neighbourhood (a) have either a c or an f edge, but

not both. Thus, they are not LPath distinguishable.

In contrast, the three cyclic neighbourhoods of Figure 5.1 are all bisimilar and have the

same LPath set {c[participantList], c[participantList].c[participant], c[participantList].p

[interaction]}. Therefore, they are all LPath distinguishable. �

We are interested in LPath distinguishable neighbourhoods because they can be de-

scribed by EEs. In general, determining whether a given set of neighbourhoods is LPath

distinguishable entails computing the bisimulation between them and then comparing

the result to their LPath sets.

Chapter 5. Describing extents and neighbourhoods 64

There is a class of neighbourhoods, however, that are guaranteed to be always LPath

distinguishable. For neighbourhoods in that class, we can bypass the bisimulation com-

putation and obtain the EEs directly from the LPaths sets. Such is the class of the tree

neighbourhoods. How to characterize other classes of LPath distinguishable neighbour-

hoods without resorting to bisimulation remains an open problem.

We will show below that tree neighbourhoods are in fact LPath distinguishable

(Proposition 5.1). In order to do that, we need first some auxiliary results.

Lemma 5.1 If two neighbourhoods N1 and N2 are bisimilar then there exists a labeled

bisimulation ≈ such that every node in both graphs is in ≈. �

Proof 5.1 By definition, in order for N1 and N2 to be bisimilar r1 and r2 have to be

bisimilar, where r1 and r2 are the roots of N1 and N2 respectively. Thus, there has to

be a labeled bisimulation ≈ such that r1 ≈ r2. In addition, all nodes in N1 connected

to r1 by an edge with label a have to be in the labeled bisimulation with all nodes in N2

connected to r2 by an edge with label a (also by definition). This means that every node

connected to either r1 or r2 by an edge have to belong to ≈. Since every node in N1 and

N2 is reachable from r1 and r2 respectively, we can prove inductively that every node in

both N1 and N2 belong to ≈. �

Corollary 5.1 For all leaves v ∈ N1 and w ∈ N2: v ∼ w iff λ(v) = λ(w). �

Proof 5.2 By Definition 3.9 if v ∼ w then there exist a labeled bisimulation ≈ between

N1 and N2 such that v ≈ w, which means that λ(v) = λ(w). We need to prove now

that leaves having the same label are bisimilar. It is easy to see from Definition 3.9 that

there always exists a labeled bisimulation between leaves in N1 and N2 when they have

the same labels. Consequently, if λ(v) = λ(w) then v ∼ w. �

Proposition 5.1 Let N1 and N2 be tree neighbourhoods in an axis graph A. Then,

N1(v) ∼ N2(w) iff LPath(v) = LPath(w). �

Chapter 5. Describing extents and neighbourhoods 65

Proof 5.3 We proceed by induction on the length of an arbitrary outgoing path. For the

base case, we have that v and w are leaves of N1 and N2 respectively. By Corollary 5.1,

v ∼ w iff λ(v) = λ(w). Since they are leaves, LPath(v) = LPath(w) = ∅, so v ∼ w iff

λ(v) = λ(w) and LPath(v) = LPath(w).

For the induction step, consider nodes v ∈ N1 and w ∈ N2 and all edges from them

with label “axis”: 〈v, vi〉, 1 ≤ i ≤ n and 〈w, wj〉, 1 ≤ j ≤ m. We know that, if there is

a vk that is not bisimilar to any wj, i.e., vk 6∼ w1, . . ., vk 6∼ wm, then by Definition 3.9

v 6∼ w. We need to prove that the latter statement is equivalent to the following: if there

is a vk whose label (or LPath set) is different from the label (or LPath set) of every wj,

then LPath(v) 6= LPath(w).

By inductive hypothesis, vk 6∼ wj iff λ(vk) 6= λ(wj) or LPath(vk) 6= LPath(wj). Note

that, edges 〈v, vi〉 and 〈w, wj〉 add prefixes “axis[λ(vi)]” and “axis[λ(wj)]” to each string

in LPath(vi) and LPath(wj) respectively. For a given node v, let us call preLPath(v) the

set of strings in LPath(v) prefixed with “axis[λ(v)]”. It is easy to see that, given any two

nodes vk and wl, if the original set of string are different (LPath(vk) 6= LPath(wl)), then

the strings with the prefixes are going to be different (preLPath(vk) 6= preLPath(wl)), no

matter what the prefixes are. In addition, if λ(vi) 6= λ(wl), we have that preLPath(vk) 6=

preLPath(wl) even when LPath(vk) = LPath(wl) (because the label of the nodes are

included in the prefixes).

Since LPath(v) contains all label paths from v, in particular it contains all those

that begin with “axis” (
⋃

i preLPath(vi)) ⊆ LPath(v)). Similarly,
⋃

j preLPath(wj) ⊆

LPath(w). However, if there is a vk such that either its label or its LPath set is different

from those of every wj, then
⋃

i preLPath(vi) 6=
⋃

j preLPath(wj). Since all label paths

in LPath(v) that are not in
⋃

i preLPath(wi) begin with a prefix different from “axis”,

we conclude
⋃

i preLPath(vi) 6=
⋃

j preLPath(wj)⇒ LPath(v) 6= LPath(w). �

Chapter 5. Describing extents and neighbourhoods 66

Notation. Let s be a node in an SD D whose extent contains only LPath distinguish-

able neighbourhoods. We denote by Path(s) and LPath(s) the set of all different axis

paths and axis label path, respectively, from the nodes in the extent of s. That is,

LPath(s) =
⋃

i LPath(vi), vi ∈ extent(s).

When dealing with LPath distinguishable neighbourhoods, the LPath set can be an

alternative way of representing an extent: just compute the representative neighbourhood

Rα(s) of a given SD node s and then take LPath(s). However, checking containment

and equivalence from the LPath sets is cumbersome, so we would like to have a way

of obtaining an AxPRE from an LPath set that provides a concise description of the

representative neighbourhood and thus of all nodes in a given extent. We will denote

this new expression extent AxPRE.

Definition 5.4 (Extent AxPRE) Let D be an SD, s a node in D and α its AxPRE.

An extent AxPRE α′ of s is an AxPRE such that all nodes in the extent of s have α′

neighbourhoods and α′ is different from all other extent AxPREs in D. �

It is important to note that extent AxPREs can only be defined when representative

neighbourhoods are not pairwise in an inclusion relationship. Because of the prefix

semantics we use, if for any two representative neighbourhoods Rα and R′
α we have that

Rα ⊆ R′
α then any possible AxPRE for R′

α will also return Rα, and consequently it will

not be an “extent” AxPRE.

The extent AxPRE of an SD node s can be constructed from the representative

neighbourhood Rα(s) by taking the label of the root v of Rα(s) and concatenating it

with the disjunction of the axis label paths of v. That is, the extent AxPRE α′ of s is

one of the followings:

• [λ(v)].(lp1|lp2| . . . |lpn) if LPath(v) =
⋃

i lpi

• [λ(v)].lp if LPath(v) = {lp}

Chapter 5. Describing extents and neighbourhoods 67

Figure 5.3: Two [participant].c.fc.ns∗ neighbourhoods (a) and their representative neigh-

bourhood (b) from our running example

• [λ(v)] if LPath(v) = ∅

It easy to see from the construction that all nodes in the extent of s will have α′

neighbourhoods.

Example 5.4 (Extent AxPRE) Consider the two neighbourhoods of Figure 5.3 (a)

from our running example. They are tree [participant].c.fc.ns∗ neighbourhoods of ele-

ments 6 and 28, respectively. In this case, the bisimulation contraction of both neighbour-

hoods is an axis graph isomorphic to them and appears in Figure 5.3 (b). Since the label of

both nodes 6 and 28 is participant, the extent AxPRE begins with the prefix [participant].

In addition, LPath(6) = {c[interactorRef], c[expRoleList], c[expRoleList].fc[expRole],

c[expRoleList].fc[expRole].ns[expRole]} = LPath(28), which means that the AxPRE

contains a conjunction of four subAxPREs, resulting in [participant].(c[interactorRef]|c

[expRoleList]|c[expRoleList].fc[expRole]|c[expRoleList].fc[expRole].ns[expRole]). �

According to Definition 3.16 (summary axis stability), forward-stable edges provide

stronger information on the axis relationship that nodes in their extents satisfy: from a

forward-stable edge 〈si, sj〉 labeled axis, we know that all nodes in the extent of si are

related by axis to some nodes in the extent of sj. Thus, we are particulary interested in

neighbourhoods in which all edges are forward-stable for their descriptive capabilities.

Chapter 5. Describing extents and neighbourhoods 68

Figure 5.4: The c.fc.ns∗ neighbourhood of node s2 of Figure 3.8

Definition 5.5 (Forward-stable Neighbourhood) A forward-stable neighbourhood

of an SD node s is a neighbourhood of s with all its edges forward-stable. �

An AxPRE always describes some neighbourhood in an axis graph, either of an in-

stance or an SD. When an AxPRE describes a forward-stable neighbourhood in the SD

graph, it is called a neighbourhood AxPRE. If all edges in the α neighbourhood of SD

node s are forward-stable, the extent AxPRE of s can be computed from them rather

than from the axis graph of the instance.

Example 5.5 (Neighbourhood AxPRE) Consider node s2 in Figure 5.4. Its current

AxPRE is [interaction], which means that its extent contains only interaction elements.

We can infer from the SD graph an neighbourhood AxPRE as follows. Since edges 〈s2, s3〉,

〈s2, s9〉, and 〈s3, s4〉 are forward-stable, we could write an AxPRE that expresses those re-

lations, which is [interaction].(c[participantList].fc[participant]|c[experimentList]). Such

an AxPRE tells us that not only the extent of s2 contains interaction elements, but more

precisely they also have nested elements such as a participantList with a nested partici-

pant, and an experimentList. �

Chapter 5. Describing extents and neighbourhoods 69

5.2 Refinement and stabilization

The description provided by a node in the SD can be changed by an operation that modi-

fies its AxPRE and thus its AxPRE neighbourhood. This operation is called a refinement

of an SD node. The refinement of an SD node can be computed directly by changing

the AxPRE of the node (Algorithm 5.1) or by stabilizing a summary neighbourhood for

a given AxPRE (Algorithm 5.5). Note that Algorithm 5.1 in fact changes one of the

AxPREs in the definition of the SD, so all nodes that share the modified AxPRE will be

affected.

Previous proposals perform global refinements on the entire SD graph [KBNK02,

KSBG02] or local refinements based on statistics or workload [QLO03, HY04, PG06b],

without the ability to refine a declaratively defined neighbourhood. In contrast, using

DescribeX we can precisely characterize the neighbourhood considered for the refinement

with an AxPRE.

DescribeX refinements can also be based on the notion of summary axis stability

(Definition 3.16). The goal of this particular refinement operation is to make all edges

of a neighbourhood, given by an AxPRE in the SD graph, forward-stable. Edges can

be stabilized one at a time or by groups with the same axis. For the former approach,

DescribeX implements two different strategies. If the edge links two different nodes, then

Algorithm 5.2 is invoked. In contrast, if the edge forms a loop, then Algorithm 5.4 is used.

For stabilizing a group of edges with the same axis from a given node, DescribeX invokes

Algorithm 5.3. All algorithms mentioned above reduce edge stabilization to refinement:

step 1 in each algorithm composes a new AxPRE and step 3 refines the affected nodes

by calling Algorithm 5.1.

The next two examples illustrate how a non forward-stable edge is stabilized by

Algorithms 5.2 and 5.4, respectively.

Chapter 5. Describing extents and neighbourhoods 70

Algorithm 5.1
refineNode(D, s, α)

Input: An SD D, a node s in D, and an AxPRE α ⊆ axpre(s)

Output: An SD D where s has been refined by α

1: for every v in extent(s) do

2: candidate := ∅

3: compute the α neighbourhood of v: Nα(v)

4: for every node s in D such that axpre(s) := α do

5: let w be a node in extent(s)

6: compute the α neighbourhood of w: Nα(w)

7: if v ∼α w (i.e., Nα(v) ∼ Nα(w)) then

8: candidate := s

9: if candidate = ∅ then

10: create a new node candidate in D

11: axpre(candidate) := α

12: λD(candidate) := λ(v)

13: move v from extent(s) to extent(candidate)

14: let S be the set of nodes connected to s

15: for every node s′ in S do

16: add edges 〈candidate, s′〉 and 〈s′, candidate〉 if conditions in Definition 3.16 are

satisfied

17: delete s and all its incoming and outgoing edges from D

Chapter 5. Describing extents and neighbourhoods 71

Algorithm 5.2
stabilizeEdge(D, si, sj)

Input: An SD D containing a non forward-stable edge e = 〈si, sj〉 with label axis

Output: An SD D where e has been replaced by forward-stable e′ = 〈s′i, sj〉

1: α := axpre(si)|axis axpre(sj)

2: for every node s in D such that axpre(s) = axpre(si) do

3: refineNode(D, s, α)

Algorithm 5.3
stabilizeAxis(D, si, axis)

Input: An SD D containing a non forward-stable edge from si with label axis

Output: An SD D where all axis edges from si are forward-stable

1: α := axpre(si)|axis

2: for every node s in D such that axpre(s) = axpre(si) do

3: refineNode(D, s, α)

Algorithm 5.4
unfoldEdge(D, si, axis)

Input: An SD D, a node si such that there exists a non forward-stable e = 〈si, si〉 with

label axis

Output: The SD D where any edge e = 〈si, si〉 with label axis is forward-stable

1: α := axpre(si)|axis∗

2: for every node s in D such that axpre(s) = axpre(si) do

3: refineNode(D, s, α)

Chapter 5. Describing extents and neighbourhoods 72

Figure 5.5: The fc|c|ns neighbourhood of s4 from Figure 3.8: (a) before stabilizing c edge

to s6, (b) after stabilization

Example 5.6 (Edge Stabilization) Consider edge 〈s4, s6〉 from Figure 5.5 (a). This

edge is not forward-stable because elements 4 is not related to any node in extent(s6) via

the c axis (i.e. there is no c edge from 4 to a expRoleList element in Figure 3.1). Edge

stabilization (Algorithm 5.2) creates two nodes, s41 and s42, such that extent(s41) = {4}

and extent(s42) = {6, 18, 23, 28}. Since axpre(s4) = [participant] and axpre(s6) =

[expRoleList] (the original AxPREs), then line 1 of Algorithm 5.2 creates the new AxPRE

[participant]|c[expRoleList], which will be used to refine all nodes with [participant]

AxPRE (lines 2 and 3). The new edge 〈s41, s5〉 is forward-stable. The result of stabilizing

edge 〈s4, s6〉 is shown in Figure 5.5 (b). �

Example 5.7 (Edge Unfolding) Consider the ns loop on node s42 from Figure 5.5

(b). The edge is not forward-stable because some element in extent(s42) is not in a ns

relation with elements in the same extent (for instance, there is no element that is the next

sibling of 28 in Figure 3.1). Since axpre(s42) = [participant]|c[expRoleList] (the result

of the stabilization performed in Example 5.6), then line 1 of Algorithm 5.4 creates the

new AxPRE [participant]|c[expRoleList]|ns∗, which will be used to refine all nodes with

[participant]| c[expRoleList] AxPRE (lines 2 and 3). The new edges are forward-stable.

