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Abstract

We explore an approach to 3D people tracking with learned motion models and deterministic optimization. The tracking problem is
formulated as the minimization of a differentiable criterion whose differential structure is rich enough for optimization to be accom-
plished via hill-climbing. This avoids the computational expense of Monte Carlo methods, while yielding good results under challenging
conditions. To demonstrate the generality of the approach we show that we can learn and track cyclic motions such as walking and run-
ning, as well as acyclic motions such as a golf swing. We also show results from both monocular and multi-camera tracking. Finally, we
provide results with a motion model learned from multiple activities, and show how this models might be used for recognition.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Prior models of pose and motion play a central role in
3D monocular people tracking, mitigating problems caused
by ambiguities, occlusions, and image measurement noise.
While powerful models of 3D human pose are emerging,
there has been comparatively little work on motion models
[1–4]. Most state-of-the-art approaches rely on simple Mar-
kov models that do not capture the complexities of human
dynamics. This often produces a more challenging infer-
ence problem for which Monte Carlo techniques (e.g., par-
ticle filters) are often used to cope with ambiguities and
local minima [5–9]. Most such methods suffer computation-
ally as the number of degrees of freedom in the model
increases.
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In this paper, we use activity-specific motion models to
help overcome this problem. We show that, while complex
non-linear methods are required to learn pose models, one
can use simple algorithms such as PCA to learn effective
motion models, both for cyclic motions such as walking
and running, and acyclic motions such as a golf swing.
With such motion models we formulate and solve the
tracking problem in terms of continuous objective func-
tions whose differential structure is rich enough to take
advantage of standard optimization methods. This is sig-
nificant because the computational requirements of these
methods are typically less than those of Monte Carlo meth-
ods. This is demonstrated here with two tracking formula-
tions, one for monocular people tracking, and one for
multiview people tracking. Finally, with these subspace
motion models we also show that one can perform
motion-based recognition of individuals and activities.

2. Related work

Modeling and tracking the 3D human body from video
is of great interest, as attested by recent surveys [10,11], yet
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existing approaches remain brittle. The causes of the main
problems include joint reflection ambiguities, occlusion,
cluttered backgrounds, non-rigidity of tissue and clothing,
complex and rapid motions, and poor image resolution.
People tracking is comparatively simpler if multiple cali-
brated cameras can be used simultaneously. Techniques
such as space carving [12,13], 3D voxel extraction from sil-
houettes [14], fitting to silhouette and stereo data [15–17],
and skeleton-based techniques [18,19] have been used with
some success. If camera motion and background scenes are
controlled, so that body silhousttes are easy to extract,
these techniques can be very effective. Nevertheless, in nat-
ural scenes, with monocular video and cluttered back-
grounds with significant depth variation, the problem
remains very challenging.

Recent approaches to people tracking can be viewed in
terms of those that detect and those that track. Detection,
involving pose recognition from individual frames, has
become increasingly popular in recent research [20–24]
but requires large numbers of training poses to be effective.
Tracking involves pose inference at one time instant given
state information (e.g., pose) from previous time instants.
Tracking often fails as errors accumulate through time,
producing poor predictions and hence divergence. Often
this can be mitigated with the use of sophisticated statisti-
cal techniques for a more effective search [7,5,25,6,9], or by
using strong prior motion models [26,27,8].

Detection and tracking are complementary in many
respects. Tracking takes advantage of temporal continuity
and the smoothness of human motions to accumulate
information through time, while detection techniques are
likely to be useful for initialization of tracking and search.
With suitable dynamical models, tracking has the added
advantage of providing parameter estimates that may be
directly relevant for subsequent recognition tasks with
applications to sport training, physiotherapy or clinical
diagnostics. In this paper, we present a tracking approach
in which simple detection techniques are used to find key
postures and thereby provide rough initialization for
tracking.

Dynamical models may be generic or activity specific.
Many researchers adopt generic models that encourage
smoothness while obeying kinematic joint limits
[5,28,29,9]. Such models are often expressed in terms of
first- or second-order Markov models. Activity-specific
models more strongly constrain 3D tracking and help
resolve potential ambiguities, but at the cost of having to
infer the class of motion, and to learn the models.

The most common approach to learning activity-specific
models of motion or pose has been to use optical motion
capture data from one or more people performing one or
more activities. Given the high-dimensionality of the data
it is natural to look for low-dimensional embeddings of
the data (e.g., [30]). To learn pose models a key problem
concerns the highly non-linear space of human poses.
Accordingly, methods for non-linear dimensionality reduc-
tion have been popular [21,31–34].
Instead of modeling the pose space, one might directly
model the space of human motions. Linear subspace mod-
els have been used to model human motion, from which
realistic computer animations have been produced [35–
38]. Subspace models learned from multiple people per-
forming the same activity have been used successfully for
3D people tracking [27,8,39]. For the restricted class of cyc-
lic motions, Ormoneit et al. [27] developed an automated
procedure for aligning training data as a precursor to
PCA. Troje [40] considers a related class of subspace mod-
els for walking motions in which the temporal variations in
pose is expressed in terms of sinusoidal basis functions. He
finds that three harmonics are sufficient for reliable gender
classification from optical motion capture data.

3. Motion models

This paper extends the use of linear subspace methods
for 3D people tracking. In this section, we describe the
protocol we use to learn cyclic and acyclic motions,
and then discuss the important properties of the models.
We show how they tend to cluster similar motions, and
that the linear embedding tends to produce convex mod-
els. These properties are important for the generalization
to motions outside of the training set, to facilitate track-
ing with continuous optimization, and for motion-based
recognition.

We represent the human body as the set of volumetric
primitives attached to an articulated 3D skeleton, like
those depicted in Figs. 12 and 14. A pose is given by the
position and orientation of its root node, defined at the
sacroiliac, and a set of joint angles. More formally, let D

denote the number of joint angles in the skeletal model.
A pose at time t is then given by a vector of joint angles,
denoted wt = [h1, � � �,hD]T, along with the global position
and orientation of the root, denoted gt 2 R6.

