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Abstract

Despite the recent progress, existing frame interpolation
methods still struggle with processing extremely high reso-
lution input and handling challenging cases such as repeti-
tive textures, thin objects, and large motion. To address these
issues, we introduce a patch-based cascaded pixel diffusion
model for high resolution frame interpolation, HiFI, that ex-
cels in these scenarios while achieving competitive perfor-
mance on standard benchmarks. Cascades, which generate a
series of images from low to high resolution, can help signif-
icantly with large or complex motion that require both global
context for a coarse solution and detailed context for high
resolution output. However, contrary to prior work on cas-
caded diffusion models which perform diffusion on increas-
ingly large resolutions, we use a single model that always per-
forms diffusion at the same resolution and upsamples by pro-
cessing patches of the inputs and the prior solution. We show
that this technique drastically reduces memory usage at infer-
ence time and also allows a single model at test time, solv-
ing both frame interpolation (base model’s task) and spatial
up-sampling, saving training cost. We show that HiFI helps
significantly with high resolution and complex repeated tex-
tures that require global context. HiFI demonstrates compara-
ble or beyond state-of-the-art performance on multiple bench-
marks (Vimeo, Xiph, X-Test, and SEPE-8K). We further in-
troduce a new dataset, LaMoR, that focuses on particularly
challenging cases, and HiFI also significantly outperforms
other baselines. Please visit our project page for video results:
https://hifi-diffusion.github.io

Introduction
In a short amount of time, smartphone cameras have be-
come both ubiquitous and significantly higher quality, cap-
turing spatially higher resolution images and videos. How-
ever, the temporal resolution—i.e. video frame rate—of cap-
tured videos has lagged behind the spatial resolution, due
to a combination of computational and memory costs and
limited exposure time. The conflict between increased user
interest in creative video content and technical limitations
for capturing high frame-rate video has increased interest
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in techniques for high-resolution frame interpolation, which
enables the synthesis of new frames between existing ones
to enhance a video’s frame rate. Despite the progress, the lat-
est techniques struggle in the high resolution setting, where
challenging cases such as repetitive textures, detailed or thin
objects become more common place.

Existing methods often design models using strong do-
main knowledge, e.g., correspondence matching (Ranjan
and Black 2017; Ilg et al. 2017; Sun et al. 2018; Teed and
Deng 2020) and synthesis based on warping (Hu et al. 2022;
Jiang et al. 2018; Niklaus and Liu 2020; Park, Lee, and Kim
2021; Xue et al. 2019). Domain knowledge enables small
models to perform well when trained on a small amount of
data but may restrict their capabilities. For example, when
motion cues are incorporated into the model, the final qual-
ity are bounded by the accuracy of the motion. This is par-
ticularly evident on high resolution inputs with large motion,
repetitive texture, and thin structures, where motion estima-
tion often struggles (see Fig. 1).

To address these challenges, we advocate a domain-
agnostic diffusion approach, relying on model capacity and
training data at scale for performance gains and generaliza-
tion. Some recent work have explored diffusion for frame
interpolation but towards generative aspect, e.g. better per-
ceptual quality (Danier, Zhang, and Bull 2024) or complex
and non-linear motion (Jain et al. 2024) between two frames
very further apart in time. Their performance, however, falls
behind in the classical setting which predicts an intermedi-
ate frame and evaluates its fidelity to the ground truth using
standard metrics, e.g., PSNR or SSIM.

We instead introduce a patch-based cascaded pixel dif-
fusion approach for High resolution Frame Interpolation,
dubbed HiFI. HiFI generalizes across diverse resolutions up
to 8K images, a wide range of scene motions, and a broad
spectrum of challenging scenes. The diffusion framework al-
lows us to scale both the model capacity and data size. We
also show that our model can effectively utilize large-scale
video datasets. While cascades offer significant benefits for
processing diverse input resolutions with different levels of
motion, standard cascades, which denoise the entire high-
resolution image, often struggle with memory issues at very
high resolutions such as 8K. To save memory during infer-
ence, we propose a new patch-based cascade for frame in-
terpolation, which always denoises the same resolution but
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Figure 1: Qualitative comparison on challenging cases on our proposed LaMoR dataset (rows 1 and 2) and X-TEST (row 3).
For challenging cases, such as large motion or repetitive textures, the proposed HiFI substantially outperforms other baselines.

is applied to patches of high resolution frames. This also al-
lows us to use one model for both base and super-resolution
tasks, saving time for training separate models for both tasks
and disk space at inference time.

The proposed HiFI method achieves state-of-the-art ac-
curacy on challenging high-resolution public benchmark
datasets, Xiph (Niklaus and Liu 2020), X-TEST (Sim,
Oh, and Kim 2021) and SEPE (Al Shoura et al. 2023),
and demonstrates strong performance on challenging corner
cases, e.g., repetitive textures and large motion. We also in-
troduce a new evaluation dataset, Large Motion and Repet-
itive texture (LaMoR), which specifically highlights these
challenging cases and demonstrate that HiFI significantly
outperforms existing baselines.

Related work
Domain-specific architecture for interpolation. Motion-
based approaches synthesize intermediate frames using es-
timated bi-directional optical flow between two nearby
frames. These methods employ forward splatting (Hu et al.
2022; Jin et al. 2023; Niklaus and Liu 2018, 2020) or back-
ward warping (Huang et al. 2022; Jiang et al. 2018; Park,
Lee, and Kim 2021; Park et al. 2020; Sim, Oh, and Kim
2021), followed by a refinement module that improves vi-
sual quality. Performance is often bounded by motion esti-
mation accuracy, as inaccuracies in the motion cause arti-
facts during the splatting or warping process. As a result,
they struggle on inputs for which optical flow estimation is
problematic, e.g., large motion, occlusion, and thin objects.