The result of unfolding ns loop on s42 is shown in Figure 5.6. �

Chapter 5. Describing extents and neighbourhoods 73

Figure 5.6: The neighbourhood from Figure 5.5 (b) after stabilizing ns loop on s42

Algorithm 5.5
StabilizeNeighbourhood(D, α, s)

Input: An SD D, an AxPRE α, and a node s

Output: An SD D where all the edges in the α neighborhood of s are forward-stable

1: compute the α neighbourhood of s

2: S = {s′ | s′ is in the α neighbourhood of s}

3: while S 6= ∅ do

4: pick a node s′ in S such that s′ is at the end of the longest simple path from s

5: for each edge e = 〈s′, s′〉 do

6: unfoldEdge(D, s′, axis)

7: for each edge e = 〈s′′, s′〉 do

8: stabilizeEdge(D, s′, s′′)

9: remove s′ from S

Chapter 5. Describing extents and neighbourhoods 74

We have now all the building blocks for introducing the neighbourhood stabilization

algorithm, Algorithm 5.5, which computes a refinement of the extent of an SD node s

for an AxPRE α that results in a stable α neighbourhood of s. Given an SD node s and

an AxPRE α, Algorithm 5.5 computes an AxPRE partition of the extent of s for α that

is a refinement of the extent of s. This is achieved by stabilizing the α neighbourhood of

s. In order to stabilize a single edge, Algorithm 5.5 invokes Algorithm 5.2, for different

nodes, and Algorithm 5.4, for the same node (loop). Algorithm 5.3 is a variation of

Algorithm 5.2 in which all edges labeled with the same axis are stabilized.

Most of the execution of the neighbourhood stabilization algorithm is covered by

Examples 5.6 and 5.7. For instance, if we want to stabilize the [participant].(c|fc|ns∗)

neighbourhood of node s4 in Figure 5.5 (a), then Algorithm 5.5 stabilizes edge 〈s4, s6〉, as

described in Example 5.6, and unfolds edge 〈s7, s7〉 labeled ns, as described in Example

5.7. The resulting stable [participant].(c|fc|ns∗) neighbourhood is shown in Figure 5.6.

In this chapter, we discussed how an SD description can be changed by operations

that modify its AxPREs and thus the AxPRE neighbourhoods of the nodes in their

extents. We introduced the two basic DescribeX operations, AxPRE refinement and

stabilization, and provided algorithms for them. We also gave, for LPath distinguishable

neighbourhoods, a characterization of the extent of an SD node with an EE. In the next

chapter, we discuss the XPath syntax and data model, together with a novel mechanism

for expressing EEs in XPath.

Chapter 6

Changing descriptions with XPath

We have discussed how to characterize SD nodes and their extents using different ap-

proaches based on neighbourhoods, sets of axis label paths, and AxPREs. In this chap-

ter, we propose a novel mechanism to characterize an SD node with an XPath expression

[W3C07] whose evaluation returns exactly the elements in the extent. This expression,

which effectively represents the extent of a given SD node s, is called extent expression

(EE) and is denoted ee(s).

In DescribeX, the extents of any SD node can be precomputed and stored in a data

structure. This approach, which we call materialized extents, uses a pointer to every

XML element in the collection and therefore it can be very space consuming. Since the

evaluation of an ee(s) of a node s returns the actual extents of s, a more space-efficient

approach is to keep only the EEs. These virtual extents are a compact representation of

the extents, similar to the concept of virtual views.

Since EEs are expressed in XPath, we give first an introduction to the XPath syntax

and data model. The formal semantics definition of the full language is provided for

completeness in Appendix A.

75

Chapter 6. Changing descriptions with XPath 76

6.1 XPath syntax and data model

XPath is a compositional language for selecting element nodes in XML documents. It

is also the dialect that most XML manipulation languages (e.g., XSLT1, XPointer2,

XQuery3, etc.) have in common. In this section we introduce the language expression

grammar and its data model based on axes.

Definition 6.1 (XPath Expression Grammar) Let e, e1 . . . em be expressions, locpath,

locpath1, . . ., locpathm be location paths, l be a node name from the label alphabet Label of

the axis graph, axis be a relation in Axes, and op be a place holder for any of the XPath

functions and operators such as +,−, ∗, div, =, 6=,≤, <,≥ and >, as well as for context

accessing functions position() and last(). The following is the grammar for XPath 1.0

expressions:

e := disj | op(e1, . . . , em)

disj := locpath1 | . . . | locpathm

locpath := par | comp | abs | step

par := (disj) [e1] . . . [em]

comp := locpath1 / locpath2

abs := / locpath

step := axis :: l [e1] . . . [em]

�

The XPath data model includes atomic values, sequences, and a predefined set of axes

for navigating the instance. Like in an axis graph, which is an abstract representation

of the XPath data model, axes define relationships between nodes in the instance. We

1 http://www.w3.org/TR/xslt
2 http://www.w3.org/TR/xptr/
3 http://www.w3.org/TR/xquery/

Chapter 6. Changing descriptions with XPath 77

provide next a definition of the XPath axes in terms of firstchild, nextsibling, their

inverses and self .

Definition 6.2 (XPath Axes) Given an axis graph A = (Inst , Axes, Label, λ), the

XPath axes in A are defined as follows:

• self := {〈v, v〉 | v ∈ Inst}

• child := firstchild.nextsibling∗

• parent := (nextsibling−1)∗.firstchild−1

• descendant := firstchild.(firstchild
⋃

nextsibling)∗

• ancestor := (firstchild−1
⋃

nextsibling−1)∗.firstchild−1

• descendant-or-self := descendant
⋃

self

• ancestor-or-self := ancestor
⋃

self

• following := ancestor-or-self .nextsibling.nextsibling∗.descendant-or-self

• preceding := ancestor-or-self .nextsibling−1.(nextsibling−1)∗.descendant-or-self

• following-sibling := nextsibling.nextsibling∗

• preceding-sibling := (nextsibling−1)∗.nextsibling−1 �

Whenever it is clear from the context, we use s, c, p, d, a, ds, as, f , pc, fs and ps as

abbreviations of self , child, parent, descendant, ancestor, descendant-or-self , ancestor-

or-self , following, preceding, following-sibling and preceding-sibling, respectively. �

Note that the self , ancestor, descendant, preceding, and following axes from a

given node v partition the nodes in the XML tree. This is represented graphically by the

schema in Figure 6.1.

Chapter 6. Changing descriptions with XPath 78

Figure 6.1: Partition of the nodes in the XML tree by axis relations

Since XML documents are ordered, we need to define a document order relation on

the nodes of an axis graph A.

Definition 6.3 (Document Order) The document order relation ≺doc on an axis graph

A = (Inst , Axes, Label, λ) is the total order relation given by d
⋃

f , where d and f are

the XPath axes in Axes from Definition 6.2. �

Based on the document order relation and its inverse we define next axis order and

axis position.

Definition 6.4 (Axis Order) Let axis graph A = (Inst , Axes, Label, λ) be an axis

graph. We define the binary axis order relation ≺axis in Inst × Inst as ≺doc if axis ∈ {s,

c, d, ds, f , fs} and as ≺−1
doc otherwise. �

Having introduced the XPath syntax and data model, we discuss next how descrip-

tions are changed in DescribeX using XPath.

6.2 Refinement with XPath

Whenever the representative neighbourhood of an SD node s is LPath distinguishable,

it is possible to precisely characterize the extent of s in terms of the axis label paths in

its LPath set (see Chapter 5.1). For this class of neighbourhood, nodes with the same

Chapter 6. Changing descriptions with XPath 79

LPath set are bisimilar (Proposition 5.1). Therefore, we propose a mechanism capable

of computing the extent of s based on its LPath set.

First, we need a few auxiliary results that show how an axis label path in a given

LPath set can be captured by a single XPath expression. We will show later how to

derive EEs from these axis label path expressions. In order to prove our results, we use

the XPath formal semantics given in Appendix A.

Lemma 6.1 Let e be an XPath expression of the form axis1 :: l1/ . . . /axisn :: ln. If

D[[e]](v) 6= ∅ then there exists an axis label path lp = axis1[l1].axisn[ln] from v. �

Proof 6.1 If D[[e]](v) 6= ∅, then by semantic rule (A.1) in Figure A.1 there must exist

v1, . . . , vn such that 〈v, v1〉 ∈ axis1∧ 〈v1, v2〉 ∈ axis2 ∧ . . .∧ 〈vn−1, vn〉 ∈ axisn, and

λ(vi) = li, 1 ≤ i ≤ n. This means that there is a path from v to vn going through edges

axis1, . . . , axisn and nodes v1, . . . , vn such that axis1[l1].axisn[ln] is its axis label path.

�

Lemma 6.2 Let e be an XPath expression of the form axis1 :: l1/ . . . /axisn :: ln. If

D[[e]](v) = ∅ then there is no axis label path lp = axis1[l1].axisn[ln] from v. �

Proof 6.2 If D[[e]](v) = ∅, then by semantic rule (A.1) in Figure A.1 there are no

w1, . . . , wm such that 〈v, w1〉 ∈ axis1, 〈w1, w2〉 ∈ axis2, . . . , 〈wm−1, wm〉 ∈ axism and

λ(wi) = li, 1 ≤ i ≤ m. This means that there is no path from v to wn going through

edges axis1, . . . , axism and nodes w1, . . . , wm, and thus there is no axis label path lp =

axis1[l1].axism[lm] from v. �

Consider SD node s with AxPRE α. In order to compute the extent of s we need

to get all nodes that have the same LPath set and label as s. Therefore, we need

to write an XPath expression ei as defined in Lemma 6.1 for each different axis label

path lpi in LPath. Then, all ei expressions have to be combined in one EE as follows:

exp = /ds :: λ(s)[e1] . . . [en]. However, such an expression does not guarantee that the

Chapter 6. Changing descriptions with XPath 80

returned nodes have the exact {lp1, . . . , lpn} LPath set: it only guarantees containment.

That is, exp will return all nodes v such that LPath(v) ⊇ {lp1, . . . , lpn}. The reason for

that is that exp says that all [e1] . . . [en] have to be satisfied, but it does not say they have

to be the only ones, which would be required for equality. The way of circumventing this

problem is by explicitly adding a [not(ei)] predicate for each lpi that is not in LPath(v).

The problem with this approach is that it would require the explicit negation of a

large number of axis label paths. However, we can drastically reduce that number by

considering only SD nodes that have an AxPRE α′ such that α′ ⊆ α. The intuition is

that, if two AxPREs of SD nodes s1 and s2 are not in a containment relationship, then

nodes in their extents cannot have LPath sets in a containment relationship either and

we do not need to have a not() predicate for them. The following example illustrates

how an EE is composed from axis label paths expressions and not() predicates.

Example 6.1 (Extent Expressions) Consider SD nodes s41, s42, and s43 from Fig-

ure 6.2. For the EE of s41, we need all axis label paths that are in LPath(s41) but not

in LPath(s42) ∪ LPath(s43). The required LPath sets are the following: LPath(s41) =

{c[interactorRef]}, LPath(s43) = {c[interactorRef], c[expRoleList].fc[expRole]}, and

LPath(s42) = {c[interactorRef], c[expRoleList].fc[expRole].ns[expRole]}. The final EE

will have a positive predicate for each string in LPath(s41) and a negative one for

each string in (LPath(s42) ∪ LPath(s43)) − LPath(s41). The resulting expression is

ee(s41) = /ds :: participant[c :: interactorRef][not(c :: expRoleList/c :: ∗[1][s ::

expRole])][not(c :: expRoleList/c :: ∗[1][s :: expRole]/fs :: ∗[1][expRole])], where c ::

∗[1][s :: expRole] and fs :: ∗[1][expRole] are the XPath expressions of fc[expRole] and

ns[expRole], respectively. �

Note that the EEs resulting from this approach might have redundant predicates that

can be simplified. Consider Example 6.1 for instance: if a node does not exists, neither

does a following sibling for that node, then the last predicate for ee(s41) can be removed

Chapter 6. Changing descriptions with XPath 81

Figure 6.2: The [participant].c.fc.ns∗ neighbourhood from Figure 3.9

safely. There are many other useful simplifications that can be applied to EEs, but a

broad theory of equivalence is beyond the scope of this thesis.

The next proposition shows that the EEs thus constructed return all nodes that do

have the axis label paths specified in the positive predicates and do not have those in the

negative predicates.

Proposition 6.1 Let A be an axis graph and es = ds :: l[e1] . . . [en][not(en+1)] . . . [not(em)]

an XPath expression where ei = axisi1 :: li1/ . . . /axisiki
:: liki

, 1 ≤ i ≤ m. Then, es re-

turns all nodes v such that there exists lp1, . . . , lpn axis label paths from v and there are

no lpn+1, . . . , lpm axis label paths from v, where lpi = axisi1 [li1].axisiki
[liki

]. �

Proof 6.3

D[[ds :: l/[e1] . . . [en][not(e′1)] . . . [not(e′m)]]](v0)

= by semantic rules (A.5) and (A.9) in Figure A.2

{v | λ(v) = l ∧ 〈v0, v〉 ∈ ds
∧n

i=1 E [[ei]](v, posds(v, S), |S|) = true∧m
i=n+1 E [[not(ei)]](v, posds(v, S), |S|) = true}

= since all nodes v are reachable from v0, 〈v0, v〉 ∈ ds is always true

{v | λ(v) = l
∧n

i=1 E [[ei]](v, posds(v, S), |S|) = true∧m
i=n+1 E [[not(ei)]](v, posds(v, S), |S|) = true}

Chapter 6. Changing descriptions with XPath 82

Figure 6.3: The [participant].c∗ neighbourhood of s4 from Figure 3.8: (a) before a c∗

refinement, (b) after the refinement

= by semantic rule (A.4) in Figure A.1 with Op = not(boolean(S) from Figure A.3

{v | λ(v) = l
∧n

i=1 E [[ei]](v, posds(v, S), |S|) = true∧m
i=n+1 E [[ei]](v, posds(v, S), |S|) = false}

= by semantic rule (A.1) in Figure A.1

{v | λ(v) = l
∧n

i=1D[[ei]](v) = true
∧m

i=n+1D[[ei]](v) = false}

= by Lemmas 6.1 and 6.2

{v | λ(v) = l ∧ ∃lp1, . . . ,∃lpn ∧ 6 ∃lpn+1, . . . , 6 ∃lpm}

�

In some special cases, a more compact XPath expression can be obtained. For in-

stance, for an expression containing the closure of an axis, like c∗, we can enforce that the

lpi’s expressed by the EE are the only ones by using the count() XPath function. Since

the XPath expression of each lpi for c∗ contains only compositions of the child axis, the

set of nodes reached by all lpi’s and all their substrings are exactly all the descendants.

Example 6.2 Consider the [participant].c∗ neighbourhood of nodes s′41 and s′42 in Figure

6.3. The extents of s′41 and s′42 are {4} and {6, 18, 23, 28}, respectively. The LPath sets

of the nodes are LPath(s′41) = {c[interactorRef]} and LPath(s′42) = {c[interactorRef],

Chapter 6. Changing descriptions with XPath 83

c[expRoleList].c[expRole]}, whereas the EEs are e1 = ds :: participant[c :: interactorRef]

[count(ds :: ∗) = count(c :: interactorRef)] and e2 = ds :: participant[c :: interactorRef]

[c :: expRoleList][c :: expRoleList/c :: expRole][count(d :: ∗) = count(c :: interactorRef)+

count(c :: expRoleList) + count(c :: expRoleList/c :: expRole]. �

The next proposition shows, for the special case of c∗, that the EEs thus constructed

return a set of nodes that do have the axis label paths specified in the predicates.

Proposition 6.2 Let A be an axis graph and es = ds :: l[e1] . . . [en][count(d :: ∗) =

count(e1) + . . . + count(en)] an XPath expression where ei = c :: li1/ . . . /c :: liki
, 1 ≤ i ≤

m. Then, es returns all nodes v such that there exists only lp1, . . . , lpn axis label paths

from v of the form lpi = c[li1].c[liki
]. �

For proving Proposition 6.2 we need the following Lemmas.

