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When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal
grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently
at different depths. We found, however, that the transparency was asymmetric; it only occurred when the
envelope was perceived to be the overlaying surface. When the same two signals were added, the percept
of transparency was symmetrical; either signal could be seen in front of or behind the other at different
depths. Differences between these multiplicative and additive signal combinations were examined in two
experiments. In one, we measured disparity thresholds for transparency as a function of the spatial
frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both
experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct
minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive
signal combinations suggest that different processes mediated the disparity signal. The data are consistent
with a two-channel model of binocular matching, with multiple depth cues represented at single retinal

locations.
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1. INTRODUCTION

A central issue in stereopsis is the correspondence
problem: how one determines the retinal locations in the
left and right eyes that are projections of the same three-
dimensional points. Conventional (first-order) models
solve for correspondence by matching linearly filtered
versions of the views of the left and right eyes. One might
consider cross correlation or phase differences between
small neighbourhoods of the filtered left and right signals
to establish the binocular matches (e.g. Fleet ¢f al. 1996).
It is common for these techniques to use a uniqueness
assumption (Marr 1982) to constrain the matching
process. With binocular transparency, however, the corre-
spondence problem becomes more difficult because of the
need to recover several depth planes, and to deal with
different types of transparency (Weinshall 1991; Kersten
1991).

Transparency occurs naturally in two basic forms
(Kersten 1991). One is linear, where the retinal intensities
are composed from the sum of two surface reflectance
patterns. This may occur, for example, when looking at a
river-bed through a reflection on the surface. The second
form is nonlinear, occurring when one looks through a
translucent surface. In this case, the retinal intensities
stem from the product of the material transmittance
function of the overlaying surface and the reflectance
from the underlying surface. How the visual system inter-
prets surface depth for both additive and multiplicative
transparency remains an interesting issue because the two
types of transparency are incompatible.
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Kersten (1991) (see also Frisby & Mayhew 1978)
reported that some multiplicative transparencies are
asymmetrical, where one’s percept depends on the left
and right ordering of the binocular images. Kersten
believed that binocular asymmetries reflect competition
between contradicting monocular and binocular depth
cues. This view originated from two constraints on one’s
percept of monocular transparency as proposed by
Metelli (1974): (i) no matter how a multiplicative trans-
parency is produced, the overlaying transparent surface
must not change the values of the order of luminance
reflected from the underlying surface; and (ii) when
values of lightness are attenuated by a transparent
surface, local differences in lightness seen through the
transparent surface must be less than those seen without
the transparent surface.

Beck (1984) reasoned that Metelli’s constraints were
incomplete. From the physics of multiplicative transpar-
ency, Beck showed that the surface transmittance and
reflectance functions for both the overlaying and the
underlying surfaces must be positive-valued. Studying
Metelli’s constraints with overlapping square patches, Beck
et al. (1984) found that when the luminance values of over-
lapping squares satisfied Metelli’s two constraints, subjects
reported transparency; even when values of the luminance
of one of the squares violated the assumption that its trans-
mittance function was positive-valued. However, when
values of the luminance violated Metelli’s constraints,
subjects did not report transparency. To explain their
results, Beck ef al. supposed that the visual system cannot
access surface reflectance functions. Rather, it processes
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perceived lightness, defined as a nonlinear function of
surface reflectance.

There are two predictions from Metelli’s constraints
that could influence binocular depth perception. One is
that images composed of a product of two positive-valued
signals may be perceived symmetrically; either signal
may be seen in front of, or behind, the other at different
depths depending upon the disparity cue present in each
signal. In a companion paper (Langley et al. 1998), we
have confirmed these predictions by using similar stimuli
to those manipulated here. The other prediction is that
second-order binocular signals, like a positive-valued
contrast envelope and a mean-zero carrier, will be
perceived asymmetrically in depth. This is because Metel-
li’s monocular constraints would be violated when the
disparity cues imply that the carrier is the signal nearest
in depth to the binocular observer, thus leading to
conflicting binocular and monocular depth relations.