Phase-based approaches (Meyer et al. 2015, 2018) pro-

pose to estimate an intermediate frame in a phase-based
representation instead of the conventional pixel domain.
Kernel-based approaches (Cheng and Chen 2020; Lee et al.
2020; Niklaus, Mai, and Wang 2021; Niklaus, Mai, and Liu
2017a,b) present simple single-stage formulations that esti-
mate per-pixel n×n kernels and synthesize the intermediate
frame using convolution on input patches. Both approaches
avoid reliance on motion estimator, but they do not usually
perform well on high resolution input with large motion,
even with deformable convolution (Cheng and Chen 2020).

Generic architecture for interpolation. Some methods
explore using a generic architecture without domain knowl-
edge, such as attention (Choi et al. 2020), transformer (Shi
et al. 2022), 3D convolution under multi-frame input setup
(Kalluri et al. 2023; Shi et al. 2022). However, both attention
and 3D convolution are computationally expensive and thus
prohibitive at 4K or 8K resolution.

Diffusion models for computer vision. Recently diffu-
sion models have demonstrated their strength on generative
computer vision applications such as image (Ho et al. 2022a;
Peebles and Xie 2023; Rombach et al. 2022) and video gen-
eration (Blattmann et al. 2023; Ge et al. 2023; Ho et al.
2022b), image editing (Brooks, Holynski, and Efros 2023;
Yang, Hwang, and Ye 2023), 3D generation (Qian et al.
2024; Shi et al. 2024b), etc. Beyond generation, diffusion
has also shown to be effective for dense computer vision
tasks and has been become the state-of-the-art technique for
classical problems such as depth prediction (Ke et al. 2024;
Saxena et al. 2023), optical flow prediction (Saxena et al.



2023), correspondence matching (Nam et al. 2024), seman-
tic segmentation (Baranchuk et al. 2022; Xu et al. 2023), etc.

Diffusion models for interpolation. Two recent works
explore diffusion for video frame interpolation from a gener-
ative perspective. LDMVFI (Danier, Zhang, and Bull 2024)
proposes using a conditional latent diffusion model and op-
timizes it for perceptual frame interpolation quality, but the
PSNR or SSIM metric of the predicted frames tends to
be lower than that by state of the art. VIDIM (Jain et al.
2024) uses a cascaded pixel diffusion model but focuses on
a task closer to the conditional video generation. Given two
temporally-far-apart frames, the method generates a base
video of 7 frames at 64× 64 resolution and then upsamples
them to 256×256. It is unclear whether a diffusion-based ap-
proach can achieve competitive results on the classical frame
interpolation problem, where the input frames come from a
video with high FPS and can be up to 8K resolution.

Cascaded diffusion models. Beginning with CDM (Ho
et al. 2022a), cascades have become standard for scaling
up the output resolution of pixel diffusion models. Dif-
fusion cascades consist of a “base” model for an initial
low-resolution solution and a number of separate “super-
resolution” models to produce a higher-resolution output
conditioned on the low resolution output. While effective
for high-resolution output, memory cost increases propor-
tionally with resolution since each super-resolution model
performs diffusion at its output resolution. Even with spe-
cialized super-resolution architectures (Ho et al. 2022a; Sa-
haria et al. 2022), the memory problem still persists as the
target resolution increases significantly, e.g. from 1K to 8K.

High resolution diffusion. Recent works in high-
resolution image generation have introduced training-free
approaches through merging the score functions of nearby
patches (Bar-Tal et al. 2023; Liu et al. 2024b) or expand-
ing the network (Shi et al. 2024a; Kim, Hwang, and Park
2024). More recent work introduces models that are ex-
plicitly trained to denoise partitioned patches (or tiles) and
then merge them into high-resolution output. Zheng et al.
(2024) proposes to generate any-size high-resolution output
by merging denoised non-overlapping tiles during sampling
process. Ding et al. (2024) introduces to use score value and
feature maps to encourage consistency between denoised
patches. Skorokhodov et al. (2024) uses a hierarchical patch
structure for efficient video generation, but requires special-
ized modules for global consistency.

Unlike these efforts, we focus on frame interpolation, an
estimation task, and improve inference memory efficiency at
extremely high resolutions (4K or 8K). In fact, patch-based
techniques are well-suited for estimation tasks. Generation
tasks require communication between patches for consis-
tent and coherent generation at high resolution. Estimation
tasks, however, benefit from strong conditioning signal (in-
put frames), which provides this context and make the prob-
lem more localized to the patch level. This difference allows
us to explore distinct architectural design choices.

For estimation tasks, the most similar to ours is
DDVM (Saxena et al. 2023) which uses tiling for high-
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Î1

Figure 2: Our base model is conditioned on two input
frames, I0 and I2, and predicts the intermediate frame I1.
The model uses v-parameterization (Salimans and Ho 2022;
Saxena et al. 2024) for both model output and loss.

resolution inference. After the base model runs at a coarse
solution, the output is upsampled by partially denoising tiles
taken from the coarse solution and input frames. In the con-
text of frame interpolation, we show that this tiling performs
worse than our proposed patch-based cascade.

Diffusion for high-resolution frame interp.
We explore a pixel diffusion approach for classical frame
interpolation and propose a patch-based cascade strategy
for high-resolution inference by performing diffusion on
patches of high resolution inputs. Our patch-based cascade
enables high resolution output with low memory usage at in-
ference time and allows us to use the same model for both
base estimation and upsampling.

