
Efficient 3D Macromolecular Reconstruction with Electron Cryomicroscopy

Marcus A. Brubaker Ali Punjani
University of Toronto

{mbrubake,alipunjani,fleet}@cs.toronto.edu

David J. Fleet

Introduction Discovering the 3D atomic structure of
molecules such as proteins and viruses is a fundamental re-
search problem in biology and medicine. The ability to rou-
tinely determine the 3D structure of such molecules would
potentially revolutionize the process of drug development
and accelerate research on fundamental biological pro-
cesses. Electron Cryomicroscopy (Cryo-EM) is a vision-
based approach to 3D macromolecular structure determina-
tion which works with medium to large-sized molecules in
their native state.

The Cryo-EM reconstruction task is to estimate the 3D
density of a target molecule from a large set of images of the
molecule (called particle images). The problem is similar in
spirit to multi-view scene carving [2, 7], large-scale, uncal-
ibrated multi-view reconstruction [1] and computed tomog-
raphy (CT) [6, 4] which uses a similar imaging model (or-
thographic integral projection). However in CT the projec-
tion direction of each image is known whereas with single
particle Cryo-EM this is unknown.

Existing Cryo-EM techniques, e.g., [5, 12], can be ex-
tremely slow and require good initialization to converge
to good solutions. We introduce a framework for Cryo-
EM density estimation, formulating the problem as one of
stochastic optimization to perform maximum-a-posteriori
(MAP) estimation in a probabilistic model. The approach
is efficient and insensitive to initialization, providing use-
ful low resolution density estimates in an hour on a single
workstation. To demonstrate our method, we perform re-
constructions on two real datasets.

A Framework for 3D Density Estimation In Cryo-EM,
particle images are formed as orthographic, integral projec-
tions of the electron density of a molecule, V ∈ RD3

. In
each image, the density is oriented in an unknown pose,
R ∈ SO(3), and shifted from the center of the image
by an unknown translation t ∈ R2. This image forma-
tion model is linear and can be represented by the matrix
PR,t ∈ RD2×D3

. Noise in Cryo-EM images is modelled
using an IID Gaussian distribution, and the unknown pose
parameters, R and t, are marginalized out. Thus, the con-

ditional distribution of a particle image, I ∈ RD2

, is

p(I | V) =

∫
R2

∫
SO(3)

N (I |PR,tV, σ2I)dRdt (1)

where σ is the standard deviation of the noise, N (·|µ,Σ) is
the multivariate normal distribution, and p(R) and p(t) are
(uniform) priors over the pose parameters. This double in-
tegral is not analytically tractable, so numerical approaches
must be used.

Given a set of K images D = {Ii}Ki=1 and assuming
conditional independence of the images, the posterior prob-
ability of a density V is

p(V|D) ∝ p(V)

K∏
i=1

p(Ii|V) (2)

where p(V) is an exponential prior over 3D voxels. Es-
timating the density consists of finding V which maxi-
mizes Equation (2). Taking the negative log and drop-
ping constant factors, the optimization problem becomes
arg minV∈RD3

+
f(V),

f(V) = − log p(V)−
K∑
i=1

log p(Ii|V) (3)

where V is restricted to be positive.
To efficiently cope with the large number of particle im-

ages in a typical dataset (tens or hundreds of thousands),
we propose to use stochastic optimization. Stochastic op-
timization exploits the large amount of redundancy in most
datasets by only considering subsets of data at each iteration
by rewriting the objective as f(V) =

∑
k fk(V) where each

fk(V) evaluates only a subset of data. This allows for fast
progress to be made before a batch optimization algorithm
would be able to take a single step. We specifically use
Stochastic Average Gradient Descent (SAGD) [9] because
it requires minimal tuning and is designed for the finite data
case, allowing for faster convergence. To enforce the posi-
tivity of density, negative values of V are truncated to zero
after each iteration. To reduce the cost of computing the
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Figure 1: Sample particle images (left), an isosurface of the reconstructed 3D density (middle) and slices through the 3D
density with colour indicating relative density (right) for, thermus thermophilus ATPase Lau and Rubinstein [8] (top) and
bovine mitochondrial ATPase [11] (bottom). Reconstructions took a day or less on a 16 core workstation.

gradient for each particle image we use importance sam-
pling to approximate the integrals in Eq. (1). This is critical
and produces speedups of five orders of magnitude.

Results and Conclusions The proposed method was ap-
plied to two experimental datasets and the results are shown
in Fig. 1. Sample particle images are shown, along with an
iso-surface and slices of the final estimated density. Com-
puting these reconstructions took less than 24 hours on a
single workstation. Full details of the method can be found
in [3]. Density estimation for Cryo-EM is a fascinating vi-
sion problem. The low SNR in particle images makes it
remarkable that any molecular structure can be estimated,
let alone the high resolution densities which are now com-
mon. Recent advances [10] suggests that atomic resolution
reconstructions for arbitrary molecules may soon be feasi-
ble, a landmark result for biological and medical research.
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