A motion can be viewed as a time-varying pose. While
pose varies continuously with time, we assume a discrete
representation in which pose is sampled at N distinct time
instants. In this way, a motion is just a sequence of N dis-
crete poses:

W ¼ ½wT
1 ; � � � ;w

T
N �

T 2 RDN ; ð1Þ

G ¼ ½gT
1 ; � � � ; gT

N �
T 2 R6N : ð2Þ

Naturally, we assume that the temporal sampling rate is
sufficiently high that we can interpolate the continuous
pose signal.

A given motion can occur at different speeds. In order to
achieve some speed independence we encode the motion for
a canonical speed, from which time warping can be used to
create other speeds. For the canonical motion representa-
tion we let the pose vary as a function of a phase parameter
l that is defined to be 0 at the beginning of the motion and
1 at the end of the motion. For periodic motions defined on
a circle, like walking, the phase is periodic. The canonical
motion is then represented with a sequence of N poses,
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indexed by the phase of the motion. For frame n 2 [1,N],
the discrete phase ln 2 [0,1] is simply

ln ¼
n� 1

N � 1
: ð3Þ
3.1. PCA motion model

We learn motion models from optical motion capture
data comprising one or more people performing the same
activity several times. Because different people perform
the same activity with some variability in speed, we first
dynamically time-warp and re-sample each training sam-
ple. This produces training motions with the same number
of samples, and with similar poses aligned (to obtain the
canonical reference frame). To this end, we first manually
identify a small number of key postures specific to each
motion type. We then linearly time warp the motions so
that the key postures are temporally aligned. The resulting
motions are then re-sampled at regular time intervals using
quaternion spherical interpolation [41] to produce the
training poses fwjg

N
j¼1.

Given a training set of M such motions, denoted,
fWjgM

j¼1, we use Principal Component Analysis to find a
low-dimensional basis with which we can effectively model
the motion. In particular, the model approximates motions
in the training set with a linear combination of the mean
motion H0 and a set of eigen-motions fHigm

i¼1:

W � H0 þ
Xm

i¼1

aiHi: ð4Þ

The scalar coefficients, {ai}, characterize the motion, and
m 6M controls the fraction of the total variance of the train-
ing data that is captured by the subspace, denoted by Q(m):

QðmÞ ¼
Pm

i¼1kiPM
i¼1ki

; ð5Þ

where ki are the eigenvalues of the data covariance matrix,
ordered such that ki P ki + 1. In what follows we typically
choose m so that Q(m) > 0.9.

A pose is then defined as a function of the scalar coeffi-
cients, {ai}, and a phase value, l, i.e.,

wðl; a1; � � � ; amÞ � H0ðlÞ þ
Xm

i¼1

aiHiðlÞ: ð6Þ

Note that now Hi(l) are eigen-poses, and H0(l) is the mean
pose, as a function of phase.

3.2. Cyclic motions

We first consider models for walking and running. We
used a Vicontm optical motion capture system to measure
the motions of two men and two women on a treadmill:

• walking at 9 speeds ranging from 3 to 7 km/h, by incre-
ments of 0.5 km/h, for a total of 144 motions;
• running at 7 speeds ranging from 6 to 12 km/h, by incre-
ments of 1.0 km/h, for a total of 112 motions.

The body model had D = 84 degrees of freedom. While
one might also wish to include global translational or ori-
entational velocities in the training data, these were not
available with the treadmill data, so we restricted ourselves
to temporal models of the joint angles. The start and end of
each gait cycle were manually identified. The data were
thereby broken into individual cycles, and normalized so
that each gait cycle was represented with N = 33 pose sam-
ples. Four cycles of walking and running at each speed
were used to capture the natural variability of motion from
one gait cycle to the next for each person.

In what follows we learn a motion model for walking
and one for running, as well as multi-activity model for
the combined walking and running data. In Fig. 1d we
display Q(m) in (5) as a function of the number of
eigen-motions for the walking, running and the combined
datasets. We find that in all three cases m = 5 eigen-mo-
tions out of a possible 144 for walking, 112 for running
and 256 for the multi-activity data, capture more than
90% of the total variance. In the experiments below we
show that these motion models are sufficient to generalize
to styles that were not captured in the training data, while
eliminating the noise present in the less significant principal
directions.

The first five walking eigen-motions, Hi, for the upper
and lower leg rotations in the sagittal plane are depicted
by Fig. 2 as a function of the gait phase lt. One can see that
they are smooth and therefore easily interpolated and
differentiated numerically by finite differences. Fig. 3 illus-
trates the individual contributions of the first five eigen-
motions. The first row shows the mean motion alone. In
each subsequent row we show a linear combination of
the mean motion and the ith eigen-motion, for i = 1. . .5.
Each row therefore illustrates the influence of a different
eigen-motion. While one cannot expect the individual
eigen-motions to have any particular semantic meaning,
their behaviour provides some intuitions about the nature
of the underlying model.

3.3. Golf swing

We use the same approach to learn the swing of a golf
club. Toward this end, we used the M = 9 golf swings of
the CMU database [42]. The corresponding body model
has D = 72 degrees of freedom. We identified the 4 key pos-
tures depicted in Fig. 4, and piecewise linearly time-warped
the swings so that the same key postures are temporally
aligned. We then sampled the warped motions to obtain
motions vectors with N = 200 poses. The sampling rate
here is higher than the one used for walking and running
since a golf swing contains fast speeds and large accelera-
tions. Given the small number of available training
motions we only used m = 4 coefficients, capturing more
than 90% of the total variance.
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Fig. 1. Motion models. First two PCA components for (a) four different captures of four subjects walking at speeds varying from 3 to 7 km/h, (b) the same
subjects at speeds ranging from 6 to 12 km/h, (c) the multi-activity database composed of the walking and running motions together. The data
corresponding to different subjects is shown in different styles. The solid lines separating clusters have been drawn manually for visualization purposes. (d)
Percentage of the database that can be generated with a given number of eigenvectors for the walking (dashed red), running(solid green) and the multi-
activity databases(dotted blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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3.4. Motion clustering