Architecture
Our method adopts a conditional image diffusion frame-
work. Given a concatenation of temporally nearby frames
I0 and I2 as a conditioning signal, our model aims to es-
timate an intermediate frame Î1 as a reverse diffusion pro-
cess in the pixel space, as illustrated in Fig. 2. We take a
generic efficient U-Net architecture from DDVM (Saxena
et al. 2023) with v-parameterization (Salimans and Ho 2022;
Saxena et al. 2024) for both model output and loss. The
U-Net includes self-attention layers at two bottom levels.
Given a noisy image zt = αtx+σtε as an input, the network
predicts v̂, where x is the target image (i.e., I1), sampled
random noise ε ∼ N (0, I), sampled time step t ∼ U [0, 1],
and α2

t + σ2
t = 1. We directly apply L1 loss on v parameter

space, i.e., ||v̂ − v||1, where v = αtε− σtx. The predicted
image is recovered by x̂ = αtzt − σtv̂, where x̂ = Î1.

Patch-based cascade model
Since our main focus is on extremely high resolutions (up to
8K), standard cascades, which denoise the entire high res-
olution image directly, would require either a considerable
amount of memory at inference time or a careful architecture
search to reduce the memory cost. We instead advocate for a
patch-based cascade approach that performs diffusion at the
same resolution on patches of the input frames. This avoids
both of these issues, keeping the peak memory usage at in-
ference time near constant and allowing us to use the same
architecture for every upsample level. We also find that can
re-use the same model in both the base and super-resolution
settings, saving training time and disk space at inference.



Figure 3: Patch-based cascade model. Given a low-resolution intermediate from the previous level, patch-based cascade
creates patches from bi-linearly upsampled low-resolution intermediate and two input frames and uses these patches as condi-
tioning for a diffusion process. It then combines denoised patches to form the whole image. At inference time, only a single
weight-shared model is recursively used across different image scales as in Fig. 4. Two-stage cascade is shown for simplicity.

Figure 4: Upsampling strategy. Like a standard cascade,
we process the image from coarse to fine, but we always
denoise at the same resolution, as indicated by the red box.
Details on each step of the cascade are in Fig. 3.

Approach. Fig. 4 shows our overall inference strategy: we
adopt the well-known coarse-to-fine idea for cascades and
build an N -level image pyramid. Starting from the lowest
scale sN−1 (where sn ≡ 1/2n), we downsample the input
conditioning images by a factor of sN−1 (i.e., IsN−1

0 and
I
sN−1

2 ) and predict an intermediate image Î
sN−1

1 at the same
scale sN−1. We then apply 2× bilinear upsampling to this
intermediate image up(̂IsN−1

1 ) and use it as a conditioning
signal for a denoising process at the scale sN−2.

At each pyramid level, we upscale prediction via patch-
based cascade, as shown in Fig. 3. For refinement at scale
sN−2, we take the prediction from the prior scale and then
upsample it to match sN−2. At each level, we perform three
stages: (i) patchify, where we crop overlapping patches from
the upsampled intermediate prediction and the input at that
scale, (ii) denoise patches, where we run diffusion to obtain
the prediction for each patch, and (iii) accumulate patches,
where we use MultiDiffusion (Bar-Tal et al. 2023) to merge

results from different patches for the prediction Î
sN−2

2 . Here,
we merge denoised patches at every denoising step. We then
upsample Î

sN−2

2 to level sN−3 and repeat this process until
n=0, the original input scale.

Training setup. For the patch-based cascade model, we
want to train a diffusion model that is conditioned on a pair
of input images and a half resolution representation of the
target we aim to predict. We first predict the intermediate
frame at a half resolution Î

1/2
1 by feeding downsampled in-

puts to a pre-trained base model (Fig. 2) computed offline.
This intermediate frame is then upsampled to the original
scale and used as a conditioning image, along with the orig-
inal inputs, for training the patch-based cascade model using
standard diffusion. This inference step is performed offline
to improve training efficiency.

Single model for all stages. By conditioning on the low
resolution estimate but using dropout 50% during training
time, we can use the same model for all cascade stage, in-
cluding base and super-resolution; base generation is done
by passing zeros as the low resolution condition. While smi-
lar to CFG (Ho and Salimans 2022), we do not combine
unconditional and conditional estimations at inference. Em-
pirically we find that a single shared model for all stages
performs slightly better than having a dedicated super-
resolution model. It also substantially reduces training time
(training one model instead of multiple separate ones) and
disk space at inference time (saving only one model). Inter-
estingly, we observe that a dedicated super-resolution model
trained without dropout on the coarse estimation does not
work since it takes the shortcut of upsampling the low reso-
lution instead of attending to the high resolution inputs.

Experiments
Implementation details. Similar to previous diffusion-
based methods (Jain et al. 2024; Danier, Zhang, and Bull
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Figure 5: Qualitative examples for public datasets. Our method performs well even in cases of large motion and complex
textures such as a thin object on the top and the plate number at the bottom.

2024), we utilize a large-scale video dataset for training, to
test the scalability of the diffusion model better. The dataset
contains up to 30 M videos with 40 frames, collected from
the internet and other sources with licenses permitting re-
search uses. We first train our base model on the dataset, and
then we additionally include Vimeo-90K triplet (Xue et al.
2019) and X-TRAIN (Sim, Oh, and Kim 2021) to finetune
the cascade model. For fair comparison, we also prepare
a model trained on Vimeo-90K and X-TRAIN only from
scratch. We use a mini-batch size of 256 and train the base
model for 3 M iteration steps and the patch-based cascade
model for 200 k iteration steps. We use the Adam optimizer
(Kingma and Ba 2014) with a constant learning rate 1e−4

with initial warmup. For inference, we use 3-stage patch-
based cascade setup with a patch size of 512× 768, averag-
ing 4 samples estimated via 4 sampling steps.