Lemma 6.3 Let e = child :: l1/ . . . /child :: lm be an XPath expression. For every node

v ∈ Inst : D[[e]](v) ⊆ D[[d :: ∗]](v). �

Lemma 6.4 Let S and S1, . . . , Sn be sets such that Si ⊆ S and Si 6= ∅ for 1 ≤ i ≤ n.

Then | S | = |
∑n

i=1 Si | ⇔ S =
⋃n

i=1 Si. �

Using Lemmas 6.3 and 6.4 we can prove Proposition 6.2 as follows.

Proof 6.4

D[[d :: ∗/[e1] . . . [en][count(d :: ∗) = count(e1) + . . . + count(en)]]](v0)

= by semantic rules (A.5) and (A.9) in Figure A.2

{v | 〈v0, v〉 ∈ d
∧n

i=1 E [[ei]](v, posd(v, S), |S|) = true ∧

E [[count(d :: ∗) = count(e1) + . . . + count(en)]](v, posd(v, S), |S|) = true}

= since all nodes v are reachable from v0, 〈v0, v〉 ∈ d is always true

{v |
∧n

i=1 E [[ei]](v, posd(v, S), |S|) = true ∧

E [[count(d :: ∗) = count(e1) + . . . + count(en)]](v, posd(v, S), |S|) = true}

Chapter 6. Changing descriptions with XPath 84

= by semantic rule (A.4) in Figure A.1 with Op’s count, +, and = from Figure A.3

{v |
∧n

i=1 E [[ei]](v, posd(v, S), |S|) = true ∧ | D[[d :: ∗]](v) | =
∑n

i=1 | D[[ei]](v) | }

= by semantic rule (A.1) in Figure A.1

{v |
∧n

i=1D[[ei]](v) 6= ∅ ∧ | D[[d :: ∗]](v) | =
∑n

i=1 | D[[ei]](v) | }

= by Lemmas 6.3 and 6.4

{v |
∧n

i=1D[[ei]](v) 6= ∅ ∧ D[[d :: ∗]](v) =
⋃n

i=1D[[ei]](v)}

= by semantic rule (A.9) in Figure A.1

{v |
∧n

i=1D[[ei]](v) 6= ∅ ∧ {w | 〈v, w〉 ∈ d} =
⋃n

i=1D[[ei]](v)}

= since the lpi’s are of the form lpi = c[li1].c[liki
]

{v | {w | 〈v, w〉 ∈ d} = {w | p = (v, c, . . . , c, w) is an axis path ∧ λ(p) = lpi}

�

6.3 Stabilization with XPath

As we have seen in Chapter 5.2, edge stabilization can be reduced to node refinement.

However, when the EEs of the nodes in an edge are available, we can use the description

provided by the EEs and compute the stabilization directly from them. The idea is to

express the condition for forward-stability (i.e., ∀x ∈ extent(si),∃y ∈ extent(sj)∧〈x, y〉 ∈

axis) of an edge 〈si, sj〉 in XPath using ee(si) and ee(sj).

Algorithm 6.1 computes the stabilization of a single edge by updating the EEs of the

nodes in the edge and their extents. The algorithm replaces node si by two new nodes:

s′i and s′′i . The extent of s′i contains all nodes in the extent of the original si that are in

an axis relation with nodes in the extent of sj (line 2). The extent of s′′i contains the

complement of s′i with respect to si, i.e., it contains all nodes that do not have such an

axis relation with nodes in the extent of sj (line 3). Consequently, after the new edge

is created (line 6), s′i has a forward-stable axis edge to sj whereas s′′i does not have any

axis edge to sj. The EEs obtained in lines 4 and 5 are the EEs for the new nodes.

Chapter 6. Changing descriptions with XPath 85

Algorithm 6.1
stabilizeEdgeXPath(D, si, sj)

Input: An SD D containing a non forward-stable edge e = 〈si, sj〉 with label axis

Output: An SD D where e has been replaced by forward-stable e′ = 〈s′i, sj〉.

1: create new nodes s′i and s′′i

2: extent(s′i) := {x ∈ extent(si) | ∃y ∈ extent(sj) ∧ 〈x, y〉 ∈ axis}

3: extent(s′′i) := extent(si)− extent(s′i)

4: ee(s′i) = ee(si)[axis :: λ(sj) intersect ee(sj)]

5: ee(s′′i) = ee(si)[not(axis :: λ(sj) intersect ee(sj))]

6: create an edge e′ = 〈s′i, sj〉

7: let S be the set of nodes connected to si

8: for every node s in S do

9: add edges 〈s′i, s〉 and 〈s, s′i〉 if conditions in Definition 3.16 are satisfied

10: delete node si, and all its incoming and outgoing edges

Note that we do not need additional count() nor not() predicates in the new expres-

sions because all the required ones are already in ee(si) and ee(sj).

Example 6.3 Consider edge 〈s4, s6〉 from Figure 5.5 (a), which is not forward-stable.

Edge stabilization will create two nodes, s41 and s42 as shown in Figure 5.5 (b). Given

that ee(s4) = /ds :: participant, ee(s6) = /ds :: expRoleList, and the stabilized edge

corresponds to a c axis, the resulting expressions are the following: ee(s42) = /ds ::

participant [child :: expRoleList intersect /ds :: expRoleList] and ee(s41) = /ds ::

participant[not(child :: expRoleList intersect /ds :: expRoleList)]. �

Chapter 6. Changing descriptions with XPath 86

6.4 Adapting SDs to XPath queries

Previously in this chapter, we used XPath to express EEs and to manipulate them for

refinement and edge stabilization operations. In this section we show how XPath queries

are used to guide a refinement operation in the process of adapting an SD to a query.

In order to evaluate a query using an SD, we need to find the SD nodes that participate

in the answer. DescribeX’s approach is to find the SD nodes that contain a superset of

the answer and then evaluate the entire expression on them to get the exact answer.

One of the central problems for finding a superset of the answer is how to decide

what SD nodes can be used to answer an XPath query. This requires some sort of XPath

matching algorithm and the ability to decide whether there exists an exact rewriting of a

query using an SD. The matching algorithm will transform the structural subquery of the

XPath expression (the expression that results from removing all non-structural predicates

such as those containing functions) to be evaluated into an equivalent AxPRE α. Then,

we need to find the SD node (or nodes) whose AxPRE is contained in α. The union of

the extents of such nodes are a superset of the answer. If the query is purely structural

(i.e. the query is equal to its structural subquery) and α is equivalent to some SD node

AxPRE, then the answer to the query is exactly the union of the extents. Otherwise, we

need to run the entire query on the union of the extents to find the exact answer.

We begin by discussing in the next section how to derive an AxPRE from an XPath

expression.

6.4.1 Deriving AxPREs from queries

DescribeX can adapt an SD node to an XPath query Q, as we have illustrated in our

RRS feeds motivating example in Chapter 1.2. This section formalizes how an AxPRE is

obtained from Q by using the two derivation functions L and P we provide in Figure 6.4.

We begin by illustrating the XPath-to-AxPRE derivation with a concrete example.

Chapter 6. Changing descriptions with XPath 87

P (Op(e1, . . . , em)) := ε (6.1)

P (axis :: l[e1] . . . [em]/rlocpath) := Ax (axis).(P (e1)|. . .|P (em)|P (rlocpath)) (6.2)

P ((locpath)[e1] . . . [em]/rlocpath) := P (locpath).(P (e1)|. . .|P (em)|P (rlocpath)) (6.3)

P (locpath1|. . .|locpathm) := (P (locpath1)|. . .|P (locpathm)) (6.4)

L(rlocpath/axis :: l[e1] . . . [em]) := Ax (axis−1).(L(rlocpath))|P (e1)|. . .|P (em) (6.5)

L(rlocpath/(locpath)[e1] . . . [em]) := L(locpath).(L(rlocpath))|P (e1)|. . .|P (em) (6.6)

L(locpath1|. . .|locpathm) := (L(locpath1)|. . .|L(locpathm)) (6.7)

Figure 6.4: AxPRE derivation functions L and P

Example 6.4 Consider the following query

Q3 = /ds::participant[c::expRoleList/fc::expRole/ns::expRole]

[not(ds::expRole/names=‘‘prey’’)]

Q3 returns all participants that have expRoleLists whose first two children are expRole

elements and that are not playing the “prey” role in the experiments. Note that the

structural subquery appears in black (the last predicate in grey is not part of the structural

subquery).

The first rule of Figure 6.4 that applies is (6.5) with the following variables: rlocpath =

∅, axis = ds, l = participant, e1 = c :: expRoleList/fc :: expRole/ns :: expRole, and

e2 = not(ds :: expRole/names = “prey”), resulting in

Ax (ds−1)|P (e1)|P (e2)

where Ax is a function that translates the XPath axis into its AxPRE axis counterpart.

In particular, Ax (axis−1) returns the actual AxPRE inverse (e.g., child−1 is converted

into p) and recursive axes are translated to an equivalent Kleene closure of non-recursive

axes (e.g., descendant translates into c∗).

Chapter 6. Changing descriptions with XPath 88

The expansion of P (e2) is very simple. The predicate is basically a function, so

it matches rule (6.1) and the result of P (not(ds :: expRole/names = “prey”)) is ε

(Remember that this predicate is not part of the structural subquery). This results in the

following intermediate expression

as|P (e1)|ε

For expanding P (e1), the first rule invoked is (6.2) with axis = c, l = expRoleList,

rlocpath = fc :: expRole/ns :: expRole and empty predicates. The intermediate expres-

sion is now

as|Ax(c).(P (fc :: expRole/ns :: expRole))

For expanding P (fc :: expRole/ns :: expRole), the rule that applies is (6.6) with

axis = fc, l = expRole, rlocpath = ns :: expRole and no predicates, which results in

as|c.Ax(fc).(P (ns :: expRole))

Similarly, we can expand P (ns :: expRole) and obtain

as|c.fc.ns

Finally, the node test of the step corresponding to the answer (participant in this

case) is prefixed as a label predicate to the AxPRE. Therefore, the resulting AxPRE of

query Q3 is

αQ3 = [participant].(as|c.fc.ns)

Once the query AxPRE α of a given XPath query Q is computed, the next step in

adapting the SD to Q is finding the SD node (or nodes) whose AxPRE α′ is contained

in α. Since the problem of AxPRE containment is related to that of regular expres-

sion containment, any regular expression containment algorithm can be used here. After

finding the node, DescribeX proceeds to change α′ to α, which in fact modifies the de-

scription of the node and thus the neighbourhood it summarizes. This entails performing

a refinement of the extent of the node.

Chapter 6. Changing descriptions with XPath 89

6.4.2 Finding candidates

If an extent contains a superset of the answer of a query, then we say that the elements

in such an extent are candidate elements. Note that, by adapting the SD to the struc-

tural subquery, DescribeX has found a restricted superset of the answer and hence has

considerably reduced the search space for computing the entire query.

The DescribeX architecture is tailored to process XML collections one file-at-a-time,

the prevalent data processing model for the Web. Each file is parsed and processed

independently of the other files in the collection. In this context, after adapting the

SD to a given query Q, DescribeX can restrict the evaluation of Q to those documents

(called candidate documents) that are guaranteed to provide a non-empty answer for the

structural subquery of Q. Those candidate documents that do contain an answer for the

entire query are called answer documents.

Once DescribeX has computed the query AxPRE α of a given XPath query Q as

described above, it needs to find the SD node whose AxPRE contains α in order to get

the candidate documents for evaluating Q. If there is an SD node s with AxPRE α, then

all documents in the extent of s are in fact candidate documents. In contrast, if s has

an AxPRE α′ containing α, DescribeX has two alternatives. One, it can adapt the SD

by refining s from α′ to α and then get the candidate documents as in the previous case.

Two, it can get all documents in the extent of s and run the structural subquery of Q on

them in order to get the candidates. Once the candidate documents are found, finding

the answer documents entails running Q on all candidates.

Example 6.5 Consider query Q3 for our running example. We could evaluate Q3 using

the label SD from Figure 3.8. In that case, the only node whose AxPRE is contained

in αQ3 is s4 with AxPRE [participant]. For simplicity, let us assume that every node

in the extent of s4 belongs to a different document, so there will be as many elements

as documents, both candidates and answer. From the SD graph we know that not all

Chapter 6. Changing descriptions with XPath 90

participants in the extent of s4 contain an expRoleList element because the edge 〈s4, s6〉

is not forward-stable. So we conclude that s4 contains only a superset of the answer, so

we get the six documents from the extent and evaluate the query in all of them in order

to get the answer.

Alternatively, we could use the refined SD from Figure 3.9. This SD could have been

obtained from the label SD after adapting it to Q3. Regardless of how the SD was created,

we found that three nodes have AxPREs contained in αQ3: s41, s42, and s43. However,

we notice from the SD graph that only node s42 has a forward-stable neighbourhood for

αQ3. (Note that it is the only [participant] node with an edge c, followed by a fc and an

ns, all forward-stable.) That means that both nodes (and thus documents) in the extent

of s42 are candidates, and thus we need to run Q3 only in those two documents. If Q3

did not have the second predicate (in grey), the extent of s42 would be the exact answer

of Q3. �

The process of exploring candidates is not unidirectional: a developer can move back

and forth between the query explanations described here and the structural exploration

described in Chapter 1.2. For instance, she may create an SD and run a query on some

candidate documents. Next, she might decide to relax the query in order to further

investigate its impact on the collection. Then, she may want to get a more or less refined

description of the collection by changing the SD using AxPRE refinements, and then start

the process again. DescribeX provides the developer with this interactive functionality

for describing and evaluating XPath queries on large XML collections.

Chapter 7

DescribeX engine

In previous chapters we introduced DescribeX, a powerful framework capable of declar-

atively describing complex structural summaries of XML collections that captures and

generalizes many proposals in the literature. We also showed how summary descriptors

(SDs) are created and refined to selectively produce more or less detailed descriptions of

the data. In this chapter, we discuss how the DescribeX framework is implemented in

the summarization engine and present two strategies for refining an SD: one is based on

materializing the SD partitions, the other is a virtual approach that relies on constructing

XPath expressions that compute extents.

The DescribeX architecture is tailored to process XML collections one file at a time,

the prevalent data processing model for the Web. Each file is parsed, processed and

stored before continuing with the next file in the collection. Such an approach supports

the interactive creation and refinement of AxPRE SDs for large collections of XML

documents.

The DescribeX engine is implemented in Java using Berkeley DB Java Edition1 to

store and manage indexed collections (tables). The implementation can invoke an ar-

bitrary JAXP 1.32 XPath processor for the evaluation of XPath expressions. JAXP is

1http://www.oracle.com/technology/products/berkeley-db/je/
2http://jaxp.dev.java.net/1.3/

91

Chapter 7. DescribeX engine 92

an implementation independent portable API for processing XML with Java. For the

experiments reported later in this paper, the Saxon3 XPath processor was employed. The

Saxon implementation conforms to the XPath 1.0 standard set by the W3C [W3C99] and

therefore satisfies the semantic characterization formalized in Appendix A.

The DescribeX implementation stores the extents in an indexed table named elemDB

that has schema elemDB(SID, docID, endPos, startPos, SID2), where the underlined

attributes are the key (also used for indexing). The elemDB table contains a tuple for

each XML element in the collection. Each SD node is identified by a unique id called

SID. Each element belongs to the extent of a unique SD node, whose SID is stored in

the SID attribute. The attribute docID holds the identifier of the document in which the

element appears. The startPos and endPos are the positions, in the document, where

the element starts and ends, respectively. SID2 allows us to maintain an SID for a second

SD.