Troje [40] showed that with effective motion models one
can perform interesting motion-based recognition. In par-
ticular one can classify gender and other individual attri-
butes including emotional states. In this context it is of
interest to note that the subspace motion models learned
here exhibit good inter-subject and inter-activity separa-
tion, suggesting that these models may be useful for recog-
nition. For example, Fig. 1a shows the walking training
motions, at all speeds, projected onto the first two eigen-
motions of the walking model. Similarly, Fig. 1b shows
the running motions, at all speeds, projected onto the first
two eigen-motions of the running model. The closed curves
in these figures were drawn manually to help illustrate the
large inter-subject separation. One can see that the intra-
subject variation in both models is much smaller than the
inter-subject variation.
The motion model learned from the combination of
walking and running training data shows large inter-activ-
ity separation. Fig. 1c shows the projection of the training
data onto the first two eigen-motions of the combined
walking and running model. One can see that the two activ-
ities are easily separated in this subspace. The walking
components appear on the left of the plot and form a rel-
atively dense set. By contrast, the running components
are sparser because inter-subject variation is larger, indicat-
ing that more training examples are required for a satisfac-
tory model.

While the motion models exhibit this inter-subject and
inter-activity variation, we would not expect pure pose
models to exhibit similar structure. For example, to dem-
onstrate this, we also learned a pose model by applying
PCA on individual poses in the same dataset. Fig. 5 shows
poses from the walking data projected onto the first four
eigen-directions of the subspace model learned from poses



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.06

–0.04

–0.02

0

0.02

0.04
eigenvectors: left upper leg

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.04
eigenvectors: left lower leg

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.015

–0.01

–0.005

0

0.005

0.01

0.015
derivatives: left upper leg

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.01

–0.005

0

0.005

0.01

0.015
derivatives: left lower leg
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Fig. 3. The top row shows equispaced poses of the mean walk. The next five rows illustrate the influence of the first five eigen-motions. The second row
shows a linear combination of the mean walk and the first eigen-motion, H0 + 0.7H1. Similarly, the third row depicts H0 + 0.7H2 to show the influence of
the second eigen-motion, and so on for the remaining three rows.
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Fig. 4. Key postures for the golf swing motion capture database that are
used to align the training data: Beginning of upswing, end of upswing, ball
hit, and end of downswing. The body model is represented as volumetric
primitives attached to an articulated skeleton.
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in the walking motions. It is clear that there is no inter-sub-
ject separation in the pose model.

3.5. Model convexity

PCA provides a subspace model within which motions
are expressed as linear combinations of the eigen-motions
(4). With probabilistic PCA [43] one further constrains
the model with a multivariate Gaussian density. A key
property of such linear models is the convexity of the
motions, i.e., that linear combinations of motions (or
eigen-motions) are legitimate motions.
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standard deviation ellipses for the underlying Gaussian density model for the
While convexity is clearly violated with pose data (cf.,
Fig. 5a), we find that with the subspace motion models
convexity is satisfied to a much greater extent. In other
words, we find that random samples from the subspaces,
according to a subspace Gaussian model for walking, run-
ning and the golf swing, all produce plausible motions.
Fig. 7 depicts two motions from each of (a) the walking
model, (b) the running model, and (c) the combined model.
The first row in each case depicts the mean motion for each
model, corresponding to the origin of the respective sub-
spaces. As shown in Fig. 6 the origin is relatively far from
any particular training motion, yet these motions look
quite plausible. The second motion in each case corre-
sponds to a point drawn at random that is far from the ori-
gin and any training motion (as shown in Fig. 6). These
points, typical of other random samples from the underly-
ing Gaussian density, also depict plausible motions.
Accordingly, the models appear to generalize naturally to
points relatively far from the training data.

The multi-activity model learned from the combined
running and walking data does not exhibit the same prop-
erty. Fig. 8 shows the subspace spanned by the first two
eigen-motions of the combined model. In addition to the
training data, the figure shows the locations of four points
that lie roughly between the projections of the walking and
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Fig. 7. Sampling the first five components of each single activity database produce physically possible motions. The odd rows show the highest probability
sample that for each single-motion database, which is the at the origin ai = 0, "i. The even rows show some low probability samples very far from the
training motions to demonstrate that even those samples produce realistic motions. The coefficients for these motion are shown in Fig. 6a–c, respectively.
First two rows (a), walking; middle rows (b), running; last two rows (c), golf swing samples.
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running data. The four rows of Fig. 9 depict the corre-
sponding motions (for which the remaining subspace coef-
ficients, aj = 0, for 3 6 j 6 m). While three of the motions
are plausible mixtures of running and walking, the top
row of Fig. 9 clearly shows an implausible motion. Here
we find that points close to the training data generate plau-
sible motions, but far from the training data the motions
become less plausible.

Nevertheless there are regions of the subspace between
walking and running data points that do correspond to
plausible models. These regions facilitate transitions
between walking and running that are essential if we wish
to be able to track subjects through such transitions, as will
be shown in Section 6.

4. Tracking framework

In this section, we show how the motion models of Sec-
tion 3 can be used for 3D people tracking. Our goal is to
show that with activity-specific motion models one can
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often formulate and solve the tracking problem straightfor-
wardly with deterministic optimisation. Here, tracking is
expressed as a non-linear least-squares optimization, and
then solved using Levenberg–Marquardt [44].
Fig. 9. Sampling the first two components of a multi-activity database comp
motions. The coefficients of the motions depicted in this figure are shown in
compose of walking and running is not convex. (Middle row) Physically possib
the convexity of the input space is assumed when doing PCA, and it may not be
be physically impossible.
The tracking is performed with a sliding temporal win-
dow. At each time instant t we find the optimal target
parameters for f frames within a temporal window from
time t to time t + f � 1. Within this window, the relevant
target parameters include the subspace coefficients,
faigm

i¼1, the global position and orientation of the body at
each frame {gj} and the phases of the motion at each frame
{lj}, for t 6 j < t + f:

St ¼ ½a1; . . . ; am; lt; . . . ; ltþf�1; gt; . . . ; gtþf�1�: ð7Þ

While the global pose and phase of the motion vary
throughout the temporal window, the unknown subspace
coefficents are assumed to be constant over the window.