Our data augmentation includes random crop and hori-
zontal, vertical, and temporal flip with a probability of 50%.
We use a crop size of 352 × 480 for large-scale base model
training and 224 × 288 for the cascade model training. We
use a multi-resolution crop augmentation that crops an im-
age patch with a random rectangular crop size between the
original resolution and the final crop size and then resize it to
the final crop size. While commonly used, we find random
90◦ rotation augmentation and photometric augmentation to
be less effective, so we opt not to use them.

More details are in the supplementary material.

Public benchmark evaluation

We first evaluate HiFI on three popular benchmark datasets,
Vimeo-90K triplet (Xue et al. 2019), Xiph (Niklaus and Liu
2020), and X-TEST (Sim, Oh, and Kim 2021), as shown in
Table 1, as well as an 8K dataset, SEPE (Al Shoura et al.
2023).

Vimeo-90K. The low-resolution (256×448) Vimeo-90K
is one of the most heavily studied benchmark, where num-
bers are highly saturated among different methods. HiFI
achieves competitive accuracy with a generic training proce-
dure. Please view the supplementary for further discussion.

Xiph and X-TEST. Both Xiph and X-TEST have high
resolution (2K and 4K). The motion of X-TEST can be over
400 pixels at the 4K resolution, particularly challenging for
existing methods. For X-TEST, we follow the evaluation
protocol discussed in (Sim, Oh, and Kim 2021) that interpo-
lates 7 intermediate frames. When trained on a combination
of Vimeo and X-TRAIN, HiFI performs favorably against
state of the art on Xiph and X-TEST datasets, both in 2K and
4K resolutions. Pre-training on a large video dataset signifi-
cantly boosts the performance of HiFI on Xiph and X-TEST,
setting a new state of the art. Visually, HiFI can better inter-
polate fine details with large motion at high resolution, as
shown in Fig. 5. We will analyze key components that con-
tribute to the performance in the ablation study below.

SEPE. We also test HiFI on SEPE that includes 8K res-
olution videos. Most methods we tested ran out of memory
except M2M (PSNR 28.34 (dB) and SSIM 0.883) and SGM-
VFI (Liu et al. 2024a) (PSNR 28.43 (dB) and SSIM 0.880),
compared with PSNR 29.78 (dB) and SSIM 0.900 by HiFI.
Please view the supplementary for visual comparison.

Large Motion and Repetitive texture dataset
Public benchmark datasets, while diverse, do not fully cap-
ture the failure modes of current methods, especially large
motion or repetitive texture cases common in real-world
videos. To better evaluate existing methods and further inno-
vation, we introduce a Large Motion and Repetitive texture
(LaMoR) dataset that includes such 19 challenging exam-
ples at 4K resolution in both portrait and landscape modes,



Table 1: Results on public benchmark datasets: HiFI performs favorably on the highly-saturated Vimeo-90K (Xue et al.
2019) and is substantially more accurate than existing two-frame methods on high-resolution Xiph (Niklaus and Liu 2020) and
X-TEST (Sim, Oh, and Kim 2021) datasets. Best and second-best are highlighted in color.

Method Training dataset
Vimeo-90K

Xiph X-TEST
2K 4K 2K 4K

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

M2M (Hu et al. 2022) Vimeo 35.47 0.978 36.44 0.967 33.92 0.945 32.07 0.923 30.81 0.912
FILM (Reda et al. 2022) Vimeo 36.06 0.970 36.66 0.951 33.78 0.906 31.61 0.916 26.98 0.839
AMT (Li et al. 2023) Vimeo 36.53 0.982 36.38 0.941 34.63 0.904 - - - -
UPR-Net (Jin et al. 2023) Vimeo 36.42 0.982 - - - - - - 30.68 0.909
FITUG (Plack et al. 2023) Vimeo 36.34 0.981 - - - - - - - -
TCL (Zhou et al. 2023) Vimeo 36.85 0.982 - - - - - - - -
IQ-VFI (Hu et al. 2024) Vimeo 36.60 0.982 36.68 0.942 34.72 0.905 - - - -
EMA-VFI (Zhang et al. 2023) Vimeo (+septuplet for X-TEST) 36.64 0.982 36.90 0.945 34.67 0.907 32.85 0.930 31.46 0.916
XVFI (Sim, Oh, and Kim 2021) Vimeo / X-TRAIN 35.07 0.976 - - - - 30.85 0.913 30.12 0.870
BiFormer (Park, Kim, and Kim 2023) Vimeo + X-TRAIN - - - - 34.48 0.927 - - 31.32 0.921

HiFI (Ours)
Vimeo + X-TRAIN 35.70 0.979 36.64 0.967 34.45 0.948 33.03 0.927 32.03 0.918

Vimeo + X-TRAIN + Raw videos 36.12 0.980 37.36 0.969 35.40 0.953 33.94 0.941 32.92 0.931

Figure 6: A few examples from our LaMoR dataset that
includes challenging scenes, such as repetitive texture and
large motion where typical methods fail.

Table 2: Results on LaMoR. HiFI is significantly more ac-
curate than state-of-the-art methods.