Alternatively, the user can decide to keep the extents virtual and thus make the

DescribeX engine store a docDB table instead of the elemDB table described above. The

schema of the docDB table is docDB(SID, docID), which contains for each sid s the docIDs

of all XML documents containing elements in the extent of s. This can be used to

efficiently locate the XML documents to be evaluated by the EE of s in order to get the

extent of s. The EEs are stored in a separate XML file.

A third scenario in which both elemDB and docDB tables coexist is also possible. In

such a case, some SIDs would be kept in the elemDB table (with their extents materialized)

and some others would be stored without extents in the docDB table. In this thesis we

have not studied the trade offs emerging from this scenario.

The DescribeX engine keeps the SD graph in main memory in separate hash tables

for each axis relation in the SD, e.g. the parentsMap and childrenMap maps contain the

edge definitions for the p and c SD axes respectively. In other words, each binary axis

3http://saxon.sourceforge.net/

Chapter 7. DescribeX engine 93

relation is stored as a map between a key SID s and a set of SIDs s1, . . . , sn such that

〈s, si〉 ∈ axis, 1 ≤ i ≤ n. In addition, there is a label map, labelMap, that contains the

label of each SD node.

7.1 Initial SD construction

Some SDs can be constructed in one pass over the collection. This is possible when

the parsing information collected at either the start tag or the end tag of an element v

is enough to construct the AxPRE neighbourhood Nα(v) of the element, compute the

AxPRE partition and thus decide to what extent v belongs. For instance, the start tag

itself is enough to classify an element v when constructing the ε SD (the Nε(v) contains

just node v). For the pk and p∗ SDs, it suffices to keep the sequence of the last k open

elements (for the pk) or all of them (for the p∗) for creating Npk(v) and Np∗(v). Thus, pk

and p∗ SDs can also be constructed in one pass over the collection.

Algorithm 7.1 (buildP(k)) illustrates the use of the DescribeX data structures. The

algorithm computes the ε, pk and p∗ SDs. The parameter k encodes the SD as follows:

k = 0 corresponds to ε, k = maxint to p∗, and all other values represent pk. For each

XML document in the collection, the algorithm parses the document and creates a XOM4

tree (a lightweight XML object model). The algorithm uses the XOM tree created for

composing the elemDB tuple of each element in the document containing SID, docID, and

its beginning and end offset position. Both the XOM tree and the SD are constructed

simultaneously during parsing time.

Once an SD has been constructed from scratch, the user can refine any SD node or set

of nodes by changing the node’s AxPRE, as described in Chapter 5. In the next section

we provide algorithms for computing such refinements.

4http://www.xom.nu/

Chapter 7. DescribeX engine 94

Algorithm 7.1
buildP(k)

Input: Collection C of XML documents

Output: pk SD

1: for each XML document doc in collection C do

2: assign a new docID d to doc

3: create a new XOM tree t

4: while parsing doc do

5: if element start tag is found in doc then

6: create a new e in t with XML attributes sid, startPos, and endPos set to

empty

7: if the pk neighbourhood of e is not in the SD graph then

8: create a new SID s′

9: update labelMap, parentsMap, and childrenMap

10: store the pk XPath expression of s′ in the EE XML file

11: get the sid s of e from the SD

12: set e.sid to s and e.startPos to the offset position of the start tag of the

element

13: if element end tag is found in doc then

14: set e.endPos to the offset position of the end tag of the element

15: append tuple (e.s, d, e.endPos, e.startPos) to elemDB

Chapter 7. DescribeX engine 95

7.2 Computing refinements

Following the materialized extents approach, a refinement can be evaluated with Al-

gorithm 7.2 (refineMaterialized), whereas virtual extents can be refined by Algorithm 7.3

(refineVirtual). Both algorithms are invoked with sid s to be refined, its current EE es,

and a family r1 . . . rn of refining EEs, constructed as described in Chapter 6.3.

Suppose that SD node si with EE ri is one of the refinements of SD node s with

EE es. The extent of si is computed by evaluating ri on the set of documents that

contain elements in the extent of s, which entails evaluating the expression /es/ri (line

6 of Algorithms 7.3 (refineVirtual) and 7.2 (refineMaterialized). This set of documents

are obtained from ElemDB (if the extent of s is materialized) or from docDB (if the extent

of s is virtual). Once we have the extent of si, the edges in the SD graph can be

constructed either from the EE when the extent is virtual (by computeEdgeByXPath,

line 10 of Algorithm refineVirtual) or from ElemDB when the extent is materialized (by

computeEdgeByMerge, line 13 of Algorithm refineMaterialized).

In order to update the edges, we need to check whether there is an axis edge between

si and a set of candidate SD nodes c1, . . . , cn such that 〈s, cj〉 ∈ axis. This is performed

by Algorithm 7.4 (computeEdgeByXPath) by computing the expression esr/axis :: ∗∩ecj
,

where ecj
is the EE of candidate cj (line 4). If the evaluation of the expression is not

empty, then there exists an edge from si to cj, otherwise there is no edge (lines 5 and 6).

Algorithm computeEdgeByMerge (not shown), in contrast, simply computes a merge

of the ElemDB using the startPos and endPos attributes to check for containment (in

case of fc, c, p, a, and d axes) or precedence (for ns, fs , f , and p axes).

Chapter 7. DescribeX engine 96

Algorithm 7.2
refineMaterialized(sd, s, r1, . . . , rn)

Input: sd is the SD, s is the sid to be refined, r1 . . . rn is a family of refining XPath EEs

Output: Updated sd

1: get the XPath EE es of s

2: for each input ri do

3: create a new sid si

4: for each d s.t. there is a tuple td in elemDB with td.SID = s and td.docID = d

do

5: create a XOM tree t of d in which each element has an endPos attribute with

the offset position of the end tag of the element

6: assign to extent the answer of /es/ri

7: for each element nj in extent do

8: locate the tuple tj in the elemDB table corresponding to nj by using (s, d,

nj.endPos) as a key

9: assign si to tuple tj by setting tj.SID = si

10: update labelMap by assigning the label of s to the new si

11: store the ri EE of si in the EE XML file

12: for each axis in the SD do

13: call computeEdgeByMerge(sd, axis, si, extent, s) to test the existence of an

axis edge from si

Chapter 7. DescribeX engine 97

Algorithm 7.3
refineVirtual(sd, s, r1, . . . , rn, extent)

Input: sd is the SD, s is the sid to be refined, r1 . . . rn is a family of refining XPath EEs

Output: Updated sd, extent with the element in the extent of si

1: get the XPath EE es of s

2: for each input ri do

3: create a new sid si

4: for each d s.t. there is a tuple td in docDB with td.SID = s and td.docID = d do

5: create a XOM tree t of d in which each element has an endPos attribute with

the offset position of the end tag of the element

6: assign to extent the answer of /es/ri

7: update labelMap by assigning the label of s to the new si

8: store the ri XPath expression of si in the EE XML file

9: for each axis in sd do

10: call computeEdgeByXPath(sd, axis, si, extent, s) to test the existence of an

axis edge from si

Chapter 7. DescribeX engine 98

Algorithm 7.4
computeEdgeByXPath(sd, axis, si, extent, s)

Input: sd is the SD, axis is the axis edge to be computed, si is the new sid, extent is

the extent of si, and s is the sid being refined.

Output: Updated sd

1: assign to candidates the set of sids {c1, . . . , cn} mapped to s in axisMap

2: for each cj in candidates do

3: get the EE ej of cj from the EE XML file

4: evaluate the intersection expression e = axis :: ∗ ∩ ej from extent

5: if the evaluation of e is not empty then

6: add an axis edge between si and cj to the corresponding axisMap

In this chapter, we presented an implementation of the DescribeX framework that

supports the interactive creation and refinement/stabilization of AxPRE SDs for XML

collections. We introduced two strategies for locally updating an SD: one based on ma-

terializing the SD partitions (extents), the other relies on a novel virtual approach based

on XPath expressions. The next chapter presents experimental results that demonstrate

the scalability of our strategies, even to multi gigabyte web collections.

Chapter 8

Experimental results

We present here the results of an extensive empirical study we conducted using the

DescribeX framework introduced in this thesis.

The first part of our study evaluates the performance of the initial SD construction and

the feasibility of the different approaches (materialized, virtual, edges, etc.) to DescribeX

main exploration operations: refinement and stabilization. The objective here is twofold.

First, to understand how key parameters (e.g., extent size, number of documents involved,

and number of SD nodes and edges affected) impact on each operation. Second, to

determine what method performs better under what kind of conditions.

The goal of the second part of our experimental evaluation is to study the impact

of various summaries on XPath query processing performance. This part also provides

a comparison with variations of incoming and outgoing path summaries capturing ex-

isting proposals like 1-index, APEX, A(k)-index, D(k)-index, and F+B-Index. We want

to emphasize that query evaluation times on collections the size of Wikipedia are rarely

reported in the literature. In fact, XML DB systems (and not just research prototypes)

become challenged when working with collections at this scale. The experiments demon-

strate that DescribeX easily scales up to gigabyte sized XML collections with important

performance results.

99

Chapter 8. Experimental results 100

Table 8.1: Test collections

Collection Size #Docs #Nodes Load Time (s)

(MB) p∗ SD label SD p∗ SD label SD

RSS2 210 9600 1058 301 64.2 41.4

PSIMI2 234 156 199 54 93.1 81.7

Wiki5 545 30000 15602 259 438.6 175.7

Wiki45 4520 659388 66073 1245 8089.1 6201.2

8.1 Initial SD construction

Our experiments were conducted over four collections of documents. Table 8.1 summa-

rizes the size and number of documents in each collection, and the number of nodes and

load times for the p∗ and label SDs, which includes computing the SD graph and the

partitions, and storing the extents in the ElemDB table.

For measuring times, we conducted five separate runs starting with a cold Java Virtual

Machine (JVM) for each query. The best and worst times were ignored and the reported

runtime is the average of the remaining three times. The experiments were carried out

on a Windows XP machine with a 2.4GHz Intel Core 2 Quad processor, and the JVM

was allocated 1 GB of RAM.

The selected collections have different characteristics, namely total size, size and num-

ber of individual documents, and document heterogeneity. The first collection (RSS2)

was obtained by collecting RSS feeds from thousands of different sites. The second col-

lection (PSIMI2) is a fragment of the IntAct PSI-MI dataset1. The third and fourth

collections (Wiki5 and Wiki45, respectively) were created from the Wikipedia XML Cor-

pus provided in INEX 2006 [DG06]. PSIMI2 is a very small collection in terms of number

of documents (only 156 in total) but a medium-sized collection with respect to total size

(about 234 MB). In contrast, Wiki5 is about twice the PSIMI2 size but has almost 200

1http://psidev.sourceforge.net/mi/xml/doc/user/

Chapter 8. Experimental results 101

times the number of documents. Consequently, the average document size in both collec-

tions ranges from 1.5 MB in PSIMI2 to 18 KB in Wiki 5. Documents in RSS2 are similar

in size to Wiki5. The largest collection (Wiki45 with 4.5GB spanning 660 thousand files)

is also the one with the smallest average document size (only 6.8 KB).

The number of nodes in both p∗ and label SDs provide a measure of heterogeneity

and structural complexity. PSIMI2 is the most homogeneous of our collections, with only

54 different element names and 199 different label paths from the root. In contrasts, the

most heterogenous one is Wiki45 with over one thousand different labels and over 66

thousand different label paths from the root.

8.2 Refinements

We tested the performance of two types of SD updates: refinements and stabilization. In

this section we discuss the results for refinements and we provide the stabilization results

in the next one.

Tables 8.2, 8.3 and 8.4 show the SIDs and EEs of the selected p∗ SD nodes in our

test collections. These are the nodes we use for refinements and edge stabilization in our

experiments reported below. For instance, r468 corresponds to the p∗ SD node that has

/rss/channel/image as its EE in the RSS2 collection. Our benchmark refinements were

selected with scalability in mind: smallest and largest extents and number of documents

involved are three orders of magnitude apart, ranging from 4 documents in the p193

refinement (Table 8.6) to 6509 documents in the r449 refinement (Table 8.5).

We evaluated two different types of refinements, one given by a generic AxPRE (p∗|c∗)

and the other defined by a very specific one. Tables 8.5 through 8.8 report p∗|c∗ refinement

times for the selected SD nodes. We choose the p∗|c∗ refinement to show the performance

with AxPREs involving common axes used throughout the summary literature.

Chapter 8. Experimental results 102

Table 8.2: Selected p∗ SD nodes and EEs from RSS2

Node Extent Expression (EE)

r468 /rss/channel/image

r449 /rss/channel/item

r653 /rss/channel/item/body

r452 /rss/channel/item/description

Table 8.3: Selected p∗ SD nodes and EEs from PSIMI2

Node Extent Expression (EE)

p59 /entrySet/entry/interactorList/interactor/organism

p18 /entrySet/entry/experimentList/experimentDescription/bibref/xref

p24 /entrySet/entry/experimentList/experimentDescription

/hostOrganismList/hostOrganism

p193 /entrySet/entry/interactorList/interactor/organism/cellType

Table 8.4: Selected p∗ SD nodes and EEs from Wiki5 and Wiki45

Node Extent Expression (EE)

w372 /article/body/section/section/section/figure

w199 /article/body/section/p/sub

w333 /article/body/section/section/section/section

w967 /article/body/template/template/wikipedialink

Chapter 8. Experimental results 103

Table 8.5: RSS2 p∗|c∗ refinements

p∗ SD p∗|c∗ Refinement

Node Extent Size # Times (s)

#Docs #Elems EEs V M P X

r468 3296 3296 7 219.2 101.8 100.1 185.7

r449 6509 90583 201 14786.2 598.2 575.2 14235.2

r653 18 320 42 51.5 4.5 3.7 145.2

r452 6253 82022 3 358.4 189.6 185.1 332.7

Table 8.6: PSIMI2 p∗|c∗ refinements

p∗ SD p∗|c∗ Refinement

Node Extent Size # Times (s)

#Docs #Elems EEs V M P X

p59 156 24256 3 42.8 29.8 28.2 41.1

p18 156 2072 2 32.1 26.1 23.7 29.7

p24 156 2072 8 732.4 157.6 149.8 603.4

p193 4 28 1 3.9 3.5 2.0 2.8

Table 8.7: Wiki5 p∗|c∗ refinements

p∗ SD p∗|c∗ Refinement

Node Extent Size # Times (s)

#Docs #Elems EEs V M P X

w372 252 522 16 295.8 26.3 25.7 10.1

w199 463 2194 4 448.4 33.8 29.9 3.4

w333 128 500 61 2138.9 87.8 79.1 308.2

w967 155 241 6 235.9 12.9 10.4 2.3

Chapter 8. Experimental results 104

Table 8.8: Wiki45 p∗|c∗ refinements

p∗ SD p∗|c∗ Refinement

Node Extent Size # Times (s)

#Docs #Elems EEs V M P X

w372 898 2166 37 1449.1 455.2 446.1 144.1

w199 1479 6963 14 2493.5 773.2 748.7 64.8

w333 736 3714 203 12813.4 574.7 573.5 6602.3

w967 2330 3662 8 1835.9 569.4 552.3 20.6

Tables 8.5 through 8.8 are divided into two parts, the first half provides information

on the number of documents and elements in the extent of the p∗ SD nodes being refined

(# Docs and # Elems columns, respectively) , and the second half contains numbers

relative to the p∗|c∗ refinement itself. The numbers under # Docs indicate how many

documents need to be opened to evaluate the refinement. The number of new SD nodes

created by the refinements (which is the same as the number of EEs evaluated) are

reported in the # EEs columns. For instance, the p∗|c∗ refinement partitions node r449

into 201 new SD nodes, which means that 201 XPath expressions have to be evaluated

in 6509 documents in order to obtain the p∗|c∗ of node r449. In general, refinement

times increase proportionally to the number of documents that need to be opened for

computing the refinement.