Metelli’s constraints make no predictions concerning
additive (first-order) transparencies. 1o help explain the
first-order case, Weinshall (1991) showed that binocular
cross correlation of the left and right images of additive
transparent signals gave two peaks at the disparities of
the individual signals. One could modify this cross-corre-
lation model to account for multiplicative transparency
by introducing an early retinal nonlinearity (e.g. Burton
1973) or a later nonlinearity in the cortex (e.g. Langley
1997). One nonlinearity that might be considered is loga-
rithmic. It is well known that the logarithm of a product
of two signals is equal to the sum of the logarithms of the
individual signals. With second-order (non-Fourier) bino-
cular signals, the nonlinearity will introduce power at the
frequencies of the second-order envelope so that a single-
channel model of transparency, such as the one proposed
by Weinshall (1991), could then detect disparities for both
first- and second-order signal combinations. Unfortu-
nately, this model may encounter difficulties when
presented with first-order transparencies, because the
logarithm of the sum of two signals is no longer equal to a
superposition of the two signals.

Instead of a single-channel model, many researchers
favour a two-channel model. Two-channel models include
a separate nonlinear (second-order) channel to detect the
second-order disparity signal for binocular matching.
Models such as this have been proposed to explain the
perception of second-order motion stimuli (Chubb &
Sperling 1988) and stereopsis (Wilcox & Hess 1996).

In analysing properties of second-order stimuli and
models, Fleet & Langley (1994) noted that idealized
second-order signals have a simple characterization in
terms of oriented power concentrations in the Fourier
domain. They showed that orientated power occurs with
multiplicative signal combinations such as those caused
by multiplicative transparency and occlusion boundaries.
Fleet & Langley further showed that the bandpass-
filtered image signal may be separated into (first-order)
phase and (second-order) amplitude signals by a
logarithmic transformation, which is consistent with the
two-channel hypothesis. This approach is attractive
because the binocular cross correlation of phase and
amplitude may be used to detect transparencies for first-
and second-order signal combinations. Hence, two-
channel models may be motivated by a computational
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strategy that leads to the recovery of binocular depth for
both first- and second-order signal combinations for the
two types of transparency mentioned.

In this paper, we examine the one- and two-channel
models, and one’s perception of binocular transparency
with additive and multiplicative signal combinations. It is
shown that depth perception for contrast envelopes is asym-
metrical, consistent with Metelli’s constraints. By varying
the frequency of the contrast envelope, we also show that
minima in transparency thresholds for contrast envelopes
occur for frequencies approximately 2.4 octaves below the
carrier frequency. By comparison, no minima were found
for first-order signals which were, broadly speaking,
perceived symmetrically. The binocular asymmetry found
for second-order signals suggests that different constraints
are used in processing first- and second-order signal combi-
nations, implicating a two-channel model.

2. METHODS ’

(a) Apparatus and procedure

Monocular images of the binocular stimuli were presented on
the left and right sides of a Sony monitor with a refresh rate of
76 Hz and 256 grey scales. The luminance of the monitor was
linearized by taking luminance measurements with a photo-
meter, to which a logarithmic curve was fitted. This was then
used to generate a linear look-up table. The residual error from
the fitted curve at any one luminance was no more than 0.2% of
the fitted curve at any one of the sampled points. The mean
luminance of the monitor was 37.7 cd m™2,

Experiments were done in a darkened room. The only visible
illumination originated from the monitor. A modified Wheat-
stone stereoscope was used to view the binocular images on a
single monitor. The distance from the screen to the stereoscope
was 44cm. The stereoscope was adjusted so that the stereo
image pairs were correctly aligned using a parallel viewing
geometry. The entire visual extent of each monocular image was
7.9°. Image pixels were square with a width of 2min. A fixation
spot was used as a reference point to help keep vergence fixed.
Subjects were seated with their heads stabilized in a chin rest in
front of the stereoscope. They responded by using a computer
mouse in forced-choice discrimination tasks. Subjects were asked
to respond as quickly as they could, but were not otherwise
constrained by the viewing time.

(b) Stimuli

Both contrast-modulated sinusoidal gratings and contrast-
modulated noise signals were used. Some examples are shown in
figure 1. The raw envelope signal, Efx, ), was an approximation
to a vertically orientated, square-wave grating. It was formed by
summing the first and third harmonics of the square-wave:

E(x) = afsin(wx + ¢) + (1/3)sin3{wx + ¢)], 0)!

where w was the fundamental frequency of the envelope, and o
was chosen so that Efx, y) ranged between | and —1. The phase
of the envelope, ¢, was randomized between trials.