Method PSNR SSIM

LDMVFI (Danier, Zhang, and Bull 2024) 21.952 0.828
EMA-VFI (Zhang et al. 2023) 22.327 0.845
M2M (Hu et al. 2022) 24.995 0.884
SGM-VFI (Liu et al. 2024a) 25.122 0.894
UPR-Net (Jin et al. 2023) 25.856 0.892
BiFormer (Park, Kim, and Kim 2023) 26.330 0.893
HiFI (Ours) 28.141 0.912

as shown in Fig. 6. As in Table 2 and Fig. 7, HiFI substan-
tially outperform all state of the arts on challenging cases of
repetitive textures and large motion.

Ablation study
Dedicated upsample model vs single model. In Table 3,
we compare the accuracy of the base model, two distinct
models for base and upsample, and our final setting of using
the same model for base and upsample. Both cascade strate-
gies are effective for handling large motion, substantially
improving accuracy on X-TEST. Using the same model for
both base and upsample performs on-par or even better than

Table 3: Base vs. cascade models. Our patch-based self-
cascade formulation substantially outperforms the base with
the same number of parameters. Through model sharing, our
self-cascade generalizes better on the X-TEST dataset than
the standard cascade but with half of the parameters.

Method Model size
Vimeo-90K X-TEST 2K X-TEST 4K

PSNR SSIM PSNR SSIM PSNR SSIM

Base 647 M 35.44 0.978 30.32 0.879 28.57 0.876

Standard two-stage cascade 1294 M 36.12 0.980 33.86 0.939 32.48 0.926
Patch-based self-cascade× 2 647 M 36.12 0.980 33.93 0.941 32.77 0.930
Patch-based self-cascade× 3 647 M 36.12 0.980 33.94 0.941 32.92 0.931

having a dedicated upsample model, especially on challeng-
ing X-TEST. This validates the strength of re-using the same
model for both over the more expensive dedicate model
setup. Increasing the number of upsample stages improves
the accuracy but saturates over three.

Comparison with coarse-to-fine refinement. Coarse-to-
fine tiling refinement from DDVM (Saxena et al. 2023) first
predicts the target at low resolution, bilinearly upsamples
it to the target resolution, and refines it from an intermedi-
ate sampling step in a patch-wise manner. Our patch-based
cascade performs consistently better than the coarse-to-fine
tiling refinement on the X-TEST benchmark; 32.92 (dB) vs
32.54 (dB) on 4K, and 33.94 (dB) vs. 33.03 (dB) on 2K.

Architecture. In Table 4, we analyze where the major
gain originates from by ablating attention layers or diffusion
process in the base model, given the same training assets
(e.g., datasets, computations, etc.). Using attention layers
brings about moderate performance gains on both the small
(Vimeo) and large (X-TEST) motion datasets. We find the
attention layers help with handling large motion and repet-
itive textures, enabling the accurate interpolation of frames
by capturing the global context of these textures. Remov-
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Figure 7: Qualitative comparison on LaMoR. The proposed HiFI is particularly effective at very challenging cases including
repetitive textures and large motion.

Table 4: Architecture analysis. Both attention layers and
diffusion process contribute to substantial accuracy gain.
Comparing to a domain-specific architecture, FILM, our ap-
proach scales up better when training on the same large-
scale video dataset.

Method
Vimeo-90K X-TEST 2K X-TEST 4K

PSNR SSIM PSNR SSIM PSNR SSIM

Ours, base model 35.44 0.978 30.32 0.879 28.57 0.876
w/o attention layers 35.13 0.977 29.73 0.861 27.75 0.854
w/o diffusion 33.78 0.965 28.05 0.852 27.56 0.861

FILM (Reda et al. 2022) 34.02 0.970 28.15 0.854 27.24 0.856

ing the diffusion process also leads to significant perfor-
mance degradation. We also test one widely-used traditional
method FILM (Reda et al. 2022), which relies on a “scale-
agnostic” motion estimator to handle large motion. FILM
trained on the same large dataset is substantially worse than
HiFI, suggesting that traditional, hand-designed methods do
not scale up well w.r.t. data.

Number of sampling steps. The optimal number of sam-
pling steps also differ between the base and the patch-based
cascade model. In general, we find that the model needs
more sampling steps for large motion (e.g., X-TEST) than
for small motion (e.g., Vimeo-90K (Xue et al. 2019)). How-
ever, the patch-based cascade model is able to achieve better
numbers across different datasets with fewer sampling steps.

Discussions. Despite the performance gains on standard
benchmarks, some extremely complicated motion types,
e.g., fluid dynamics, are still challenging for HiFI. Further-
more, diffusion models are computationally heavy and need

Table 5: Effect of the sampling steps on PSNR for the base
model and patch-based cascade model. More steps tends to
be better for higher resolution and large motion datasets.

(a) Base model

Steps Vimeo-90K X-TEST 4K

1 34.87 27.95
2 35.37 27.92
4 35.44 28.57
8 35.21 29.67
16 34.58 30.34
32 33.53 30.40
64 32.68 30.02

(b) Patch-based cascade

Steps Vimeo-90K X-TEST 4K

1 36.13 32.32
2 36.15 32.83
4 36.12 32.92
8 36.06 32.92
16 35.98 32.84
32 35.92 32.68
64 35.86 32.64

distillation (Salimans and Ho 2022) for applications with a
limited computational budget.