After minimizing an objective function over the
unknown parameters St, we extract the pose estimate at
time t that is given by the estimated subspace coefficients
fâig, along with the global parameters and phase at time
t, i.e., ĝt and l̂t. Because the temporal estimation windows
overlap from one time instant to the next, the estimated
target parameters tend to vary smoothly over time. In par-
ticular, with such a sliding window the estimate of the pose
at time t is effectively influenced by both past and future
data. It is influenced by past data because we assume
ose of walking and running motions can produce physically impossible
Fig. 8. (Top row) Physically impossible motion. The input motion space
le motion close to a walking. (Bottom row) Motion close to a running. As
the case, the resulting motion as a combination of principal directions can
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smoothness between parameters at time t and estimates
already found at previous time instants t � 1 and t � 2. It
is influenced by future data as data constraints on the
motion are obtained from image frames at times t + 1
through t + f � 1.

4.1. Objective function

We use the image data to constrain the target parame-
ters with a collection of nobs constraint equations of the
form

Oðxi;SÞ ¼ �i; 1 6 i 6 nobs; ð8Þ
where the xi are 2D image features, O is a differentiable
function whose value is zero for the correct value of S

and noise-free data, and �i denotes the residual error in
the ith constraint. Our objective is to minimize the sum
of the squared constraint errors. Because some measure-
ments may be noisier than others, and our observations
may come from different image properties that might not
be commensurate with one another, we weight each con-
straint of type type with a constant, wtype. In effect, this is
equivalent to a model in which the constraint residuals
are IID Gaussian with isotropic covariance, and the
weights are just inverse variances. In practice, the values
of the different wtype are chosen heuristically based on the
expected errors for each type of observation.

Finally, since image data are often noisy, and sometimes
underconstrain the target parameters, we further assume
regularization terms that encourage smoothness in the
global model. We also assume that the phase of the motion
varies smoothly. The resulting total energy to be minimized
at time t, Ft, can therefore be expressed as

F t ¼ F o;t þ F g;t þ F l;t þ F a;t ð9Þ
with

F o;t ¼
Xnobs

i¼1

wtypeikOtypeiðxi;SÞk2
;

F g;t ¼ wG

Xtþf�1

j¼t

kgj � 2gj�1 þ gj�2k
2
;

F l;t ¼ wl

Xtþf�1

j¼t

ðlj � 2lj�1 þ lj�2Þ
2
;

F a;t ¼ wa

Xm

i¼1

ðai � âiÞ2;

ð10Þ

where Otype is the function that corresponds to a particular
observation type, wG, wl and wa are scalar weights, and âi

denote the subspace coefficients estimated in the previous
window of f frames at time t � 1. The value of f is chosen
to be sufficiently large to produce smooth results; in prac-
tice we use f = 3. Finally, in (10), the variables gt�1, gt�2,
lt�1 and lt�2 are taken to be the values estimated from pre-
vious two time instants, and are therefore fixed during esti-
mation at time t.
Minimizing Ft using the Levenberg–Marquardt algo-
rithm [44] involves computing its Jacobian with respect to
the elements of the state vector S. Since the O functions
of Eq. (10) are differentiable with respect to the elements
of S, computing the derivatives with respect to the gt is
straightforward. Those with respect to the ai and lt can
be written as

oF t

oai
¼
Xtþf�1

k¼t

XD

j¼1

oF o;t

ohk
j

�
ohk

j

oai
þ oF a;t

oai
; ð11Þ

oF t

olk
¼
XD

j¼1

oF o;t

ohk
j

�
ohk

j

olk
þ oF l;t

olk
; ð12Þ

where the hk
j represents the vector of individual joint angles

at phase lk, defined as the jth component of w(lk,a1, . . .,am)
in Eq. (6). The derivatives of Ft with respect to the D

individual joints angles oF o;t=ohk
j can be easily computed

[45]. Because the hk
j are linear combinations of the Hk

ij

eigen-poses, ohk
j=oai reduces to Hk

ij, the jth coordinate of

Hk
i . Similarly, we can write

ohk
j

olk
¼
Xm

i¼1

ai

oHk
ij

olk
; ð13Þ

where the oHk
ij=olt can be evaluated using finite differences

and stored when building the motion models, as depicted in
Fig. 2.

Recall that for cyclic motions such as walking and run-
ning, the phase is periodic and hence the second order pre-
diction lj�1 � lj�2 should be taken mod 1 in Eq. (9). This
allows the cyclic tracking sequences to be arbitrarily long,
not just a single cycle. Of course, one can also track
sequences that comprise fractional parts of either cyclic
or acyclic motion models.

The weights w in Eq. (10) were set manually, but their
exact values were not found to be particularly critical. In
some experiments the measurements provided sufficient
strong constraints that the smoothness energy terms in
Eq. (10) played a very minor role; in such cases the values
of wG, wl and wa could be set much smaller than the
weights on the measurement errors in Fo,t. Nonetheless,
for each set of experiments below (i.e, those using the same
types of measurements), the weights were fixed across all
input sequences.

4.2. Computational requirements

The fact that one can track effectively with straight-for-
ward optimization means that our prior motion models
greatly constrain the inference problem. That is, the result-
ing posterior distributions are not so complex (e.g., multi-
modal) that one must use computationally demanding
inference methods such as sequential Monte Carlo or par-
ticle filtering.

Monte Carlo approaches, like that in [8], rely on ran-
domly generating particles and evaluating their fitness.
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Because the cost of creating particles is negligible, the main
cost of each iteration comes from evaluating a log likeli-
hood, such as Ft in (9), for each particle. In a typical par-
ticle filter, like the Condensation algorithm [7], the
number of particles needed to effectively approximate the
posterior on a D-dimensional state space grows exponen-
tially with D [5,46]. With dimensionality reduction, like
that obtained with the subspace motion model, the state
dimension is greatly reduced. Nevertheless, the number of
particles required can still be prohibitive [8].