Given the envelope Efx, y), offset to make it strictly positive,
along with carrier signals for the left and right eyes, Gk, y) and
C,x, »), the contrast-modulated second-order stimuli were given
by
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Figure 1. Examples of the binocular stimuli used. (a) A multiplicative (square-wave) contrast envelope multiplied by a sinusoidal
grating. (4) The superposition (addition) of a square-wave and sinusoidal grating. (¢) A square-wave contrast envelope multiplied
by a mean-zero noise pattern. () The superposition of a square-wave grating and a noise pattern. For each image triplet, cross-
eyed fusion of the left and centre images reveals a vertical structure perceived transparently in front of the plane of fixation.
However, cross-eyed fusion of the centre and right images may yield either a coherent (a), transparent (b, d) or diplopic (¢)
square-wave grating. Note that nonlinearities probably caused by the photographic procedure have reduced the saliency of the

diplopic envelope shown in {¢).

My(x,p) = pll + (¢/2)(1 +mE(x + d/2,7))Ci(x,)]

2
M,(v,3) = pll + (a/2)(1 + mE(x ~ d/2, )G, (x)], @)

where p is the mean illumination, m is the depth of contrast
modulation, a is the contrast of the carrier, and 4 is the
positional disparity. In addition, the subscripts | and r are
used to denote the left and right eyes. The stimuli were
visible only within a circular window as shown in figure L.
In each condition, the signal Cfr, y) was either a horizontal
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or vertical sinusoidal grating, or a mean-zero random-dot
noise pattern with zero disparity. The mean value of Clx, )
was always zero. When Clr, ) was a grating, its spatial
frequency was 225 or 4.5 cycles per degree (cpd). When
Clr, y) was a noise pattern, each pixel was randomly assigned a
value of 1. The depth of modulation m was 0.75, and the
contrast a was 0.98.

Additive combinations of the same signals were also used,
and are given by
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Figure 2. Transparent disparity thresholds are shown as a function of the fundamental frequency of £(x, »). (a) A multiplicative
condition is shown for three subjects. C(, y) was a 4.5-cpd grating. (b)) Mean transparency thresholds for two different frequencies
of C(x, ») are shown for the multiplicative condition. (¢) Individual subject’s responses when C(x, ») was noise. (2, ¢) Thresholds
for additive combinations of E(x, ») and C(x, »), showing that transparency could be reported for both crossed and uncrossed
disparities. In (a) and (¢) the error bars represent standard errors for each subject across different sessions. In (8), (d) and (¢) the
error bars represent the standard error for each subject’s thresholds across different sessions.

Aifx,y) = pll + (a/2)Ci(x%p) + (b/2E(x +d/2, )] 3)
A,fxp) = pll + (¢/2)C(59) + (/D E(x — d/2,))].
For additive signal combination conditions, #/2 and 5/2 were
fixed at 0.45. The spatial frequencies of the additive gratings
matched those used in the multiplicative conditions.

3. EXPERIMENT 1

The first experiment examined differences between the
processing of first- and second-order transparencies, by
quantifying the symmetry of the transparent percept. We
measured the smallest disparity, 4 in equations (2) and (3),
that was required by subjects to perceive transparency.
Disparity was varied between trials using APE, an
adaptive probit algorithm (Watt & Andrews 1981). After
each session, a psychometric function was fit to the
subject’s responses by APE. The disparity at which subjects
reported transparency on 50% of trials was deemed the
disparity threshold for perceived transparency. Each
session consisted of 64 trials, and was repeated three times.

The signal Cfx, ») was either a horizontal sinusoidal
grating or a noise pattern. The other signal, E(, y), was
always vertical (as in equation (l}). Subjects reported
transparency when the two signals E(, y) and Cf, )
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were perceived to be at different depths. In the multipli-
cative condition, when Cfx, ») was a horizontal grating,
we tested both crossed and uncrossed disparities. When it
was noise, we used only crossed disparities. We did this
because, when the disparity of the envelope Efv, y) was
uncrossed, the signal appeared diplopic and could not be
fused. For the additive signal combinations, crossed and
uncrossed conditions were run as separate sessions
because there were separate disparity thresholds for each.