Conclusion
We have introduced a diffusion-based method for high reso-
lution frame interpolation, named HiFI. Our proposed patch-
based cascade achieves state-of-the-art performance on sev-
eral high-resolution frame interpolation benchmarks up to
8K resolution, while improving efficiency for training and
inference. We also establish a new benchmark, LaMoR,
which focuses on challenging cases, e.g. large motion and
repeated textures at high resolution. Our method substan-
tially outperforms all methods on the benchmark as well.
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Supplementary material
Overview

Here, we provides further implementation details, analy-
ses on our design choices, further discussions on results on
Vimeo-90K and SEPE 8K benchmark datasets, and analyses
on computational complexity. We also provide more qual-
itative comparison including interactive tools and videos
with state-of-the-art methods in our website. For more
details, please browse our project webpage: https://hifi-
diffusion.github.io

Implementation details
We include further implementation details continuing from
the main paper. Our implementation is based on JAX frame-
work. We use a fixed random seed for reproducibility. We
use 256 TPUv5e with 16 GB memory for training. For in-
ference, our model runs on one A100 40GB and processes
up to 8K resolution without a memory problem. Our novel
HiFI cascade enables this high-resolution processing where
most of the methods have difficulties in.

Effect of the patch size and overlap
We provide an analysis on how patch size in the cascade
model affects the accuracy during inference. Due to the self-
attention layers at two bottom levels, the performance of our
method could vary, when a patch size that is different from
the training resolution (i.e., 224× 288) is used. Also, bigger
patch sizes can give better accuracy due to a larger context
window, but it is not so clear if it always holds. Given our
standard setup (i.e., a three-stage cascade, 4 sampling steps,
an average of 4 samples), we try different patch size and
evaluate on X-TEST 4K dataset (Sim, Oh, and Kim 2021).

Table 6 reports PSNR and SSIM on X-TEST 4K dataset.
Although the training resolution is at 224× 288, the method
is not very sensitive to the choice of patch size at inference
time. The smallest and the biggest patch size (i.e., 256×384
and 768 × 1152) show marginal difference in both PSNR
and SSIM metrics. The patch size 512 × 768 gives the best
accuracy on X-TEST 4K.

We also analyze the impact of varying patch overlap on
X-TEST 4K, using a patch size of 512 × 768. Increase of
overlap size between patches can have a similar effect of
averaging more samples. By default at inference, we place
patches to cover the entire image with minimal, equally dis-
tributed overlap, which is automatically determined. In this
study, we gradually increase the number of patches at each
row or column with equal distanced, compute an overlap
ratio, and also report PSNR X-TEST 4K benchmark. The
overlap ratio is the value obtained by dividing the sum of
all areas processed by the patches by the total image size,
computed by patch size×the number of patches

image size .
As in Table 7, overlap size does not significantly affect

the performance, showing standard deviation of 0.052 for
PSNR and 0.00059 for SSIM. More overlap marginally im-
proves the performance by averaging multiple samples but
with the cost of runtime increase. Overlap ratio with 1.33 is
our default setup.

Table 6: Effect of different patch size: The usage of differ-
ent patch sizes does not show significant accuracy difference
on X-TEST 4K dataset.

Patch size PSNR SSIM

256× 384 32.70 0.931
384× 576 32.82 0.932
512× 768 32.92 0.931
640× 960 32.79 0.930
768× 1152 32.75 0.930

Table 7: Effect of overlapping ratio between patches:
Overlap size marginally affect the accuracy. The overlap ra-
tio with 1.33 is our default setup.

Overlap ratio 1.33 1.56 1.60 1.78 1.87 2.13 2.18 2.49

PSNR 32.92 32.99 33.00 33.02 32.98 33.10 33.03 33.07
SSIM 0.931 0.932 0.932 0.932 0.932 0.933 0.932 0.933

Overlaid inputs Intermediate W/o dropout W/ dropout

Figure 8: Dropout forces the network to use both the low
resolution intermediate and the inputs. Without dropout, the
network takes a shortcut and only tries to upsamples the in-
termediate with missing details. The second row shows close
views of highlighted areas in the images at the first row.

Dropout for patch-based cascade training
We find that the image-level dropout is crucial for making
the patch-based cascade model behave as intended, espe-
cially for challenging large motion scenes, as in Fig. 8. With-
out dropout, the model finds a shortcut, sharpening the low
resolution intermediate from the base model without refer-
ring to input images. This results in losing fine details, e.g.,
thin structures and letters. With dropout, the model refers
to both the low resolution intermediate for coarse structure
and the high-resolution input for fine details. In this study,
we train the model on X-TRAIN (Sim, Oh, and Kim 2021)
only, as the network without dropout does not converge with
a full training dataset. This suggests that the dropout also
stabilizes large scale training for the cascade model.

To further analyze the effect of the image-level dropout,
we prepare two models that are with or without the dropout
and see the models’ behavior by inputting a different image
as the low resolution intermediate during the inference. We
test a two-stage cascade model as in Fig. 9c.

The model with dropout (i.e., Fig. 9d) successfully out-
puts high-resolution prediction when actual low resolution
intermediates are inputted. When a different intermediate is
inputted, the model tries to add appearance (e.g., color or
texture) from input frames on top of object structures from
the low resolution intermediate. Though it produces non-
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Figure 9: Effect of dropout. In the two-stage cascade formulation, we train our cascade model with or without dropout and
visualize results when inputting oracle/different low resolution intermediate respectively. These inputs are downsampled and
upsampled back to the original resolution to mimic the low resolution intermediate from the previous level. (d) With dropout
the model effectively utilizes coarse structure from the intermediate and fine details from the high resolution input. This holds
true even with different low resolution intermediate: the model add color and texture to the coarse structure. (e) On the other
hand, the model without dropout solely relies on the intermediate, primarily sharpening it. This leads to a loss of fine details,
e.g. around object boundaries (see the error map). The behavior becomes looking more apparent with a different intermediate;
the model ignores input frames.

sensible output, this proves that the model is able to exploit
both input frame and low resolution intermediate during the
inference.