We consider two scenarios, one in which extents are materialized in the ElemDB table

(reported under columns V, M and P), and another in which the extents are virtual and

are thus represented only by the EEs (reported under columns X). Times reported in

V, M and P columns comprise locating the affected files using the SD, opening them

and evaluating the EE in order to update the materialized extent information in the

ElemDB table. In addition to extent updates, columns V and M times include edge

computations using Algorithms 7.3 and 7.2, respectively. (The labels V and M, which

stand for “virtual” and “materialized”, refers only to the different approaches to edge

Chapter 8. Experimental results 105

Table 8.9: RSS2 AxPRE refinements

p∗ SD Refining Resulting Extent Times (s)

Node AxPRE #Docs #Elems P

r468 c[title].fs[url].fs[link].fs[width] 172 172 3.9

.fs[height].fs[description]

r449 c[enclosure].fs[enclosure].fs[enclosure] 9 37 10.8

r653 fc[p].ns[p].ns[img] 6 26 0.4

r452 fs[link] 688 13885 10.1

computation). In contrast, times under the P column correspond to extent computation

only (without edges). Comparing column P against columns V and M gives us an idea

of how much overhead DescribeX incurs on the edges. Finally, the X column displays

how long it takes just to obtain the expressions for both edges and extents under the

virtual approach. Thus, the X column corresponds to a “purely virtual” approach in

which no materialization is used for either edges nor extents. Since edges are computed

from the EEs, the SD graph is still maintained.

The time differences between the V and M columns come from the fact that com-

puting the edges between the new SD nodes using XPath is usually more costly than

computing them from the information stored in the ElemDB table. However, we are not

aware of any technique for computing general XPath expressions from the region encod-

ings in the ElemDB table, so using just the materialized extents is not always possible.

Tables 8.9 through 8.12 report refinements that were chosen to study SDs involving

novel axes (e.g., fc, fs , ns) and more expressive AxPREs with label predicates. The

tables show the refining AxPRE for each p∗ SD node, the number of documents and

elements that contain neighbourhoods matching the entire AxPRE (# Docs and #

Elems columns, respectively), together with how long it takes to compute the extent

(Times column). For any given expression, the number of elements with either empty

neighbourhoods or matching prefixes of the AxPRE is the complement of the number re-

Chapter 8. Experimental results 106

Table 8.10: PSIMI2 AxPRE refinements

p∗ SD Refining Resulting Extent Times (s)

Node AxPRE #Docs #Elems P

p59 c[name].fs[cellType] 2 14 27.3

p18 c[primaryRes].fs[secondaryRef] 12 20 29.9

p24 c[name].ns[cellType].ns[tissue] 4 4 27.1

p193 c[name].ns[xref] 4 28 3.4

Table 8.11: Wiki5 AxPRE refinements

p∗ SD Refining Resulting Extent Times (s)

Node AxPRE #Docs #Elems P

w372 c[caption].c[collectionLink] 2 2 1.9

.fs[br].fs[collectionLink]

w199 c[sub].c[sub].fs[sub] 1 1 2.1

w333 c[title].fs[p].fs[p].fs[p] 39 79 1.1

w967 c[br]|fs[collectionLink] 4 6 1.2

.fs[collectionLink]

Table 8.12: Wiki45 AxPRE refinements

p∗ SD Refining Resulting Extent Times (s)

Node AxPRE #Docs #Elems P

w372 c[caption].c[collectionLink] 3 3 33.1

.fs[br].fs[collectionLink]

w199 c[sub].c[sub].fs[sub] 3 3 39.0

w333 c[title].fs[p].fs[p].fs[p] 155 320 28.2

w967 c[br]|fs[collectionLink] 9 11 57.3

.fs[collectionLink]

Chapter 8. Experimental results 107

ported under # Elems. For instance, the r449 row of Table 8.9 indicates that 37 elements

in 9 documents have exact c[enclosure].fs[enclosure].fs[enclosure] neighbourhoods and

obtaining them from the r449 extent takes 10.8 seconds. In addition, we know that the

number of elements either matching prefixes or with empty neighbourhoods is 90546,

which comes from the number in column # Elems and row r449 in Table 8.5 (90583)

minus the number in column # Elems and row r449 in Table 8.9 (37). Such subtraction

would not be meaningful for the # Docs columns because the same document may con-

tain elements in different extents (remember that an SD contains a partition of elements,

not documents, so document extents may overlap).

These results suggest that, even though computing generic refinements like p∗|c∗ may

be expensive, more specific refinements can be performed in less than a minute and many

of them in just a few seconds for the smaller test collections.

8.3 Edge stabilization

In this section, we report experimental results for stabilization of SD edges from our

selected p∗ nodes.

Tables 8.13 through 8.16 report edge stabilization times and extent sizes for the

selected SD nodes. The edge stabilized is indicated in the tables by an AxPRE containing

the axis and the label of the target node. The four Resulting Extents columns show

the number of document and elements that do contain the edge and the number of those

that do not. The times reported under columns V and M correspond to the materialized

extent approach with edge computation using EEs (the former) and the ElemDB table

(the latter), as explained in the previous section for refinements.

We stabilize two different edges for some p∗ SD nodes. After one edge stabilization,

the resulting SD node that does not have the stabilized edge is indicated by the SID

with an apostrophe. The second edge stabilized always corresponds to a node with an

Chapter 8. Experimental results 108

Table 8.13: RSS2 edge stabilization

p∗ SD Edge Resulting Extents Times

Node Stabilized With Edge Without Edge (s)

#Docs #Elems #Docs #Elems V M

r468 c[description] 492 492 2804 2804 4.1 0.5

r′468 c[link] 2792 2792 12 12 4.5 0.2

r449 ps[item] 6263 84063 6509 6520 12.5 2.9

r′449 c[body] 15 15 6494 6505 10.9 3.7

r653 d[img] 12 12 10 201 0.5 0.3

r′653 d[table] 7 7 3 14 0.4 0.2

r452 c[br] 12 12 6249 81968 12.4 5.9

Table 8.14: PSIMI2 edge stabilization

p∗ SD Edge Resulting Extents Times

Node Stabilized With Edge Without Edge (s)

#Docs #Elems #Docs #Elems V M

p59 c[cellType] 4 28 156 24228 38.2 9.8

p18 c[secondaryRef] 12 20 148 2052 25.6 1.2

p24 c[tissue] 8 84 156 1988 25.4 1.3

p′24 c[cellType] 8 548 156 1440 23.4 1.2

Chapter 8. Experimental results 109

Table 8.15: Wiki5 edge stabilization

p∗ SD Edge Resulting Extents Times

Node Stabilized With Edge Without Edge (s)

#Docs #Elems #Docs #Elems V M

w372 d[collectionLink] 335 592 695 1574 34.7 2.3

w′
372 d[small] 3 5 694 1569 33.9 2.2

w199 c[sub] 28 33 1469 6930 41.7 5.4

w′
199 c[small] 18 83 1454 6847 43.7 5.4

w333 c[outsideLink] 34 83 724 3631 31.9 3.6

w′
333 c[unknownLink] 68 131 705 3500 29.6 3.8

w967 c[template] 26 27 2304 3635 61.2 3.5

w′
967 c[sup] 174 246 2130 3389 60.2 3.4

apostrophe from the previous stabilization. For instance, the first edge stabilized from

node r449 (Table 8.13) was the ps edge to an item node, which resulted in two SD nodes:

one containing a stable ps edge with 84063 elements in its extent, and another one (r′449)

with no edge and 6520 elements. From node r′449 we stabilize then the c edge to a body

node obtaining again two nodes: one with a stable c edge with 15 elements in its extent,

and the other one with 6505 elements and no edge. The time for computing the ps edge

stabilization is 12.5 seconds when computing the edges with EEs, and 2.9 seconds when

using the ElemDB table. The times for the c edge stabilization are 10.9 and 3.7 seconds

respectively.

Our results show that DescribeX can provide interactive response times (from sub

second to just a few seconds) for all edge stabilizations tested when using the materialized

approach for both extents and edges. Moreover, when using the more expensive EE-based

approach for finding the SD edges, we still obtain response times in the order of a minute

in the vast majority of test cases. This is compelling evidence that DescribeX can be

used in scenarios in which SDs need to be manipulated interactively in order to selectively

Chapter 8. Experimental results 110

Table 8.16: Wiki45 edge stabilization

p∗ SD Edge Resulting Extents Times

Node Stabilized With Edge Without Edge (s)

#Docs #Elems #Docs #Elems V M

r372 d[collectionLink] 125 207 169 315 2.4 0.6

r′372 d[small] 2 4 169 311 2.2 0.5

r199 c[sub] 3 3 462 2191 2.7 0.8

r′199 c[small] 5 35 458 2156 2.6 0.8

r333 c[outsideLink] 7 12 126 488 1.7 0.7

r′333 c[unknownLink] 10 14 123 474 1.4 0.6

r967 c[template] 4 5 151 236 1.2 0.6

r′967 c[sup] 66 123 85 113 1.4 0.5

explore the structure of an XML collection (e.g., aggregating thousands of RSS feed from

dozens of content providers).

8.4 XPath query evaluation using SDs

In this section, we provide performance results for obtaining answer documents for several

XPath queries using a variety of SDs. These results considerably expand the preliminary

study presented in [CR07].

Tables 8.17, 8.18, and 8.19 show the twelve queries in our benchmark (the structural

subqueries appear in black, the non-structural predicates are in grey). These queries

were selected to show how the system scales with respect to key query parameters like

answer size and number of candidate documents (those that provide a non-empty answer

for the structural subquery). Our benchmark focuses on the navigational features of

XPath, following the approach of the MemBeR XQuery Micro-Benchmark [AMM05],

which provides a form of standardization for studying XQuery evaluation.

Chapter 8. Experimental results 111

Table 8.17: RSS collection queries

Query XPath Expression

R1 /rss/channel/image[title/following-sibling::url/following-sibling::

link/following-sibling::width/following-sibling::height

/following-sibling::description][width < height]

R2 /rss/channel/item[enclosure][enclosure/following-sibling::enclosure

/following-sibling::enclosure][enclosure/@type=’audio/mpeg’]

R3 /rss/channel/item/body[child::*[1][self::p]/following-sibling::*[1]

[self::p]/following-sibling::*[1][self::img]][img[width=height]]

R4 /rss/channel/item/description[following-sibling::link]

[contains(.,’2005’)]

Table 8.18: PSIMI collection queries

Query XPath Expression

P1 /entrySet/entry/interactorList/interactor/organism[names

/following-sibling::cellType][contains(.,’Cercopithecus’)]

P2 /entrySet/entry/experimentList/experimentDescription/bibref/xref

[primaryRef/following-sibling::secondaryRef]

[secondaryRef/@refType=’method reference’]

P3 /entrySet/entry/experimentList/experimentDescription

/hostOrganismList/hostOrganism[child::names/following-sibling::*[1]

[self::cellType]/following-sibling::*[1][self::tissue]]

[tissue[contains(.,’endothelium’)]]

P4 /entrySet/entry/interactorList/interactor/organism/cellType[names

/following-sibling::*[1][self::xref]][contains(.,’Cercopithecus’)]

Chapter 8. Experimental results 112

Table 8.19: Wikipedia collections queries

Query XPath Expression

W1 /article/body/section/section/section/figure[caption/collectionlink

/following-sibling::br/following-sibling::collectionlink]

[contains(.,’Loutherbourg’)]

W2 /article/body/section/p/sub[child::sub/child::sub

/following-sibling::sub][sub/sub=’2’]

W3 /article/body/section/section/section/section[child::title

/following-sibling::p/following-sibling::p/following-sibling::p]

[contains(.,’extinction’)]

W4 /article/body/template/template/wikipedialink[following-sibling::

collectionlink][contains(.,’William de Longespee’)]

Tables 8.20 through 8.23 show the times for obtaining the answer documents and

evaluating the queries in our collections using a variety of SDs. The SD column indicates

the type of SD used to obtain the candidate documents (next column) on which the entire

query is evaluated. The three columns under Answer show the time it takes to evaluate

the query in the candidate documents, and the number of documents and elements in

the final answer. Since these are XPath queries, the number of documents and elements

returned by each query are independent of the SD used for evaluation.

Each row of SD, # Candidate Docs and Times corresponds to a different SD

used for evaluating the query. The “label” row in each section shows the evaluation

times when using the label SD node corresponding to the element returned by the query.

For instance, query R2 returns “item” elements, so the extent documents used are those

from the “item” node in the label SD (8122 documents in total), taking 19.9 seconds

to evaluate the query on them. The p∗ rows report the respective numbers when using

the p∗ node whose AxPRE contains the query (note that the SIDs from Tables 8.2, 8.3,

and 8.4 are indicated). For instance, for query R2 we use node r449 from the p∗ SD,

Chapter 8. Experimental results 113

Table 8.20: RSS2 query results and times

Query SD Candidate Answer

Docs Times (s) # Docs # Elems

label 3518 7.7

R1 p∗ (r468) 3296 7.4 79 79

p∗|c∗ 387 1.3

specific 172 0.6

label 8122 19.9

R2 p∗ (r449) 6509 15.1 6 32

p∗|c∗ 181 1.2

specific 9 0.1

label 31 0.4

R3 p∗ (r653) 18 0.3 6 26

p∗|c∗ 15 0.3

specific 6 0.1

label 8221 19.7

R4 p∗ (r452) 6253 14.1 241 1344

p∗|c∗ 6253 14.6

specific 688 2.0

Chapter 8. Experimental results 114

Table 8.21: PSIMI2 query results and times

Query SD Candidate Answer

Docs Times (s) # Docs # Elems

label 156 45.9

P1 p∗ (p59) 156 45.7 2 14

p∗|c∗ 156 45.7

specific 2 2.5

label 156 45.7

P2 p∗ (p18) 156 45.5 4 8

p∗|c∗ 12 17.1

specific 12 17.1

label 156 45.2

P3 p∗ (p24) 156 44.9 4 4

p∗|c∗ 6 6.5

specific 4 5.8

label 8 9.8

P4 p∗ (p193) 4 4.9 1 1

p∗|c∗ 4 4.8

specific 4 4.9

Chapter 8. Experimental results 115

taking 15.1 seconds to evaluate the query on the 6509 documents in the extent of r449.

Similarly, p∗|c∗ rows show the evaluation times when using p∗|c∗ SD nodes (there may be

more than one containing the query). For instance, the p∗|c∗ node(s) used for query R2

have 181 documents and evaluating R2 on them takes 1.2 seconds. Finally, the last row

in each section labeled “specific” shows DescribeX performance when using an AxPRE

refinement obtained from the structural subquery. For instance, for query R2 the refining

AxPRE would be c[enclosure].fs[enclosure].fs[enclosure] (row r449 in Table 8.9) which

has 9 documents in its extent and evaluating R2 on them takes just 0.1 seconds. This is

the AxPRE we obtain by adapting the SD to R2.

Not surprisingly, our results indicate that query evaluation performance gains are

heavily dependant on both the query and the collection. In some cases, just having the

label SD is description enough and provides good performance, whereas the label SD is

not of much help in others. For instance, using the most specific SD for PSIMI2 query

P4 (Table 8.21) only reduces query evaluation time by less than 50% over the label SD.