Finally, note that when Cfx, ») was a horizontal grating,
the two monocular images in both additive and multipli-
cative conditions were shifted versions of one another.
They were, therefore, consistent with a single coherent
surface under binocular viewing. In these cases the
percept was often bistable so that coherent and trans-
parent percepts could be reported at different instances.
When perception was bistable, subjects were instructed to
report transparency.

(a) Results and discussion

We summarize the data from the three subjects by
showing how transparent disparity thresholds (TDTs)
varied as a function of the spatial frequency of Efx, y).
Figure 2z shows the TDTs for each subject in the
multiplicative condition when Cfr, ») was a horizontal

~
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sinusoidal grating. The data for each subject show similar
behaviour, with the lowest threshold occurring near
0.4 cpd, approximately two octaves lower than the carrier
frequency.

Figure 26 shows the results collapsed across the three
subjects for two different carrier frequencies, one octave
apart, at 2.25 and 4.5cpd. The threshold functions in
these two cases appear to be shifted versions of one
another. In particular, for the lower frequency, the
minimum TDT was one octave lower, at about 0.2 cpd
instead of 0.4 cpd This suggests that the envelope TDT{
depended upon the carrier frequency.

For the noise carrier in the multiplicative condition,
shown in figure 2¢, the TDTs also show a minimum at
ca. 0.4 cpd, as in figure 2a. However, they do not vary as
markedly as a function of envelope frequency. This may be
due to the broadband nature of the carrier, in which case
the thresholds measured here could reflect the combined
effects of several spatial frequency tuned channels.

With second-order stimuli, transparency was only
reported when the depth ordering of the envelope Efx, y)
appeared nearer to the observer than the carrier Clx, »);
i.e. when the envelope disparities were crossed. Although
not reported here, when Cf{x, y) was a vertical grating, the
percept of transparency (versus coherence) was found to
depend upon the relative phase between C(x, ») and Elx, »)
for both additive and multiplicative conditions. Similar
observations have been reported in the context of motion
capture (e.g. Gurney & Wright 1996). Capture and
bistable percepts are common occurrences with trans-
parent stimuli. They probably reflect competition
between different visual processes (models) when the
input stimuli do not provide a sufficient number of
constraints (von Grunau & Dube 1993; Langley 1997).

Finally, figure 2d,¢ shows the data from the additive
condition collapsed across the three subjects for both
crossed and uncrossed disparities. The curves show that
for additive transparency the TDTs decreased as a
function of the spatial frequency of Efx, ). No minimum
was evident over the range of frequencies tested. Figure
2d,e also shows a difference between crossed and
uncrossed disparity cues when Clx, ) was additive noise.
The slope of transparency thresholds as a function of
frequency was less steep for the uncrossed than for the
crossed disparities.

The transparency asymmetry observed with contrast
envelopes may be explained by Metelli’s two constraints.
The contrast envelope, 1+mE(x, y), is consistent with a
transparent overlaying surface because it is a positive-
valued function. The envelope does not change the sign of
the underlying grating or noise carrier, and the intensity
differences of the carrier at the location of the envelope
troughs are smaller than those at the crests. Allowing the
carrier to be the overlaying surface violates Metelli’s
second constraint, because a contrast-modulated carrier
is not a positive-valued function.

These results favour a two-channel model over a
single-channel model. A single-model of transparency,
such as that proposed by Weinshall (1991), that incorpo-
rates a nonlinearity may detect two disparity signals, but
it would not be able to determine the origin of each
disparity signal (i.e. whether it is first- or second-order).
Hence, this single-channel model would not be consistent
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with the asymmetry. A two-channel model could explain
the asymmetry because each disparity signal would have
been processed by a separate channel.