On the other hand, the model trained without dropout
(i.e., Fig. 9e) only refers to the low resolution intermediate.
Even when inputting a different image as the low resolution
condition (e.g., the right column in Fig. 9e), the denoised
prediction completely ignores the input frames and takes a
shortcut to sharpen the low resolution condition (i.e., tree
image). Our probabilistic image-level dropout prevents the
model from taking this shortcut and learns to refer to both
input and condition cues.

Effect of the number of sampling steps
In Fig. 10, we visualize how the number of sampling steps
affects results. The input frame in Fig. 10a shows a person
using a stick, and the stick moves fast between the frames.
The variance map in Fig. 10c shows that with more sam-
pling steps, the model outputs more diverse motion of the
stick and the hand of the person, as highlighted in the var-
ious map. With the lower number of sampling steps, our
model produces close-to-mean prediction. Fig. 10b visual-
izes the four samples drawn from 64 sampling steps; our
model predicts diverse, plausible samples with non-linear
motion, such as in different trajectories or at different ac-
celeration and deceleration rate. This follows the same ob-



(a) Two input frames (above) and ground truth (below) (b) Multiple samples with 64 sampling steps
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(c) Average sample, error map, and variance map w.r.t. the different number of sampling steps.

Figure 10: Effect of the number of sampling steps: We visualize how the number of sampling steps affects results. (a) Given
two input frames, we try different sampling steps and visualize (b) each individual sample as well as (c) averaged sample,
error map, and variance map. With more sampling steps, the model predicts multiple plausible diverse samples with non-linear
motion (i.e., the fast moving stick).

servation from DDVM (Saxena et al. 2023) that the diffusion
model is able to predict plausible multi-mode samples.

Randomness and robustness
With the stochastic nature, HiFI predicts plausible diverse
samples with non-linear motion as in Fig. 10, as a unique
capability. To see if this unique property can also affect ac-
curacy, we tested 10 runs with different random seeds and
compute mean and standard deviation of results on four dif-
ference benchmark datasets. As reported in Table 8, it does
not yield much variation on accuracy.

Evaluation on SEPE 8K benchmark
SEPE 8K dataset (Al Shoura et al. 2023) provides 40 raw
videos with 300 frames, 8K resolution, and 29.97 FPS for
benchmarking various downstream computer vision tasks
such as video quality assessment, super-resolution, com-
pression, etc. To utilize the dataset for benchmarking frame
interpolation methods, especially for high resolution with

Table 8: Randomness and robustness: the unique tochas-
tic nature from diffusion does not yield much variation on
accuracy.

PSNR Vimeo Xiph 2K X-TEST 4K LaMoR

mean 36.12 37.34 32.92 28.15
std. dev. 0.0052 0.0024 0.0196 0.0233

large motion, we select a triple of frames (145th, 150th,
and 155th) from each video and target to predict the mid-
dle frame from the rest two frames as input.

Table 9 includes all state-of-the-art methods that we com-
pare on SEPE 8K benchmark. Except M2M (Hu et al. 2022)
and SGM-VFI (Liu et al. 2024a), the other methods are
not able to process 8K resolution image due to the out-of-
memory (OOM) problem on A100 40GB GPU. Figure 11
provide qualitative comparison between our method and
M2M (Hu et al. 2022). Unlike M2M (Hu et al. 2022), our
method is able to recover fine details on such challenging
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Figure 11: Qualitative comparison on SEPE 8K: We provide qualitative comparison between our method and M2M (Hu et al.
2022) which is able to run at 8K resolution. Compared to M2M (Hu et al. 2022) and SGM-VFI (Liu et al. 2024a) which have a
difficulty in handling large motion, our method is able to recover fine details on challenging cases at 8K resolution.

Table 9: Results on SEPE 8K dataset. HiFI outperforms
M2M (Hu et al. 2022). Most of the methods have the OOM
(out of memory) problem at 8K resolution.

Method PSNR SSIM

LDMVFI (Danier, Zhang, and Bull 2024) OOM
EMA-VFI (Zhang et al. 2023) OOM
UPR-Net (Jin et al. 2023) OOM
BiFormer (Park, Kim, and Kim 2023) OOM
M2M (Hu et al. 2022) 28.34 0.883
SGM-VFI (Liu et al. 2024a) 28.43 0.880
HiFI (Ours) 29.78 0.900

large motion cases even at 8K resolution.

Discussion on Vimeo-90K

While HiFI achieves the best accuracy on multiple high
resolution benchmark datasets, it performs comparably on
highly-saturated Vimeo-90K benchmark (Xue et al. 2019).
To analyze the behavior, in Fig. 12 we show random-
sampled results of our method that gives high errors on
Vimeo-90K. As visualized in the error map, erroneous
prediction mostly arises from motion boundaries even if
HiFI is able to interpolate frames with fine details, as
shown in the second column. This is specifically due to the
dataset property: Vimeo-90K prefers linear motion predic-
tion (Kiefhaber et al. 2024) whereas our model predicts di-
verse non-linear motion of objects. Non-linear motion pre-
diction yields a subtle misalignment between predicted posi-
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Figure 12: Error map visualization on Vimeo-90K: We randomly sample ours results with high errors on Vimeo-90k and
visualize them with input overlay, ground truth, and error map. The error mostly originates from motion boundaries where
the predicted objects’ motion sometimes do not align well with true motion. This is because Vimeo-90K dataset prefers linear
motion prediction whereas our model can predict plausible non-linear motion (Kiefhaber et al. 2024).

tion and true position of object, and it causes intensity differ-
ence mostly near image edges. Thus errors mostly arise near
object or motion boundaries. In Fig. 10b, we visualize mul-
tiple non-linear motion examples that our model produces.