By contrast, the main cost at each iteration of our deter-
ministic optimization scheme comes from evaluating Ft and
its Jacobian. In our implementation, this cost is roughly
proportional to 1 + log(D) times the cost of computing Ft

alone, where D is the number of joint angles of (12). The
reason this factor grows slowly with D is that the partial
derivatives, oFt=ohj, which require most of the computa-
tion, are computed analytically and involve many interme-
diate results than can be cached and reused. As a result,
with R iterations per frame, the total time required by
our algorithm is roughly proportional R(1 + log(D)) times
the cost of evaluating Ft. Since we use a small number of
iterations, less than 15 for all experiments in this paper,
the total cost of our approach remains much smaller than
typical probabilistic methods. The different experiments
run in this paper took less than a minute per frame, with
a non-optimized implementation.

5. Monocular tracking

We first demonstrate our approach in the context of
monocular tracking [47]. Since we wish to operate outdoors
in an uncontrolled environment, tracking people wearing
normal clothes, it is difficult to rely solely on any one image
cue. Here we therefore take advantage of several sources of
information.

5.1. Projection constraints

To constrain the location of several key joints, we track
their approximate image projections across the sequence.
Fig. 10. 2D tracking using the WSL tracker. (Top row) Tracking the chest, kne
in red, with the head and tracked lower joints points shown in yellow. (Bottom r
interpretation of the references to color in this figure legend, the reader is refe
These 2D joint locations were estimated with a 2D
image-based tracker. Fig. 10 shows the 2D tracking loca-
tions for two test sequences; we track 9 points for walking
sequences, and 6 for the golf swing.

For joint j, we therefore obtain approximate 2D positions
xj in each frame. From the target parameters S we know the
3D position of the corresponding joint. We then take the cor-
responding constraint function, Ojoint(xj,S), to be the 2D
Euclidean distance between the joint’s projection into the
image plane and the measurement of its 2D image position.

5.2. Foreground and background

Given an image of the background without the subject,
we can extract rough binary masks (silhouettes) of the fore-
ground, like those in Fig. 11. Because the background in
our video is not truly static the masks are expected to be
noisy. Nevertheless, they can be exploited as follows. We
randomly sample the binary mask, and for each sample
xi we define a Background/Foreground function Ofg/bg(xi,S)
that is 0 if the line of sight through xi intersects the model.
Otherwise, it is equal to the 3D distance between the line of
sight and the nearest model point. In other words, Ofg/bg is
a differentiable function that introduces a penalty for each
point in the foreground binary mask that does not back-
project onto the model.

Minimizing Ofg/bg in the least squares sense tends to
maximize the overlap between the model’s projection and
the foreground binary mask. This helps to prevent target
drift.

5.3. Point correspondences (optical flow)

We use 2D point correspondences in pairs of consecu-
tive images as an additional source of information: we pro-
ject the 3D model into the first image of the pair. We then
sample image points to which the model projects and use a
normalized cross-correlation algorithm to compute
displacements of these points from that frame to the
next. This provides us with measurement pairs of corre-
sponding points in two consecutive frames, pi ¼ ðx1

i ; x
2
i Þ.
es, head, ankles and visible arm. The tracked upper body joints are shown
ow) Regions used for tracking the ankles, knees, and head are shown. (For
rred to the web version of this paper.)



Fig. 11. Poor quality foreground binary mask. (First row) Extracted from the walking sequence of Fig. 12 and (Second row) from the golf swing of
Fig. 17.
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The correspondence penalty function, Ocorr(pi,S) is given as
follows: We back-project x1

i to the 3D model surface and
reproject it to the second image. We then take Ocorr(pi,S)
to be the Euclidean distance in the image plane between
this reprojection and corresponding x2

i .

5.4. Experimental results

We test our tracker on real and synthetic data. In each
case the use of prior motion models is crucial; without
the motion models the tracker diverges within a few frames
in every experiment.

5.4.1. Real data

The results shown here were obtained from uncalibrated
images. The motions were performed by subjects of
unknown sizes wearing ordinary clothes that are not partic-
ularly textured. To perform our computation, we used
rough guesses for the subject sizes and for the intrinsic
and extrinsic camera parameters. For each test sequence
Fig. 12. Monocular tracking of a 43 frames walking motion. (First two row
(Bottom two rows) Volumetric primitives of the recovered 3D model projecte
we manually initialize the position and orientation of the
root node of the body in the first frame so that it projects
approximately to the right place.

We also manually specify the 2D locations of the joints
to be tracked by WSL [48]. WSL is a robust, motion-based
2D tracker that maintains an online adaptive appearance
model. The model adapts to slowly changing image appear-
ance with a natural measure of the temporal stability of the
underlying image structure. By identifying stable properties
of appearance the tracker can weight them more heavily for
motion estimation, while less stable properties can be pro-
portionately down-weighted. This gives it robustness to
partial occlusions. In the first frame we specified 9 points
that we wish to track, namely, the ankles, knees, chest,
head, left shoulder, elbow and hand.

This entire process requires only a few mouse clicks and
could easily be improved by using automated posture detec-
tion techniques (e.g., [20,26,21,22,24]). Simple methods were
used to detect the key postures defined in Section 3 for each
sequence. Using spline interpolation, we assign initial values
s) The skeleton of the recovered 3D model is projected onto the images.
d into a similar view.
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Fig. 13. Automatic Initialization of the phase parameter lt for the walking sequence of Fig. 12. (a) Width of the detected silhouette. (b) Spline
interpolation for the detected key-postures.