To explain the symmetrical transparency observed in
the additive condition, note that additive transparencies
define the boundary condition of Metellis second
inequality constraint (see Beck 1984). This is because the
intensity differences taken in a vertical direction for both
the dark and light regions of the vertical square-wave
grating are equal. In addition, the additive transparencies
may be decomposed into a sum of two positive-valued
intensity functions. Therefore, there are no simple mono-
cular cues that constrain either signal to be an overlaying
or underlying surface, and so the disparity cues may be
used to specify the depth ordering of the binocular signals.

Figure 2d,e shows another difference in the additive
noise condition. Although subjects reported transparency
for both crossed and uncrossed disparities, the slope of
the curves were less steep in the case of the uncrossed
disparities compared with the crossed. Noise patterns are,
however, broadband stimuli. For these binocular signal
pairs, there will be interference between the disparity
cues present in E(x, y) and Cl, y), especially when their
individual frequency spectra overlap and their binocular
disparities are different. The distortion products intro-
duced into the image signal by an additive combination of
signals may be second-order. These distortion products
may occur as a result of either early visual nonlinearities,
or image transformations that follow bandpass filtering
and binocular cross correlation. Therefore, the different
slopes found for crossed and uncrossed disparities from
the additive (broadband) signal combinations further
implicate second-order processes in binocular depth
asymmetries.

Finally, it is interesting that in the additive condition
when Cfx, ») was random noise, subjects reported
transparency when the frequency of Efx, y) was greater
than 0.8cpd. In the other conditions, subjects were
unable to report transparency reliably at such higher
frequencies. Wilson et al. (1991) reported that two added
signals must differ in scale by two or more octaves in
order for binocular depth transparency to be perceived.
Our data are consistent with these reports but also
suggest that frequency constraints apply to both first- and
second-order signals. The dependence of transparency
upon spatial frequency is likely to reflect the properties of
the mechanisms used for binocular matching by the
visual system. This is because a dependency upon spatial
frequency may not be predicted from Metelli’s (1974)
monocular constraints. A two-channel model of transpar-
ency may explain these trends. This model would posit
that first-order transparencies are detected by bandpass
processes tuned to different scales and/or orientation;
whereas second-order transparent signals are detected by
a spatial-frequency-selective second-order channel (e.g.
Wilson & Kim 1994).

4, EXPERIMENT 2

Experiment 1 showed that the TDT5 for multiplicative
transparency were minimal when the frequency of E(x, y)
was relatively low, near 04cpd. For the additive
condition, however, no minimum was found over the
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(@)

(b)

Figure 3. Example of the binocular stimuli used for experiment 2. (¢) Multiplicative: crossed-eyed fusion yields a strong percept
of depth when the centre and right images are fused. When the carrier gratings for the envelope are orientated orthogonally, the
percept of depth is much weaker, but disparity discrimination thresholds may still be determined. For these stimuli, the envelope
was not seen in depth behind its carrier grating. (4) Additive: the matching vertical gratings could be seen both in front of and
behind the rivalling gratings. The perceived depth of the rivalling gratings may be seen to lie in the plane of the fixation spot (see

also Wurger & Landy 1989).

same frequency range. One possibility is that the
minimum found for the multiplicative condition is
indicative of the peak sensitivity of a second-order
mechanism (see Sutter et al. 1995; Langley e af. 1996).

This possibility was the focus of the second experiment.
In this experiment we manipulated the disparity d of Ex, )
in a disparity discrimination task. However, in this case the
signals Ci(x, ») and C.{r, ) were allowed to differ. We
measured the percentage of trials on which subjects
reported that the signal Ex, y) was seen in front of a fixa-
tion spot. As in the previous experiment, d was varied
using APE. Disparity discrimination thresholds (DD'T5)
were determined from the slope of the psychometric
function (fitted by APE) at about the point where subjects
reported ‘in front of” on 50% of trials. Each session
consisted of 64 trials and was repeated three times.

In multiplicative conditions, Cix, ) and C.x, )
differed in three ways. In a matched condition, the left
and right gratings were both horizontal with the same
spatial frequency. In a Vert—Hor condition, the two
signals differed in orientation (one vertical and one
horizontal), but had the same spatial frequency (cf. Liu
et al. 1992). Finally, in an F-3F condition, the two
signals were both horizontal, with frequencies of 1.5 and
4.5cpd. For the additive case, only two conditions were
reported, namely the matched and F-3F conditions,
because the curve shapes found for the additive condi-
tions were similar. The contrast and spatial frequency
for one of G\, y) or C,{x, ) was always the same as that
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used in experiment l. Figure 3 shows examples of the
stimuli.