Comparison with diffusion-based approach

Between two existing diffusion-based methods,
VIDIM (Jain et al. 2024) and LDMVFI (Danier, Zhang, and
Bull 2024), we provide comparisons with LDMVFI (Danier,
Zhang, and Bull 2024) in Table 10. VIDIM (Jain et al. 2024)



Input overlay Ground truth HiFI (Ours) Ground truth
close view

HiFI (Ours)
close view

Figure 13: Some extremely challenging cases that even our model struggles with: (above) fluid motion where more generative
solution can be preferred or (below) extremely large motion, around 1500 pixels in the example, that is much bigger than the
patch size at inference time.

Table 10: Comparison with diffusion-based approaches:
Our method consistently outperforms LDMVFI (Danier,
Zhang, and Bull 2024) on both X-TEST 4K and LaMoR
datasets by a large margin.

X-TEST 4K LaMoR

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours 32.92 0.931 0.2136 28.141 0.912 0.1880
LDMVFI 23.36 0.770 0.3285 21.952 0.828 0.2438

focuses on a task closer to conditional video generation, a
long-range interpolation on 256 × 256 resolution, which is
different from our target task.

Our method consistently outperforms LDMVFI (Danier,
Zhang, and Bull 2024) by a large margin, even on LPIPS
metric despite that LDMVFI (Danier, Zhang, and Bull
2024) uses LPIPS-based training loss. Furthermore, LD-
MVFI (Danier, Zhang, and Bull 2024) does not run on SEPE
8K due to the out of memory problem.

Computational complexity
Table 11 provides comparison on computational complexity
and runtime performance among different methods. We test
each method on X-TEST 4K benchmark and report its ac-
curacy, inference time, and peak memory, using one A100
40GB GPU. Despite of its demanding model size and run-
time, our method requires only 7.53 GB peak memory for
4K image processing and achieves the best accuracy com-
pared with others.

We also provide analysis on the impact of cascade levels
(Table 12) and patch size (Table 13) on accuracy and runtime
(X-TEST 4K, A100 40GB). As in Table 12, the direct input
of 4K images causes out-of-memory errors. Simple adoption
of patch-based processing (i.e. (Patch-based) Base) reduces
memory, though it struggles with large motion, resulting in
lower PSNR and SSIM. Our patch-based cascades eventu-
ally handle challenging cases with improved accuracy, with
peak-memory nearly unchanged. Table 13 provide an anal-
ysis that both peak memory and runtime increase w.r.t. the
patch size mainly due to the self-attention layers in the bot-

Table 11: Comparison on computational complexity: We
measure computational complexity and accuracy of each
model on X-TEST 4K benchmark. Our method requires
only 7.53 GB peak memory for 4K image processing and
achieves the best accuracy compared with others.

Method
Inference
time (s)

Model
parameters (M)

Peak
memory (GB)

X-TEST 4K
PSNR (dB)

UPR-Net 1.96 6.56 33.44 30.68
M2M 2.51 7.61 12.65 30.81
BiFormer 2.34 11.17 21.50 31.32
EMA-VFI 3.27 65.66 30.30 31.46
LDMVFI 11.63 416.46 37.23 23.36
HiFI (ours) 164.18 647.74 7.53 32.92

Table 12: Efficiency analysis of cascade processing: Our
patch-based cascades handle challenging cases with im-
proved accuracy, with peak-memory nearly unchanged.

Method
Peak

memory (GB)
runtime (s) PSNR SSIM

Whole-image processing OOM – – –

(Patch-based) Base 7.47 94.62 28.57 0.876
Patch-based cascade× 2 7.52 136.53 32.77 0.930
Patch-based cascade× 3 7.53 164.18 32.92 0.931

tleneck. We find that the patch size of 512 × 768 achieves
the best performance without having too much increase of
runtime and memory.

We leave the reduce of computational cost as future work.
Runtime can be substantially reduced by using fewer de-
noising steps. Having just two steps can yield up to 2 times
speedup with only a 0.16% average accuracy drop across
five benchmark datasets. Batch processing of samples and
patches will further accelerate the runtime while maintaining
the same accuracy. Model parameters can also be reduced
via model distillation.



Table 13: Efficiency analysis of patch-wise processing:
The usage of the patch size of 512 × 768 achieves the
best performance with a reasonable increase of runtime and
memory.

Patch size
Peak

memory (GB)
Runtime (s) PNSR SSIM

Patch-based

384×576 6.49 139.68 32.82 0.932
512×768 7.53 164.18 32.92 0.931
640×960 9.34 189.57 32.79 0.930
768×1152 12.51 209.80 32.75 0.930

Whole image 2160×4096 OOM – – –

Challenges and future work
Our method achieves the state of the art on multiple high-
resolution benchmark datasets, yet there still exists some ex-
tremely difficult cases that challenge our method. Figure 13
shows a few examples from the SEPE 8K dataset. In case of
fluid motion in the first row, HiFI tends to output blurry re-
sults; more generative solution can be preferred. Also as in
the second row, when motion is extremely larger (e.g. 1500
pixels) than the patch size, most of the content goes out of
image boundary. HiFI cannot establish reliable correspon-
dence, and thus is not able to interpolate their motion. The
usage of a bigger patch size can resolve the issues but with
increased computational cost.

Furthermore, our model predicts one middle frame given
two input frames as a basic setup, following the conventional
setup. As future work, our model can be easily extended to
the multi-frame setup by conditioning on multiple frames
and interpolating multiple middle frames together, trained
on raw videos. This multi-frame setup can also effectively
represent non-linear motion.