Fig. 14. Monocular Tracking a full swing in a 45 frame sequence. (First two rows) The skeleton of the recovered 3D model is projected into a
representative subset of images. (Middle two rows) Volumetric primitives of the recovered 3D model projected into the same views. (Bottom two rows)
Volumetric primitives of the 3D model as seen from above.
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for lt for all the frames in the sequence, as depicted in Figs.
13b and 16b. Finally, the motion is initially taken to be the
mean motion H0, i.e., the subspace coefficients ai are initially
set to zero. Given these initial conditions we minimize Ft in
(9) using Levenberg–Marquardt.

5.4.1.1. Walking. Fig. 12 shows a well-known walking
sequence [8,49,50]. To initialize the phase parameter, lt,
we used a simple background subtraction method to com-
pute foreground masks (e.g., see Fig. 11). Times at which
the mask width was minimal were taken to be the times
at which the legs were together (i.e., lt = 0.25 or
lt = 0.75). Spline interpolation was then used to approxi-
mate lt at all other frames in the sequence (see Fig. 13b).
More sophisticated detectors [20–22,24] would be necessary
in more challenging situations, but were not needed here.
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The optimal motion found is shown in Fig. 12. There we
show the estimated 3D model projected onto several
frames of the sequence. We also show the rendered 3D vol-
umetric model alone. The tracker was successful, produc-
ing a 3D motion that is plausible and well synchronized
with the video. The right (occluded) arm was not tracked
by the WSL tracker, and hence was only weakly con-
strained by the objective function. Note that even though
it is not well reconstructed by the model (does not fit the
image data), it has a plausible rotation.

5.4.1.2. Golf swing. As discussed in Section 3.3, the golf
swings used to train the model were full swings from the
CMU database. They were performed by none of the golf-
ers shown in Figs. 14, 17 and 18. With the WSL tracker we
tracked five points on the body, namely, the knees, ankles
and head (see Fig. 10). Because the hand tends to rotate
during the motion, to track the wrists we have found it
more effective to use a club tracking algorithm [51] that
takes advantage of the information provided by the whole
shaft. Its output is depicted in the first row of Fig. 15, and
the corresponding recovered hand trajectories in the second
row. This tracker does not require any manual initializa-
tion. It is also robust to mis-detections and false alarms
and has been validated on many sequences. Hypotheses
on the position are first generated by detecting pairs of
close parallel line segments in the frames, and then robustly
fitting a 2D motion model over several frames simulta-
neously. From the recovered club motion, we can infer
the 2D hand trajectories of the bottom row of Fig. 15.

For each sequence, we first run the golf club tracker [51].
As shown in Fig. 16a, for each sequence, the detected club
positions let us initialize the phase parameters by telling us
in which four frames the key postures of Fig. 4 can be
observed. With the times of the key postures, spline inter-
polation is then used to assign a phase to all other frames
in the sequence (see Fig. 16b). As not everybody performs
the motion at the same speed, these phases are only initial
guesses, which are refined during the actual optimization.
Thus,the temporal alignment does not need to be precise,
but it gives a rough initialization for each frame.

Figs. 14 and 17 show the projections of the recovered
3D skeleton in a representative subset of images of two
full swings performed by subjects whose motion was not
used in the motion database. Note the accuracy of the
results. Fig. 18 depicts a short swing that is performed
by a different person. Note that this motion is quite differ-
ent both from the full swing motion of Fig. 14 and from
the swing used to train the system. The club does not go
as high and, as shown in Fig. 15, the hands travel a much
shorter distance. As shown by the projection of the 3D
skeleton, the system has enough flexibility to generalize
to this motion. Note, however, that the right leg bends
too much at the end of the swing, which is caused by
the small number of training motions and the fact that
every training swing exhibited the same anomoly. A nat-
ural way to avoid this problem in the future would be
to use a larger training set with a greater variety of
motions.

Finally, Fig. 19 helps to show that the model has suffi-
cient flexibility to do the wrong thing given insufficient
image data. That is, even though we use an activity-specific
motion model, the problem is not so constrained that we
are guaranteed to get valid postures or motions without
using the image information correctly.

5.4.2. Synthetic data

We projected 3D motion capture data using a virtual
camera to produce 2D joint positions that we then use as
input to our tracker. The virtual camera is such that the
projections fall within a 640 · 480 virtual image, with the
root projecting at the center of the image. We initialized
the phase of the motion lt to a linear function, 0 at the
beginning and 1 at the end of the sequence. The style of
the motion was initialized to be the mean motion. Both
lt and the {ai} were refined during the tracking.

We used temporal windows sizes of 3 and 5, with very
similar results, as shown in Fig. 20. We also tested the influ-
ence of the number of 2D joint positions given as input to
the tracker, by using the whole set of joints, or the same
subset of joints used to track the sequence of Fig. 12, name-
ly, the ankles, knees, chest, head, shoulder, elbow and
hand. Both cases result in very similar accuracy, as shown
in Fig. 20. The errors, as expected, are bigger when track-
ing testing data than training data. Note that the tracker is
very accurate, the mean 3D errors are 0.7 cm per joint for
the training sequences and 1.5 cm for the testing sequences.

It is also of interest to test the sensitivity of the tracker
to the relative magnitudes of the smoothness and observa-
tion weights in Eq. (10). Fig. 21 shows the results of track-
ing synthetic training and testing sequences with different
values of wtype/ws, ranging from 0.1 to 10, with
ws = wg = wl = wa. All experiments yielded similar results,
indicating that the tracker is not particularly sensitive to
these parameters.

5.4.3. Failure modes

We have demonstrated that the tracking works well for
different cyclic (walking) and a-cyclic motions (golfing).
The tracked motions are different from the ones used for
training, but remain relatively close. In this section, we
use a caricatured walking sequence to test the generaliza-
tion capabilities of our motion models. The caricatured
walking is very different from the motions used for train-
ing, and the PCA-based motion models do not generalize
to this motion well. The style coefficients recovered by
the tracker are very far from the training ones (at least 6
standard deviations), resulting in impossible poses as
depicted by Fig. 22.