At the other end of the spectrum, using the most specific SD for query W1 on Wiki45

(Table 8.23) produces a performance improvement of almost four orders of magnitude,

going from half an hour (label SD) to sub-second (specific SD) evaluation time. In that

same table, there are also cases (like query W3) in which a p∗ by itself provides a big gain,

whereas the most specific SD only brings a modest further improvement. In contrast,

query W4 gets the greatest gain from the most specific SD (over two orders of magnitude

against both the p∗ and the p∗|c∗ SDs).

These results show that, even though creating the most refined SD is not always

valuable, having the right SD for the right query does have an important impact on

the overall performance, and DescribeX provides a powerful mechanism for defining and

creating them.

Chapter 8. Experimental results 116

Table 8.22: Wiki5 query results and times

Query SD Candidate Answer

Docs Times (s) # Docs # Elems

label 13288 54.3

W1 p∗ (w372) 242 2.5 1 1

p∗|c∗ 5 0.2

specific 2 0.2

label 1336 5.9

W2 p∗ (w199) 463 2.2 1 1

p∗|c∗ 1 0.2

specific 1 0.2

label 25192 97.8

W3 p∗ (w333) 128 1.4 1 1

p∗|c∗ 92 1.1

specific 39 0.6

label 5370 25.7

W4 p∗ (w967) 155 1.4 1 1

p∗|c∗ 155 1.5

specific 4 0.2

Chapter 8. Experimental results 117

Table 8.23: Wiki45 query results and times

Query SD Candidate Answer

Docs Times (s) # Docs # Elems

label 182598 1775.8

W1 p∗ (w372) 898 30.9 1 1

p∗|c∗ 7 0.3

specific 3 0.2

label 7341 131.5

W2 p∗ (w199) 1479 37.8 1 1

p∗|c∗ 13 0.8

specific 3 0.3

label 459296 3541.0

W3 p∗ (w333) 736 25.8 1 1

p∗|c∗ 442 16.5

specific 155 5.4

label 61183 872.9

W4 p∗ (w967) 2330 65.1 1 1

p∗|c∗ 2330 67.3

specific 9 0.4

Chapter 8. Experimental results 118

Table 8.24: System comparison: SD graph construction times (s)

Collection Size (MB) DescribeX XSum

XMark1 115 17.3 12.8

XMark5 580 60.8 62.2

XMark10 1150 118.1 122.1

8.4.1 Comparison with summary proposals

The results in Tables 8.20 through 8.23 also provide a comparison with the summary

literature. Proposals like 1-index [MS99], APEX [CMS02], A(k)-index [KSBG02], and

D(k)-index [QLO03] can provide, at best, a description equivalent to the p∗ SD and thus

a similar performance to that reported on the first row of each query. The p∗|c∗ rows give

an indication of the performance provided by the F+B-Index [KBNK02]. DescribeX can

create SDs tailored to a workload that yield query evaluation times one to three orders

of magnitude faster than these proposals (last row of each query). Using a precise SD

can have a significant impact on both candidate and answer documents selection, and

thus on overall query evaluation. Note that no summary in the literature (even recent

proposals that cluster together nodes with the same subtree structure [BCF+05]) can

capture AxPREs such as c|fs.fs or fc.ns.

In addition, we compared DescribeX’s initial construction time against an open-source

XML summarization tool, XSum [ABMP08], which constructs an annotated p∗ SD graph

(a dataguide). Table 8.24 shows comparable results for SD graph construction times be-

tween DescribeX and XSum. We restricted the comparison to SD graph construction

times because XSum does not store either the materialized extents or the EEs; it only

creates a p∗ SD graph. To the best of our knowledge, this is the only structural summa-

rization system publicly available. Moreover, no other work in the extensive literature on

summaries [GW97, MS99, KBNK02, KSBG02, QLO03, BCF+05, PG06b] reports con-

struction times for their systems.

Chapter 8. Experimental results 119

Since XSum can only summarize individual files, we were not able to test it with our

benchmark collections. Thus, we decided to do the comparative evaluation using the

XMark benchmark [BCF+03], which creates one single file of a chosen size.

These results show that DescribeX provides SD graph construction times comparable

to an open-source structural summarization tool that is tailored to only one particular

kind of SD (p∗).

8.4.2 Comparison with XPath evaluators

We performed a comparative analysis against two DB systems, one commercial (X-

Hive/DB2), and the other one open source (XQuest DB3). X-Hive/DB and XQuest

DB were selected because of their good performance in published XQuery benchmarks

[AFM06]. In addition, a comparison against a Saxon4 evaluation without summaries

is provided. Saxon was selected for being a popular processor that can also evaluate

XQuery and XSLT in a file-at-a-time fashion. Saxon is the XPath processor integrated

in the DescribeX’ default implementation (see Chapter 7), but for this comparison we

use the XPath processor stand-alone.

Keep in mind that the selected DB-like XML processors may have additional func-

tionality (such as transaction processing capabilities). The comparison aims to show that

the DescribeX architecture with the default implementation (combining summaries with

Saxon) can achieve results competitive with that of XML indexing engines, even with

gigabyte sized collections. In addition, comparing against Saxon provides a performance

base line for a file-at-a-time evaluation when the collection is stored as XML text files in

the file system and no summary structures are available. The results confirm that, with-

out summaries, Saxon itself lags by several orders of magnitude. We also tried to run our

2http://www.x-hive.com/products/db/
3http://www.axyana.com/xquest/
4http://saxon.sourceforge.net/

Chapter 8. Experimental results 120

Table 8.25: RSS2 query evaluation comparative times (s)

Query DescribeX X-Hive XQuest Saxon

R1 0.6 7.9 3.1 91

R2 0.1 7.4 2.9 93

R3 0.1 7.5 2.0 92

R4 2.0 7.6 2.6(*) 92

Table 8.26: Wiki5 query evaluation comparative times (s)

Query DescribeX X-Hive XQuest Saxon

W1 0.2 25.3 12.2 337

W2 0.2 26.6 15.7 342

W3 0.6 24.7 7.5(*) 354

W4 0.2 25.8 6.5(*) 350

queries on DB2 v95, but the version we currently have does not support following-sibling

or preceding-sibling axes, so our benchmark queries could not be run on DB2.

Tables 8.25 and 8.26 report the times for selecting answer documents using DescribeX,

X-Hive/DB , XQuest DB , and Saxon (without summaries) on the RSS2 and Wiki5

collections, respectively. Comparative times for Wiki45 are not reported because neither

XHive/DB nor XQuest DB could load the entire collection. XQuest DB returned an

incorrect answer for some of the queries, which are marked with an asterisk. DescribeX

times span selecting the answer documents and evaluating the entire query using the

most refined SD (i.e., the “specific” AxPRE refinements reported in Tables 8.20, 8.21,

and 8.22). These times are obtained by adding up the times for getting the candidate

documents and the times for evaluating the entire query on them (using Saxon).

5http://www-306.ibm.com/software/data/db2/9/

Chapter 8. Experimental results 121

The extensive empirical study presented here shows that DescribeX’s file-at-a-time

XPath evaluation architecture can be a competitive alternative (in terms of query re-

sponse times) to DB-like XML query engines, even on gigabyte sized collections. Our

experimental results also demonstrate that DescribeX’s powerful mechanism for adapt-

ing summaries to a workload can provide speedups of one to three orders of magnitude

compared to other proposals.

Chapter 9

Conclusion

This thesis focuses on addressing the need to describe the actual heterogeneous structure

of web collections of XML documents. Understanding the metadata structure of such

collections is fundamental for writing meaningful XPath queries and evaluating them

efficiently. We propose a novel framework for describing the structure of a web collection

based on highly customizable summaries that can be conveniently tailored by axis paths

regular expressions (AxPREs).

Our main results demonstrate the scalability of the AxPRE summary refinement and

stabilization (the key enablers for tailoring summaries) using gigabyte XML collections.

In addition, DescribeX’s powerful mechanism for adapting summaries to a workload

can provide speedups of one to three orders of magnitude compared to other proposals.

The experiments also show that DescribeX’s file-at-a-time XPath evaluation architec-

ture (supporting fast evaluation of complex XPath workloads over large web document

collections) can be a very competitive alternative (in terms of query response times) to

DB-like XML query engines, even on gigabyte sized collections.

Familiar research issues can be re-visited in the context of AxPRE summaries, such as

providing guidelines for selecting good summaries (similar to schema design) and infer-

ring general and succinct AxPRE expressions from an XML collection (similar to DTD

122

Chapter 9. Conclusion 123

inference from instances). Developing tools for metadata management is also addressed

by a recent schema summarization proposal [YJ06]. In this direction, creating summaries

that describe how metadata labels (including some generated using schema abstraction

and summarization techniques) are used in a given instance seems promising.

In the context of XML messaging, we came across the problem of doing schema

mapping when the schemas are too general and only very small subsets are normally

used. The schema mapping problem consists of defining correspondences between two

schemas in order to translate data from one to the other [PVM+02]. If we need to define

a complete mapping between two very lax, broad schemas, we will end up with a large

number of correspondences that are irrelevant for any single instance. An interesting

research direction would be to develop a strategy to do summary mapping in the same

spirit of schema mapping, perhaps using EEs definitions to create the correspondences

in XPath. Another option would be to use DescribeX summaries to determine what

schema elements do not apply to a given collection and then only define correspondences

for those elements that are actually used. This would significantly reduce the number

of correspondences needed to define a meaningful mapping hence simplifying the overall

data translation process.

The notion of bisimulation originated in fields other than databases (concurrency

theory, verification, modal logic, set theory), where it continues to find applications. It

would be interesting to explore whether the more flexible notion introduced in this thesis

(selective bisimilarity applied to subgraphs described by AxPREs) can also find novel

applications in such areas.

Since this XPath-to-AxPRE syntactic translation can be applied to any XPath query,

it can also be used to translate XPlainer queries [CLR07] to AxPREs. XPlainer ex-

pressions have the same syntax as XPath but a different semantics which provides an

explanation in the form of the intermediate nodes, a kind of data provenance of the

answer.

Chapter 9. Conclusion 124

Open research issues also include creating AxPREs for the XPlainer expressions of

a query, so that DescribeX can adapt SDs to accelerate the retrieval of intermediate

nodes. In addition, we plan to study the impact of adjusting the workload (e.g, by finding

frequent patterns), and also how to optimize SD selection given budget constraints. There

are also opportunities for exploiting the flexibility available in AxPRE summaries in the

context of the more traditional summary applications to indexing, selectivity estimation,

and query optimization.

Bibliography

[ABMP07] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yannis Papakon-

stantinou. Structured materialized views for XML queries. In Proceedings of

the 33rd International Conference on Very Large Data Bases, 2007.

[ABMP08] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese. Path

summaries and path partitioning in modern XML databases. World Wide

Web, 11(1):117–151, 2008.

[ACKR08] M. S. Ali, Mariano P. Consens, Shahan Khatchadourian, and Flavio Rizzolo.

DescribeX: interacting with AxPRE summaries. In Proceedings of the 24th

International Conference on Data Engineering (Demonstration), 2008.

[ADR+04] Giuseppe Amato, Franca Debole, Fausto Rabitti, Pasquale Savino, and Pavel

Zezula. A signature-based approach for efficient relationship search on XML

data collections. In Second International XML Database Symposium, XSym,

pages 82–96, 2004.

[AFM06] Loredana Afanasiev, Massimo Franceschet, and Maarten Marx. XCheck:

a platform for benchmarking XQuery engines. In Proceedings of the 32nd

International Conference on Very Large Data Bases, pages 1247–1250, 2006.

[AKJP+02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick

Koudas, and Divesh Srivastava. Structural joins: A primitive for efficient

125

Bibliography 126

XML query pattern matching. In Proceedings of the 18th International Con-

ference on Data Engineering, pages 141–, 2002.

[AMM05] Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels. MemBeR:

A micro-benchmark repository for XQuery. In Third International XML

Database Symposium, XSym, pages 144–161, 2005.

[BCF+03] Ralph Busse, Mike Carey, Daniela Florescu, Martin Kersten, Ioana

Manolescu, Albrecht Schmidt, and Florian Waas. XMark: An XML bench-

mark project. http://www.xml-benchmark.org/, 2003.

[BCF+05] Peter Buneman, Byron Choi, Wenfei Fan, Robert Hutchison, Robert Mann,

and Stratis Viglas. Vectorizing and querying large XML repositories. In

Proceedings of the 21st International Conference on Data Engineering, pages

261–272, 2005.

[BCM05] Attila Barta, Mariano P. Consens, and Alberto O. Mendelzon. Benefits

of path summaries in an XML query optimizer supporting multiple access

methods. In Proceedings of the 31st International Conference on Very Large

Data Bases, pages 133–144, 2005.

[Ber94] Elisa Bertino. Index configuration in object-oriented databases. VLDB Jour-

nal, 3(3):355–399, 1994.

[BFK05] Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. Structural properties

of XPath fragments. Theoretical Computer Science, 336(1), 2005.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:

Optimal XML pattern matching. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 310–321, 2002.

Bibliography 127

[BNST06] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. Inference

of concise DTDs from XML data. In Proceedings of the 32nd International

Conference on Very Large Data Bases, pages 115–126, 2006.

[BOB+04] Andrey Balmin, Fatma Ozcan, Kevin S. Beyer, Roberta Cochrane, and

Hamid Pirahesh. A framework for using materialized XPath views in XML

query processing. In Proceedings of the 30th International Conference on

Very Large Data Bases, pages 60–71, 2004.

[BW03] Michael Barg and Raymond K. Wong. A fast and versatile ath index for

querying semi-structured data. In Proceedings of the 8th DASFAA, pages

249–256, 2003.

[CLR07] Mariano P. Consens, John W. Liu, and Flavio Rizzolo. XPlainer: Visual

explanations of XPath queries. In Proceedings of the 23rd International

Conference on Data Engineering, 2007.

[CM94] Mariano P. Consens and Tova Milo. Optimizing queries on files. In Proceed-

ings of the 1994 ACM SIGMOD International Conference on Management

of Data, pages 301–312, 1994.

[CMS02] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: An adaptive path

index for XML data. In Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, pages 121–132, 2002.

[CR07] Mariano P. Consens and Flavio Rizzolo. Fast answering of XPath query

workloads on web collections. In Fifth International XML Database Sympo-

sium, XSym, 2007.

[CRV08] Mariano P. Consens, Flavio Rizzolo, and Alejandro A. Vaisman. AxPRE

summaries: Exploring the (semi-)structure of XML web collections. In Pro-

ceedings of the 24th International Conference on Data Engineering, 2008.

Bibliography 128

[CSF+01] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gı́sli R. Hjaltason, and

Moshe Shadmon. A fast index for semistructured data. In Proceedings of

the 27th International Conference on Very Large Data Bases, pages 341–350,

2001.

[CVZ+02] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and

Carlo Zaniolo. Efficient structural joins on indexed XML documents. In

Proceedings of the 28th International Conference on Very Large Data Bases,

pages 263–274, 2002.

[CYWY03] Jiefeng Cheng, Ge Yu, Guoren Wang, and Jeffrey Xu Yu. PathGuide: An

efficient clustering based indexing method for XML path expressions. In

Proceedings of the 8th DASFAA, pages 257–, 2003.

[DG06] Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus. SIGIR

Forum, 2006.

[DPGM04] Natasha Drukh, Neoklis Polyzotis, Minos N. Garofalakis, and Yossi Matias.