(a) Results and discussion

Results for this experiment are shown in figure 4. With
multiplicative signal combinations, the DDT5 as function
of the frequency of Ex, ) show a minimum near 0.4 cpd
for both F-3F and Vert—Hor conditions. For the matched
carrier condition, the DD} flattened out at frequencies
above 0.4cpd. In the F-3F condition, subject DS was
unable to discriminate disparities for low or high spatial
frequencies of Efxr, »). At these frequencies this subject
reported that he was only able to see the contrast
envelope in front of the fixation spot and was, therefore,
unable to perform the discrimination task.

When Efx, ) and Clx, y) were added together, figure 44
shows no minimum in DDTs. Rather, the DDTs
decreased as a function of increasing frequency. This
trend may be explained by a first-order model of -
stereopsis based upon phase differences (Fleet et al. 1996).
To transform an interocular phase-difference into a bino-
cular disparity, one must divide the phase difference by
the horizontal frequency of the signal. This leads to a
disparity error that is inversely proportional to the spatial
frequency of the signal. The predictions from this model
are shown in the left panel of figure 46. The DDTs shown
in figure 4b are broadly similar to those predicted by such
a model (PBH’s thresholds were consistently flatter across
all conditions reported here)
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Figure 4. (a) DDTs for the multiplicative condition are plotted as a function of envelope spatial frequency on log-log axes. (&)
Shows each subject’s data for the additive condition. The dashed line labelled 1/F shown in the left panel of (4) is the relationship
predicted if DDT's are proportional to wavelength in a horizontal direction. In these figures, the error bars represent the standard

error of each subject’s thresholds taken across different sessions.

Schor et al. (1984) have measured DD} for first-order
stimuli. They used difference-of-Gaussian (DoG) signals
and found that the DDTs decreased as the peak frequency
of the DoG functions increased (up to 2.5 cpd). Therefore,
the decreasing DDTs found over this range of frequencies
are consistent with those expected from a first-order
mechanism, as explained above. (The flattening of DD'Ts
above 2.5 cpd may reflect position-shifted disparity detec-
tors (cf. Fleet et al. 1996)) These trends were found in
figures 2d,e and 4b when Elx, y) was an additive (first-
order) signal. The similarity between the disparity thresh-
olds for DoG stimuli, transparency thresholds (experiment
1) and DDTs (experiment 2) suggest that the binocular
disparities for additive conditions were detected by first-
order processes.

When E(x, y) was multiplied (second-order) with Cf, y),
the thresholds for transparency and DDTs showed a
different trend. Figures 2a—c and 4a show that a minimum
occurred near 0.4 cpd. Such a minimum does not reflect
the curve shapes that would be expected from a first-order
model of binocular matching. The similarities between the
curve shapes for the envelope signal E(x, y) across the two
experiments, and the differences between first- and
second-order conditions suggest that there was a common,
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and probably second-order, process that mediated the
disparity signal.

In both experiments 1 and 2, our results show that
transparency thresholds for contrast envelopes first
decreased, and then increased as a function of the
frequency of E{x, y). This trend was pervasive in our data,
and suggests that the processing of disparity from
contrast envelopes was frequency selective. Consistent
with this, Langley et al. (1996) found that sensitivity for
the detection of envelope spatial orientation was maximal
at approximately one-tenth of the carrier spatial
frequency. Sutter et al. (1995), using bandpass-filtered
random-dot noise patterns, reported that sensitivity to
envelope frequencies was maximum when the envelope
was approximately one-eighth to one-sixteenth of the
centre frequency of bandpass noise carriers. In comparing
the results of Sutter ef al. and of Langley et al., note that
narrowband filtering itself introduces contrast variations,
which will probably affect the resultant contrast-envelope
sensitivity curves. This may explain why the envelope
sensitivity curves reported by Langley et al. were more
tightly concentrated about their minimum than those
reported by Sutter ¢t al. A similar feature can be seen by
comparing figure 26 with 2¢. The curves for the perceived
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transparency thresholds are more tightly tuned about
their minimum for the grating condition than the noise
condition. These data could be explained if the second-
order channel pooled the responses from different spatial-
frequency-tuned channels, because random-dot noise
patterns are broadband patterns.