When using PCA-based motion models, one should
track motions that remain relatively close to the training
data, since the only motions that the tracker is capable of
producing are those in the subspace. For other motions,
one should include examples of such motions when
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learning the models, or apply other techniques such as
gaussian processes (GP) [34] that have better generalization
properties.

6. Multi-view tracking

When several synchronized video streams are available,
we use a correlation-based stereo algorithm [52] to extract
a cloud of 3D points at each frame, to which we fit the motion
model.

6.1. Objective function

Recall from Section 3 that we represent the human body
as a set of volumetric primitives attached to an articulated
3D skeleton. For multi-view tracking we treat them as



Fig. 17. Monocular tracking a 68 frame swing sequence. The skeleton of the recovered 3D model is projected onto the images.

Fig. 18. Monocular tracking an approach swing during which the club goes much less high than in a driving swing. The skeleton of the recovered 3D
model is projected onto the images.

Fig. 19. Tracking using only joint constraints vs using the complete objective function. (a) Original image. (b) 2D appearance based tracking result. (c) 2D
projection of the tracking results using only joint constraints. The problem is under-constrained and a multiple set of solutions are possible. (d) 3D
tracking results using only joint constraints. (e and f) The set of solutions is reduced using correspondences.
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implicit surfaces as this provides a differentiable objective
function which can be fit to the 3D stereo data while ignor-
ing measurement outliers. Following [45] the body is divid-
ed into several body parts; each body part b includes nb

ellipsoidal primitives attached to the skeleton. Associated
with each primitive is a field function fi, of the form

fiðx;SÞ ¼ bi expð�aidiðx;SÞÞ; ð14Þ
where x is a 3D point, ai, bi are constant values, di is the
algebraic distance to the center of the primitive, and S, is
the state vector in (7). The complete field function for body
part b is taken to be

f bðx;SÞ ¼
Xnb

i¼1

fiðx;SÞ; ð15Þ

and the skin is defined by the level set
SKðx;SÞ ¼
[B

b¼1

fx 2 R3jf bðx;SÞ ¼ Cg ð16Þ

where C is a constant, and B is the total number of body
parts. A 3D point x is said attached to body part b if

b ¼ arg min
16i6B

jf iðx;SÞ � Cj ð17Þ

For each 3D stereo point, xi, we write

Ostereoðxi;SÞ ¼ f bðxi;SÞ � C: ð18Þ

Fitting the model to stereo-data then amounts to minimiz-
ing (9), the first term of which becomes

Xtþf�1

j¼t

XB

b¼1

X

xi2b

ðf bðxi;j;SÞ � CÞ2; ð19Þ



Fig. 20. Tracking mean errors as a function of the window size and the
number of 2D constraints. Three types of errors (2D projection (pixels),
3D location (mm), Euler angles (radians)) are depicted. Each plot is split
in two groups, the left one represents errors when tracking training data
and the right one test data. For each group four error bars of two different
colors are depicted, each color represents a different window size (3 on red,
and 5 on green). For each color two bars show the errors first for the
complete set of joints and then for the subset of joints, with similar results.
Note that the estimated 3D joint location errors are very small, 0.7 cm in
mean for the training data sequences, and 1.5 cm for the testing ones. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)

Fig. 21. Tracking mean errors as a function of the weights. Tracking
results are given for experiments with three different types of measurement
errors (2D projection (pixels), 3D location (mm), Euler angles (radians)).
Each plot is split in two groups, the left one represents errors when
tracking training data and the right one for tracking test data. For each
group three error bars of different colors are depicted. Each color
represents different relative weights (dark green wtype/ws = 0.1, green wtype/
ws = 1, and yellow wtype/ws = 10), with ws = wg = wl = wa. Note that
tracker is not very sensitive to the specific value of the weights. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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where xi,j is a 3D stereo point belonging to frame j. Note
that Ostereo is differentiable and its derivatives can be com-
puted efficiently [45].

6.2. Experimental results

We use stereo data acquired using a Digiclopstm operat-
ing at a 640 · 480 resolution and a 14 Hz frame rate.
Because the frame rate is slow, the running subject of
Fig. 23 remains within the capture volume for only 6
frames. The data shown in Fig. 24 are noisy and have
low resolution for two reasons. First, to avoid motion blur,
we used a high shutter speed that reduced exposure. Sec-
ond, because the camera was fixed and the subject had to
remain within the capture volume, she projected onto a
small region of the image during the sequences. Of course,
the quality of this stereo data could have been improved by
using more sophisticated equipment. Nevertheless, our
results show that the tracker is robust enough to exploit
data acquired with cheap sensors.

Initially, the motion subspace coefficients are set to zero,
as above. We manually initialized the phase of the motion
lt in the first and last frame of the sequence. These points
were then interpolated to produce an initial phase estimate
in every frame. The initial guess does not have to be precise
because the tracking does not work directly with the images
but with the 3D data.

Fig. 25 shows results on walking sequences performed
by two subjects whose motion capture data were also used
as training data for the motion models. One can see from
the figures that the legs are correctly positioned. The errors
in the upper-body are caused by the large amount of noise
in the stereo data.

Fig. 26 depicts results from a walking sequence with
a subject whose motion was not included in the training
data. In this case he was also wearing four gyroscopes
on his legs, one for each sagittal rotation of the hip
and knee joints. The angular speeds they measured were
used solely for comparison purposes. Their output was
integrated to yield the absolute angles shown as dotted
curve in Fig. 27. We overlay on these plots the values
recovered by our tracker, showing that they are close,
even though the left leg is severely occluded. Given
the position of the visible leg, the PCA motion model
constrains the occluded one to be in a plausible position
close to the real one.

Fig. 23 shows results for the running sequence of Fig. 24
using the running motion model. The pose of the legs is
correctly recovered. The upper body tracking remains rela-
tively imprecise because average errors in the stereo data
are larger than the distance between the torso and the
arms. Improving this would require the use of additional
information, such as silhouettes. Here we restrict ourselves
to stereo data to show that our framework can be used with
very different objective functions.