Fractional XSKETCH synopses for XML databases. In Second International

XML Database Symposium, XSym, pages 189–203, 2004.

[DPP04] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algo-

rithm for computing bisimulation equivalence. Theoretical Computer Sci-

ence, 311(1-3):221–256, 2004.

[FGW+07] George H. L. Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens, Sofia

Brenes, and Jan Paredaens. A methodology for coupling fragments of XPath

with structural indexes for XML documents. In Proceedings of the 11th In-

ternational Symposium on Database Programming Languages, DBPL 2007,

2007.

Bibliography 129

[GGR+03] Minos Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and

Kyuseok Shim. XTRACT: Learning document type descriptors from XML

document collections. Data Minining and Knowledge Discovery, 7(1):23–56,

2003.

[GKP03] Georg Gottlob, Christoph Koch, and Reinhard Pichler. XPath processing in

a nutshell. SIGMOD Record, 32(1):12–19, 2003.

[GKP05] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms

for processing XPath queries. ACM Transactions on Database Systems

(TODS), 30(2):444–491, 2005.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In Proceedings of the 23rd

International Conference on Very Large Data Bases, pages 436–445, 1997.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[HY04] Hao He and Jun Yang. Multiresolution indexing of XML for frequent queries.

In Proceedings of the 20th International Conference on Data Engineering,

pages 683–694, 2004.

[JLWO03] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: In-

dexing XML data for efficient structural joins. In Proceedings of the 19th

International Conference on Data Engineering, pages 253–263, 2003.

[JWLY03] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig

joins on indexed XML documents. In Proceedings of the 29th International

Conference on Very Large Data Bases, pages 273–284, 2003.

Bibliography 130

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F. Ko-

rth. Covering indexes for branching path queries. In Proceedings of the 2002

ACM SIGMOD International Conference on Management of Data, pages

133–144, 2002.

[KBNS02] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Pradeep

Shenoy. Updates for structure indexes. In Proceedings of the 28th Inter-

national Conference on Very Large Data Bases, pages 239–250, 2002.

[KM90] Alfons Kemper and Guido Moerkotte. Advanced query processing in object

bases using access support relations. In Proceedings of the 16th International

Conference on Very Large Data Bases, pages 290–301, 1990.

[KSBG02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes. Ex-

ploiting local similarity for indexing paths in graph-structured data. In Pro-

ceedings of the 18th International Conference on Data Engineering, pages

129–140, 2002.

[KYU01] Dao Dinh Kha, Masatoshi Yoshikawa, and Shunsuke Uemura. An XML

indexing structure with relative region coordinate. In Proceedings of the

17th International Conference on Data Engineering, pages 313–320, 2001.

[LLCC05] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From region

encoding to extended Dewey: On efficient processing of XML twig pattern

matching. In Proceedings of the 31st International Conference on Very Large

Data Bases, pages 193–204, 2005.

[LM01] Quanzhong Li and Bongki Moon. Indexing and querying XML data for

regular path expressions. In Proceedings of the 27th International Conference

on Very Large Data Bases, pages 361–370, 2001.

Bibliography 131

[LM03] Quanzhong Li and Bongki Moon. Partition based path join algorithms for

XML data. In Proceedings of the 14th International Conference on Database

and Expert Systems Applications, DEXA 2003, pages 160–170, 2003.

[LS00] Hartmut Liefke and Dan Suciu. XMILL: An efficient compressor for XML

data. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, pages 153–164, 2000.

[LWZ06] Laks V.S. Lakshmanan, Hui (Wendy) Wang, and Zheng (Jessica) Zhao. An-

swering tree pattern queries using views. In Proceedings of the 32nd Inter-

national Conference on Very Large Data Bases, 2006.

[MdR05] Maarten Marx and Maarten de Rijke. Semantic characterizations of naviga-

tional XPath. SIGMOD Record, 34(2):41–46, 2005.

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Tax-

onomy of XML schema languages using formal language theory. ACM Trans-

actions on Internet Technology (TOIT), 5(4):660–704, 2005.

[MRV04] Alberto O. Mendelzon, Flavio Rizzolo, and Alejandro A. Vaisman. Indexing

temporal XML documents. In Proceedings of the 30th International Confer-

ence on Very Large Data Bases, pages 216–227, 2004.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In Proceed-

ings of the 7th International Conference on Database Theory, pages 277–295,

1999.

[MS05] Bhushan Mandhani and Dan Suciu. Query caching and view selection for

XML databases. In Proceedings of the 31st International Conference on Very

Large Data Bases, pages 469–480, 2005.

Bibliography 132

[MS07] Anders Møller and Michael I. Schwartzbach. XML graphs in program analy-

sis. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation, PEPM ’07, 2007.

[MW95] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in

graph databases. SIAM Journal on Computing, 24(6):1235–1258, 1995.

[NUWC97] Svetlozar Nestorov, Jeffrey D. Ullman, Janet L. Wiener, and Sudarshan S.

Chawathe. Representative objects: Concise representations of semistruc-

tured, hierarchial data. In Proceedings of the 13th International Conference

on Data Engineering, pages 79–90, 1997.

[ODPC06] Nicola Onose, Alin Deutsch, Yannis Papakonstantinou, and Emiran Curt-

mola. Rewriting nested XML queries using nested views. In Proceedings of

the 2005 ACM SIGMOD International Conference on Management of Data,

2006.

[PG02] Neoklis Polyzotis and Minos N. Garofalakis. Statistical synopses for graph-

structured XML databases. In Proceedings of the 2002 ACM SIGMOD In-

ternational Conference on Management of Data, pages 358–369, 2002.

[PG06a] Neoklis Polyzotis and Minos N. Garofalakis. XCLUSTER synopses for struc-

tured XML content. In Proceedings of the 22nd International Conference on

Data Engineering, 2006.

[PG06b] Neoklis Polyzotis and Minos N. Garofalakis. Xsketch synopses for xml data

graphs. ACM Transactions on Database Systems (TODS), 31(3):1014–1063,

2006.

[PGI04] Neoklis Polyzotis, Minos N. Garofalakis, and Yannis E. Ioannidis. Approx-

imate XML query answers. In Proceedings of the 2004 ACM SIGMOD In-

ternational Conference on Management of Data, pages 263–274, 2004.

Bibliography 133

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.

SIAM Journal on Computing, 16(6):973–989, 1987.

[PVM+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández,

and Ronald Fagin. Translating web data. In Proceedings of the 28th Inter-

national Conference on Very Large Data Bases, 2002.

[QLO03] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-index: An adaptive

structural summary for graph-structured data. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, pages

134–144, 2003.

[RM01] Flavio Rizzolo and Alberto O. Mendelzon. Indexing XML data with ToXin.

In Proceedings of 4th International Workshop on the Web and Databases,

pages 49–54, 2001.

[RM04] Praveen Rao and Bongki Moon. PRIX: Indexing and querying XML using

prufer sequences. In Proceedings of the 20th International Conference on

Data Engineering, pages 288–300, 2004.

[RV08] Flavio Rizzolo and Alejandro A. Vaisman. Temporal XML: Modeling, index-

ing, and query processing. The International Journal on Very Large Data

Bases, 2008.

[Sch04] Thomas Schwentick. XPath query containment. SIGMOD Record,

33(1):101–109, 2004.

[SCKT07] Reza Samavi, Mariano Consens, Shahan Khatchadourian, and Thodoros

Topaloglou. Exploring PSI-MI XML collections using DescribeX. Journal of

Integrative Bioinformatics, 4(3), 2007.

Bibliography 134

[SK85] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in net-

works. The Computer Journal, 28:5–8, 1985.

[Val87] Patrick Valduriez. Join indices. ACM Transactions on Database Systems

(TODS), 12(2):218–246, 1987.

[VMT04] Zografoula Vagena, Mirella Moura Moro, and Vassilis J. Tsotras. Efficient

processing of XML containment queries using partition-based schemes. In

Proceedings of the 8th International Database Engineering and Applications

Symposium, IDEAS 2004, pages 161–170, 2004.

[W3C99] W3C. XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath,

1999.

[W3C07] W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20,

2007.

[WJLY03] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree coding

and efficient processing of containment joins. In Proceedings of the 19th

International Conference on Data Engineering, pages 391–, 2003.

[WPFY03] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: A dynamic

index method for querying XML data by tree structures. In Proceedings of

the 2003 ACM SIGMOD International Conference on Management of Data,

pages 110–121, 2003.

[XH94] Zhaohui Xie and Jiawei Han. Join index hierarchies for supporting efficient

navigations in object-oriented databases. In Proceedings of the 20th Inter-

national Conference on Very Large Data Bases, pages 522–533, 1994.

Bibliography 135

[XÖ05] Wanhong Xu and Z. Meral Özsoyoglu. Rewriting XPath queries using mate-

rialized views. In Proceedings of the 31st International Conference on Very

Large Data Bases, pages 121–132, 2005.

[Yan90] Mihalis Yannakakis. Graph-theoretic methods in database theory. In Pro-

ceedings of the 9th Symposium on Principles of Database Systems, pages

230–242, 1990.

[YHSY04] Ke Yi, Hao He, Ioana Stanoi, and Jun Yang. Incremental maintenance of

XML structural indexes. In Proceedings of the 2004 ACM SIGMOD Inter-

national Conference on Management of Data, pages 491–502, 2004.

[YJ06] Cong Yu and H. V. Jagadish. Schema summarization. In Proceedings of the

32nd International Conference on Very Large Data Bases, pages 319–330,

2006.

[YLT03] Matthew Young-Lai and Frank Wm. Tompa. One-pass evaluation of region

algebra expressions. Information Systems, 28(3):159–168, 2003.

[ZKÖ04] Ning Zhang, Varun Kacholia, and M. Tamer Özsu. A succinct physical

storage scheme for efficient evaluation of path queries in XML. In Proceedings

of the 20th International Conference on Data Engineering, 2004.

[ZÖIA06] Ning Zhang, M. Tamer Özsu, Ihab F. Ilyas, and Ashraf Aboulnaga. FIX:

Feature-based indexing technique for XML documents. In Proceedings of the

32nd International Conference on Very Large Data Bases, 2006.

Appendix A

XPath 1.0 formal semantics

We provide in this appendix a concise definition of the formal semantics of XPath 1.0

[W3C99]. Several semantic characterizations of XPath 1.0 have been proposed recently

[GKP03, MdR05, BFK05]. As part of the foundation of DescribeX, we have extended the

XPath formalization given in [GKP05] to better capture all the relevant constructs in the

standard. A significant addition to the rules is the proper treatment of the interaction

of parentheses followed by predicates. Parenthesis use in XPath does not just affect

precedence and grouping of operators, it does in fact change the semantics [CLR07].

Since XPath was designed to be embedded in other XML languages, it provides

information about the context in which an expression will be evaluated. Given that

XPath manipulates node sets, in addition to the node from which to start the evaluation,

the context has to contain the node’s position relative to a node set and the node set

size. This node set could be the result of the evaluation of another XPath expression or

a construct of the host language.

Definition A.1 (Context) Let axis graph A = (Inst , Axes, Label, λ) be an axis graph,

S ⊆ Inst∗ and v ∈ S. The context of v in S with respect to axis is defined as t =

〈v, posaxis(v, S), |S|〉. We say that v is the context node, posaxis(v, S) the context position

of v in S w.r.t. ≺axis, and |S| the context size. �

136

Appendix A. XPath 1.0 formal semantics 137

E [[locpath]](〈v, k, n〉) := D[[locpath]](v) (A.1)

E [[position()]](〈v, k, n〉) := k (A.2)

E [[last()]](〈v, k, n〉) := n (A.3)

E [[Op(e1, . . . , em)]](〈v, k, n〉) := F [[Op]](E [[e1]](〈v, k, n〉), . . . , E [[em]](〈v, k, n〉)) (A.4)

Figure A.1: Semantic definitions of XPath expressions

Each expression evaluates relative to a context and returns a value of one of four types:

number, node set, string and boolean. Other important XPath syntactic constructs are

location paths, which are special cases of expressions. Location paths come in two flavors:

absolute and relative. An absolute location path consists of / optionally followed by a

relative location path. A relative location path consists of one or more location steps

separated by /. (Since location steps are expressions, they also evaluate relative to a

context.)

We define next the formal semantics of XPath expression, location paths and operator

with functions E , L and F .

Definition A.2 (Semantic Functions E, L and F) Let Op be a place holder for op-

erators ArithOp ∈ {+, −, ∗, div, mod}, RelOp ∈ { =, 6=, ≤, <, ≥, >}, EqOp ∈ {=, 6=, },

and GtOp ∈ {≤, <,≥, >}. Let e, e1 . . . em be expressions and locpath, locpath1, . . . ,

locpathm location paths. The semantics of XPath expressions are defined by semantics

functions E and L in Figure A.1 and A.2, and the semantics of operators are defined by

F in Figures A.3 and A.4. Function E defines the semantics of expressions on a context,

whereas function L defines the semantics of locations paths on a node. �

The distinction between context-based and node-based evaluation comes from the

fact that some functions like position() and last() need to be evaluated on a context

(they return the context position and the context size respectively). The evaluation of

Appendix A. XPath 1.0 formal semantics 138

D[[locpath1| . . . |locpathm]](v) :=
m⋃

i=1

L[[locpathi]](v) (A.5)

L[[(locpath)[e1] . . . [em]]](v) := {w |w ∈ S ∧ S = D[[locpath]](v) (A.6)

m∧
i=1

(E [[ei]](w, posdoc(w, S), |S|) = true)}

L[[locpath1/locpath2]](v) :=
⋃

w∈L[[locpath1]](v)

L[[locpath2]](w) (A.7)

L[[/locpath]](v) := L[[locpath]](v0) (A.8)

L[[axis :: l[e1] . . . [em]]](v) := {w |w ∈ S ∧ S = {v′ | 〈v, v′〉 ∈ axis ∧ λ(v′) = l} (A.9)

m∧
i=1

(E [[ei]](w, posaxis(w, S), |S|) = true)}

Figure A.2: Semantic definitions of XPath location paths

location paths, on the other hand, requires only the context node.

Below we illustrate through a series of examples how these semantic functions are used

for evaluating XPath expressions. The examples cover the following four expressions: find

all expRoles, find the last expRole, find the first expRole of each expRoleList, and find

the first expRole in the entire collection. For these examples we use XPath abbreviated

syntax and the XML axis graph A of our running example.

Let us start with an expression with a single step that returns all expRoles in the

collection.

Example A.1 Let t0 be the context 〈v0, 1, 1〉 and let

e1 = descendant :: expRole

The evaluation of e1 on A and t0 returns all expRoles in the collection. In order to

evaluate e1 on t0 we apply the semantic rules from Figures A.1 and A.2. Since e is an

expression containing a location path, the first rule we apply is (A.1) obtaining

E [[descendant :: expRole]](t0) := L[[descendant :: expRole]](v0)

Appendix A. XPath 1.0 formal semantics 139

Rule (A.1) translates the evaluation on the entire context t0 = 〈v0, 1, 1〉 to an evaluation

on just the context node v0. Since e1 consists of only one location step, we finish the

evaluation by applying rule (A.9) with no predicates [e1] . . . [em] and get

L[[descendant :: expRole]](v0) :=

{w |w ∈ S ∧ S = {v | 〈v0, v〉 ∈ descendant ∧ λ(v) = expRole}}

which returns all w’s that are descendant expRoles of v0. �

Now, we consider a single step expression with a predicate that returns the last

expRole in the collection.