Finally, figure 4a shows that the DDTs for the
{second-order) matched condition differ from the other
multiplicative conditions. Here the DDTs decreased as a
function of the spatial frequency of Efx, ») and then flat-
tened out at frequencies above 0.4 cpd. Morgan & Castet
(1997) found that the DDTs for sinusoidal gratings as a
function of orientation, were constant when measured by
interocular phase differences. For the matched condition,
this model would posit that DDTs vary as a function of
envelope spatial frequency with a slope of 1/F, as in the
additive conditions mentioned earlier. This is because an
increase in the envelope spatial frequency will decrease
the orientation of the envelope’s sidebands or linear
frequency components. This prediction is inconsistent
with the trend reported for this matched condition. One
can also note that the flattening of the DDT5 occurred at
around 0.4 cpd rather than at 2.5cpd, as in first-order
signals. This difference could reflect an average taken
between first- and second-order processes. For higher
spatial frequencies, the increasing DDT§ from a second-
order process may have been offset by decreasing first-
order thresholds (cf. Lin & Wilson 1995).

5. GENERAL DISCUSSION

There is growing evidence for first- and second-order
processing in binocular stereopsis. Hess & Wilcox (1994)
showed that envelope disparities can influence stereo-
acuity, especially when the envelope and the carrier have
different disparities. They concluded that stereo-acuity
depends on the envelope size when the stimulus band-
width is smaller than 0.5 octaves. Sato & Nishida (1993)
presented subjects with second-order random-dot
stereograms, much like some of the stimuli used in studies
of second-order motion. They found that the upper limits
on disparity were lower with the second-order stimulus
than with conventional random-dot stereograms. Liu et
al. (1992) using similar stimuli to the ones manipulated
here, reported that, when presented with binocular
Gabor stimuli in which the left- and right-eye sinusoidal
carriers were perpendicular to one another, subjects
perceived depth correctly from the envelope while the
carrier components were in binocular rivalry.

Although many of these data support the idea of a two-
channel hypothesis, they do not entirely rule out the
possibility that a single-channel model of transparency,
which exploits a nonlinearity introduced into the bino-
cular pathway, could explain binocular depth perception
for second-order signals. A key feature of our results in
favour of the two-channel model is the transparent
asymmetry reported for second-order signals (see also
Frisby & Mayhew 1978; Kersten 1991). It would be
difficult to explain the depth asymmetry by a single-
channel model of transparency because the origin of the
two disparity signals would be undiscernible. On the
other hand, a two-channel model may explain the depth
asymmetry because second-order disparity signals would
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be represented separately. The frequency tuning curves
reported here for contrast envelopes resemble those found
in spatial vision tasks (Sutter et of. 1995; Langley et al.
1996). Again, it would be difficult to explain how
different tuning curves between first- and second-order
signals could arise from a single-channel model of trans-
parency.

Our data also support the idea that Metelli’s (1974)
constraints on monocular transparency affect binocular
depth perception (Kersten 1991). However, our data
implicate one simple strategy by which Metelli’s
constraints may be introduced into visual processes,
namely, a second-order channel. This is because a contrast
envelope, as detected by a second-order channel, is a
positive-valued signal (Fleet & Langley 1994). The two-
channel model posits that first-order transparencies may
be detected by multiple peaks in the interocular cross-
correlation function of a first-order channel as in Weinshall
(1991), whereas second-order signals may be detected by
interocular cross correlations of the second-order channel.
Hence, a two-channel model could reflect a combined
strategy exploited by the visual system that leads to the
detection of binocular disparities for both first- and
second-order signal combinations. This view supports the
notion that the visual system may represent multiple depth
cues at common image locations and that the motivation
for a two-channel model stems from the incompatible
nature of additive and multiplicative signal combinations.

Portions of this research were presented at the European
Conference on Visual Perception (ECVP) in 1994 and 1995.
D.J.F. was funded in part by NSERC Canada, and by an Alfred
P. Sloan Research Fellowship.
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