Having a set of subspace coefficients per frame gives the
system the freedom to automatically evolve from one activ-
ity to another. To demonstrate this we used our motion
model learned for the combined running and walking data
to track a transition from walking to running (see Fig. 28).
In the first few frames the subject is walking, then for a
couple of frames she performs the transition and runs
for the rest of the sequence. The arms are not tracked
because we focus on estimating the motion parameters
of the lower body only. Here again, the legs are success-
fully tracked with small errors in foot positioning that



Fig. 22. Tracking 40 frames of an exaggerated gait. (First two rows) 3 frame window. (Last two rows) 5 frame window. The tracker results in impossible
positions.

Fig. 23. Tracking a running motion. The legs are now correctly positioned in the whole sequence.

Fig. 24. Input stereo data for the running sequence of Fig. 23. Side views of the 3D points computed by the Digiclopstm system. Note that they are very
noisy and lack depth because of the low quality of the video sequence.
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are due to the fact that ankle flexion is not part of the
motion database.

6.3. Recognition

The motion style is encoded by the subspace coefficients
in (4). They measure the deviation from the average motion
along orthogonal directions. Recall that during tracking,
the subspace coefficients are permitted to vary from frame
to frame. For recognition, we further reconstruct the 3D
motion of the person with a single set of subspace coeffi-
cients for the entire sequence [53]. The reason is that we
want to recover an average motion style during the
sequence. Moreover, the estimate of the style coefficients



Fig. 25. Using low resolution stereo data to track the two women whose motions were not used to learn the motion model. The recovered skeleton poses
are overlaid in white.

Fig. 26. Tracking a walking motion from a subject whose motion was not recorded in the database. The legs are correctly positioned.
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is more reliable if we increase the number of poses we use
to obtain it. If we allow the style parameters to vary from
frame to frame the style estimation is noisier, but the track-
er is typically more accurate. This is illustrated in Fig. 29,
when tracking with ground truth data and varying the sub-
space coefficients. Note that although the coefficients are
close to the ones of that subject, their variance is relatively
large.

The tracking algorithm used for recognition is divided
into two steps. First, the phase lt and the global motion
gt are optimized frame by frame, assuming a constant style
equal to the mean motion H0. This provides a good initial
estimate for a second step, where a global optimization is
performed. In the global fit, the phase and global motion
parameters are allowed to vary in every frame, but only
one set subspace coefficients is used to represent the entire
motion sequence. This is equivalent to minimizing (9),
where the size of the sliding window is f = T + 1.
Fig. 30a depicts the first two subspace coefficients, ai,
for the database used for the tracking. The four subjects
of the subspace are well separated in the first two
dimensions. The estimated coefficients for each one of
the two examples depicted by Fig. 25 are shown as cir-
cles and a triangle represents the estimated value for the
subject in Fig. 26 whose motion is not included in the
training dataset. For both women, the first two recov-
ered coefficients fall in the center of the cluster formed
by their recorded motion vectors. Also note that while
the new subject’s motion does appear consistent with
one of the training subjects in the first two subspace
dimensions, they are quite different in the next two
dimensions.

Figs. 30b and c, depicts the first four subspace coeffi-
cients, ai, for a model learned using nine subjects. The
estimated coefficients for each one of the two examples
depicted in Fig. 25 are shown as circles and as triangles
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Fig. 27. Comparing recovered rotation angles using visual tracking (solid curve), and by integrating gyroscopic data (smooth curve) for the walk of
Fig. 26. (Left column) Right hip and knee sagittal rotations. (Right column) Same thing for the left leg. Note that both curves are very close in all plots,
even though the left leg is severely occluded.

Fig. 28. Tracking the transition between walking and running. In the first four frames the subject is running. The transition occurs in the following three
frames and the sequence ends with running. The whole sequence is shown.

Fig. 29. Style coefficients, ai, obtained when tracking a training sequence. The training data is shown in cyan. Different colors show different window sizes
and number of 2D joint constraints. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
paper.)
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Fig. 30. Recognition of walking people from stereo data: walking motions from the training data are shown in the first four subspace dimensions. Each
person is shown with a distinct color and symbol. Small black circles denote the estimated subspace coefficients, ai, obtained from video of people whose
motions were included in the training set. The small black triangles depict subspace coefficients obtained from video of people whose motions were not
included in the training set. (a) First two PCA components of a model learned from four subjects. Notice that in the first two dimensions the estimated
coefficients for the test subject are easily confused with those of the training subjects. (b and c) First four components of a model learned with nine subjects.
In the first four dimensions the motions of the training subjects cluster nicely, and the subspace coefficients estimated for a test subject do not lay close to
any one cluster of the training subjects.
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for the subject of Fig. 26 whose motion is not recorded
in the training database. Once more, for both women,
the first four recovered coefficients fall in the center of
the cluster formed by their recorded motion vectors using
optical motion capture, meaning that they have been well
estimated. Higher order coefficients exhibit small varia-
tions that can be attributed to the fact that walking on
a treadmill changes the style. Typically the subjects tend
to bend the back more when performing the walking on
a treadmill to maintain balance. For the man whose
motion was not recorded in the database, the recovered
coefficients fall within two different clusters when looking
at the first two coefficients or at the third and fourth,
meaning that this person forms a different cluster in four
dimensions. It is not recognized as any of the nine per-
sons of the database.

The use of motion instead of pose allows us to simply
use a closest neighbour algorithm for classification. Note
that if we use pose (see Fig. 5), the recognition is more dif-
ficult and a more complex classification algorithm would
be necessary.

7. Conclusion and future work

We have presented an approach to incorporating strong
motion models that yields full 3D reconstruction using a
single-hypothesis hill-climbing approach. This results in
much lower computational expense than the current mul-
ti-hypothesis techniques. We have demonstrated the effec-
tiveness of our approach for monocular and multi-view
tracking of cyclic motions as walking and running and acy-
clic motions as golf swinging.

The major limitation of the current approach is the
number of examples needed to create a database with good
generalization properties. We are currently investigating
non-linear probabilistic techniques that reduces consider-
ably the number of examples required [34].
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