Example A.2 Let t0 be the context 〈v0, 1, 1〉 and let

e2 = descendant :: expRole[position() = last()]

The evaluation of e2 on A and t0 returns the last expRole in the collection. As in the

previous example, the application of rule (A.1) transforms the evaluation on context t0 =

〈v0, 1, 1〉 to an evaluation on node v0. Since e2 consists only of a location step, we apply

rule (A.9) and get

L[[descendant :: expRole[position() = last()]]](v0) :=

{w1 |w1 ∈ S ∧ S = {v | 〈v0, v〉 ∈ descendant ∧ λ(v) = expRole}∧

t1 = 〈w1, posdescendant(w1, S), |S|〉 ∧ E [[position() = last()]](t1) = true}

which returns all w1’s that are descendant expRoles of v0 and satisfy the predicate position() =

last(). In order to evaluate this predicate on each w1, we go back to function E by in-

voking rule (A.4) of Figure A.1 with the “=” operator, the new context t1 and F [[= :

num× num→ bool]] obtaining

E [[(position() = last())]](t1) :=

Appendix A. XPath 1.0 formal semantics 140

F [[=]](E [[position()]](t1), E [[last()]](t1)) := E [[position()]](t1) = E [[last()]](t1)

This step of the evaluation checks whether each w1 is in fact the last in the sequence

of descendant expRoles by invoking E [[position()]](t1) and E [[last()]](t1) (rules (A.2) and

(A.3) respectively) and comparing their returned values for equality. If they are equal for

some w1 the evaluation of the location step returns the w1 or else the empty node set.

This completes the evaluation of e2. �

Next, we introduce composition with a more complex expression that returns the first

expRole of each expRoleList in the collection.

Example A.3 Let t0 be the context 〈v0, 1, 1〉 and let

e3 = descendant :: expRoleList/child :: expRole[1]

The evaluation of e3 on A and t0 returns the first expRole of each expRoleList in the

collection. As in the previous example, the application of rule (A.1) transforms the

evaluation on context t0 = 〈v0, 1, 1〉 to an evaluation on node v0. Since e3 consists of a

composition of a location step and a location path, we apply rule (A.7) and get

L[[descendant :: expRoleList/child :: expRole[1]]](v0) :=⋃
w1∈L[[descendant::expRoleList]](v0)

L[[child :: expRole[1]]](w1)

which entails evaluating the location path on the union of all w1’s that are returned by

the evaluation of the location step. In order to obtain those w1’s we apply rule (A.9) to

the location step descendant :: expRoleList obtaining

L[[descendant :: expRoleList]](v0) :=

{w1 |w1 ∈ S ∧ S = {v | 〈v0, v〉 ∈ descendant ∧ λ(v) = expRoleList}}

and finish with the evaluation of the first part of the composition. Next we evaluate the

location path by applying rule (A.9) and get

L[[child :: expRole[1]]](w1) := {w2 |w2 ∈ S ∧S = {v | 〈w1, v〉 ∈ child∧λ(v) = expRole}∧

Appendix A. XPath 1.0 formal semantics 141

t2 = 〈w2, poschild(w2, S), |S|〉 ∧ E [[position() = 1]](t2) = true}

which returns all w2’s that are child expRoles of the w1’s and satisfy the predicate [1]

(which is [position() = 1] in unabbreviated syntax). In order to evaluate the predicate

we invoke rule (A.4) of Figure A.1 with the “=” operator, the new context t2 and F [[= :

num× num→ bool]] and get

E [[(position() = 1)]](t2) := F [[=]](E [[position()]](t2), 1) := E [[position()]](t2) = 1

This step of the evaluation checks whether the w2 is in fact the first in the sequence of

child expRoles of w1 by invoking E [[position()]](t2) (rule (A.2)) and see if it returns 1.

Since the predicate is part of the location path, it is evaluated on each of the w2’s. Thus,

the evaluation of e3 will return one w2 (the first one in the sequence) for each w1. �

Finally, let us illustrate the impact of parentheses by considering an expression that

returns the first figure in the entire document.

Example A.4 Let t0 be the context 〈v0, 1, 1〉 and let

e4 = (descendant :: expRoleList/child :: expRole)[1]

The evaluation of e4 on A and t0 returns the first expRole in the entire collection. (Notice

the difference with the previous example which returns the first expRole of each expRo-

leList.) As before, we begin the evaluation by invoking rule (A.1). Then we apply rule

(A.6) to the parenthesized expression obtaining

L[[(descendant :: expRoleList/child :: expRole)[1]]](v0) :=

{w2 |w2 ∈ S ∧ S = L[[descendant :: expRoleList/child :: expRole]](v0)∧

t2 = 〈w2, posdoc(w2, S), |S|〉 ∧ E [[position() = 1]](t2) = true)}

Now we have to evaluate the composition by invoking rule (A.7) and get

L[[descendant :: expRoleList/child :: expRole]](v0) :=

Appendix A. XPath 1.0 formal semantics 142

⋃
w1∈L[[descendant::expRoleList]](v0)

L[[child :: expRole]](w1)

which entails evaluating the location path on the union of all w1’s that are returned by

the evaluation of the location step. Notice that, in contrast with the previous example, the

predicate is applied to the result of the composition instead of being part of the location

path. We continue by applying rule (A.9) to location step descendant :: expRoleList in

order obtain the w1’s to be used by the location path obtaining

L[[descendant :: expRoleList]](v0) :=

{w1 |w1 ∈ S ∧ S = {v | 〈v0, v〉 ∈ descendant ∧ λ(v) = expRoleList}}

Next we invoke (A.9) to evaluate the location step child :: expRole and get

L[[child :: expRole]](w1) := {w2 |w2 ∈ S ∧ S = {v | 〈w1, v〉 ∈ descendant∧

λ(v) = expRole} ∧ t1 = 〈w2, poschild(w2, S), |S|〉}

which returns all w2 that are child expRole of the w1. We then evaluate the predicate

E [[(position() = 1)]](t2) as before. However, one difference with the previous example is

that here there is only one sequence of w2’s (rather than one sequence for each w1). That

is the reason why the context in the evaluation of position() = 1 changed from t1 (based

on the descendant axis) to t2 (based on the entire axis graph). Thus, the evaluation of

e4 returns only one node: the last expRole in the collection. �

Appendix A. XPath 1.0 formal semantics 143

F [[ArithOp : num× num→ num]](n1, n2) := n1 ArithOp n2

F [[constant number n :→ num]]() := n

F [[count : nset→ num]](S) := |S|

F [[and : bool × bool→ bool]](b1, b2) := b1 ∧ b2

F [[or : bool × bool→ bool]](b1, b2) := b1 ∨ b2

F [[not : bool→ bool]](b) := ¬b

F [[true :→ bool]]() := true

F [[false :→ bool]]() := false

F [[boolean : nset→ bool]](S) := if S 6= ∅ then true else false

F [[boolean : str → bool]](s) := if s 6= “” then true else false

F [[boolean : num→ bool]](n) := if n 6= 0 and n 6= NaN then true else false

F [[EqOp : bool × (str
⋃

num
⋃

bool)→ bool]](b, x) := b EqOp F [[boolean]](x)

F [[EqOp : num× (str
⋃

num)→ bool]](n, x) := n EqOp F [[number]](x)

F [[EqOp : str × str → bool]](s1, s2) := s1 EqOp s2

F [[RelOp : nset×nset→ bool]](S1, S2) := ∃v1 ∈ S1, v2 ∈ S2 : strval(v1) RelOp strval(v2)

F [[RelOp : nset× num→ bool]](S, n) := ∃v ∈ S : to number(strval(v)) RelOp n

F [[RelOp : nset× str → bool]](S, s) := ∃v ∈ S : strval(v) RelOp s

F [[RelOp : nset× bool→ bool]](S, b) := F [[boolean]](S) RelOp b

F [[GtOp : (str
⋃

num
⋃

bool) × (str
⋃

num
⋃

bool) → bool]](x1, x2) := F [[number]](x1)

GtOp F [[number]](x2)

Figure A.3: Semantic definitions of XPath basic operators

Appendix A. XPath 1.0 formal semantics 144

F [[id : nset→ nset]](S) :=
⋃

v∈S F [[id]](strval(v))

F [[id : str → nset]](s) := deref ids(s)

F [[number : str → num]](s) := to number(s)

F [[number : bool→ num]](b) := if b = true then 1 else 0

F [[number : nset→ num]](S) := F [[number]](F [[string]](S))

F [[sum : nset→ num]](S) :=
∑

v∈S to number(strval(v))

F [[constant string s :→ str]]() := s

F [[string : num→ str]](n) := to string(n)

F [[string : nset→ str]](S) := if S = ∅ then “” else strval(first<doc
(S))

F [[string : bool→ str]](b) := if b = true then “true” else “false”

Figure A.4: Semantic definitions of XPath additional operators

Appendix B

Declarative debugging of XPath

queries with DescribeX

In this appendix, we present DescribeX-Eclipse, a visual interactive tool for exploring

XML collections and explaining XPath queries. DescribeX-Eclipse is built on top of the

DescribeX engine implementation presented in Chapter 7 and includes a GUI and addi-

tional XML retrieval tools implemented by other colleagues [ACKR08]. This visual tool

provides additional evidence of the wide-range of applications the DescribeX framework

has in the area of XML processing.

DescribeX-Eclipse is written in Java for the Eclipse1 plug-in framework and its existing

tools, views, and editors. Eclipse is a popular open source platform built by an open com-

munity of tool providers. DescribeX-Eclipse is also integrated with the XPlainer-Eclipse

plug-in [CLR07], and fully supports declarative debugging of any arbitrary XPath engine,

including implementation dependant intermediate results. XPlainer-Eclipse extends the

XML and XPath development facilities available in the Eclipse environment with the abil-

ity to support explanation queries. The DescribeX-Eclipse tool extends XPlainer-Eclipse

with the structural description capabilities of the DescribeX framework.

1http://www.eclipse.org/

145

Appendix B. Declarative debugging of XPath queries with DescribeX146

Figure B.1: DescribeX-Eclipse user interface

Appendix B. Declarative debugging of XPath queries with DescribeX147

DescribeX-Eclipse allows developers to navigate between different views of the local

and global structure of large (multi-gigabyte size) collections in order to obtain enough

structural information for writing and debugging XPath queries. The graph based vi-

sualization employed by DescribeX-Eclipse makes it straightforward to see the different

path structures that are present in the collection. DescribeX-Eclipse functionality helps

a user in quickly understanding what parts of a collection schema (if present) are used

in practice.

In order to explain how DescribeX-Eclipse works, let us go back to our developer,

Sue, who is trying to aggregate podcasts that are part of a series. In a series feed, items

are sorted from the newest (the first) to the oldest (the last). The feed may span several

days or weeks, and there might be more than one item per day. In particular, Sue is

interested now in items containing pubDate, link and enclosure elements. In addition,

she aggregates the item(s) of the latest day in the series separately from the rest. For

obtaining all items that do not belong to the latest day she runs the query

Q4 = /rss/channel[item[position()>1]]/item[link][enclosure]

[not(pubDate=../item[1]/pubDate)]

which returns all items containing link, enclosure and pubDate from previous days.

Using DescribeX-Eclipse Sue can create an SD like the one shown in the screenshot

of Figure B.1. The screenshot shows seven views, and the SD graph is displayed in the

DescribeXEditor (view (1)) and outline (view (4)). The outline view shows the entire

SD graph with the fragment that appears in the DescribeXEditor highlighted in a light

blue box.

The SD of Figure B.1 has a node for each item that has a different substructure.

The edges represent c axis relations between elements. The fragment of the SD graph

displayed in view (1) tells the developer there are three kinds of items in the collection,

each one containing a different combination of elements. For instance, the third item

node in the SD (in yellow) has title, description, pubDate, duration, guid, enclosure and

Appendix B. Declarative debugging of XPath queries with DescribeX148

link (all in yellow) and represents all item elements in the collection with that particular

structure.

Since the behavior of a query is instance dependant, in order to debug the query

effectively Sue needs to run it on all candidate documents. A document is a candidate

for a query Q when it returns a non-empty answer for the structural subquery of Q.

A visual explanation, which shows the XPath result and intermediate nodes, is pro-

vided by views (2) and (6). Given an XPath query and an input XML document, an

explanation of the query gives as answer all the XPath result nodes together with in-

termediate nodes. The intermediate nodes are those nodes resulting from the partial

evaluation of the subexpressions of the original XPath query that contribute to the an-

swer. Obtaining the explanation of a complex XPath query can be challenging, as shown

in the example. Visual explanations provide a representation of the basic mechanism at

play during XPath processing.

Views (2) and (6), together with view (5), correspond to the XPlainer-Eclipse plug-in

[CLR07]. The XPlainer Editor (view (2)) shows one of the candidate documents with

an explanation of Q4. View (5) displays the query and the number of elements in the

answer. View (6) displays the XPlainer tree, a particular parse tree for the query that

provides an intuitive representation of its structure. Each node in the XPlainer tree

corresponds to one step or predicate in Q4. The intermediate document nodes of each

step are identified by the same sequence number in both XPlainer tree and the XPlainer

Editor. For instance, item nodes 〈4.1〉, 〈4.2〉 and 〈4.3〉 (view (2)) are the answer of the

query, which corresponds to step 〈4〉 in the XPlainer tree (view (6)).

Since current XPath query evaluation tools do not provide intermediate nodes, the

only available debugging techniques involve either partial evaluation of subexpressions or

evaluating reversed axis. A partial evaluation cannot see beyond the current evaluation

step, so it has no way of filtering out nodes that will have no effect in the final answer. For

instance, a partial evaluation of the /rss/channel subexpression would return all channels

Appendix B. Declarative debugging of XPath queries with DescribeX149

below rss elements, including those that do not satisfy the [item[position() > 1]] predicate

and the rest of the query. An evaluation that reverses the axis will not necessarily

give us exactly the intermediate nodes either when recursive axes like descendant or

following are involved. Thus, visual explanations are necessary in order to obtain the

exact set of intermediate nodes that contribute to the answer. An in-depth study of

visual explanations can be found in [CLR07].

The DXFileListView (view (7)) lists the documents in the extent of the active node

(the yellow item in the DescribeXEditor) that are also candidates for the query shown

in View (5). The documents highlighted in the DXFileListView are the explanation doc-

uments, i.e. those candidates that satisfy the complete query. The notions of candidate

an explanation documents are key to the integration of XPlainer into the DescribeX

framework (see Chapter 6.4). The developer can then open any candidate or explanation

document in the DXFileListView with the XPlainer Editor and obtain explanations of

either Q4 or different relaxations of Q4.

A relaxation of a query is obtained by selectively collapsing portions of the XPath

expression to eliminate constraints. This is useful when there are no answers to a complete

query, but then after removing constraints the relaxed query can be satisfied. A very

useful relaxation is the one that removes all non-structural predicates from a query Q

thus obtaining its structural subquery.

A very important property of DescribeX-Eclipse is that it is not tied to any particular

XPath implementation. Instead, an arbitrary XPath evaluator can be invoked through a

standard interface. This is a critical engineering decision that allows DescribeX-Eclipse

to provide explanations for different XPath engines. Beyond differences in the capabilities

of the implementations, the XPath language itself has several areas where the semantics

are implementation defined. This effectively means that only the original XPath engine

can explain one of its own implementation defined features.

Appendix B. Declarative debugging of XPath queries with DescribeX150

With the DescribeX-Eclipse tool, debugging and exploration complement each other:

Sue can decide interactively to get different descriptions of the collection by changing the

SD definition or obtain more or less strict visual explanations by relaxing a query in differ-

ent ways. Thus, DescribeX-Eclipse provides Sue with a flexible, integrated environment

for understanding a collection and the queries she needs to run on it.

