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Abstract

This paper addresses the derivation of likelihood func-
tions and confidence bounds for problems involving over-
determined linear systems with noise in all measurements,
often referred to as total-least-squares (TLS). It has been
shown previously that TLS provides maximum likelihood
estimates. But rather than being a function solely of the
variables of interest, the associated likelihood functions in-
crease in dimensionality with the number of equations. This
has made it difficult to derive suitable confidence bounds,
and impractical to use these probability functions with
Bayesian belief propagation or Bayesian tracking. This pa-
per derives likelihood functions that are defined only on
the parameters of interest. This has two main advantages:
first, the likelihood functions are much easier to use within
a Bayesian framework; and second it is straightforward to
obtain a reliable confidence bound on the estimates. We
demonstrate the accuracy of our confidence bound in re-
lation to others that have been proposed. Also, we use our
theoretical results to obtain likelihood functions for estimat-
ing the direction of 3d camera translation.

1. Introduction

There has been growing interest in the use of Bayesian
methods for computer vision research [19], with a trend
away from maximum likelihood (ML) and maximum a
posteriori (MAP) estimators towards the computation of
full posterior probability distributions. By computing full
probability distributions we can represent multimodal dis-
tributions, incorporate complex prior models, and exploit
Bayesian belief propagation, both through space (with
Markov random fields) and time (with Bayesian tracking).
Towards this end, the computation of posterior distributions
relies on the development of a generative image model (with
noise), the derivation of likelihood functions, and the devel-
opment (or learning) of prior distributions.

This paper concerns the derivation of probability func-
tions (e.g., likelihood functions) when the variables of inter-
est are partially constrained by noisy measurements. In par-
ticular, we derive likelihood functions for linear constraints,
like those that occur in line-fitting problems [12], gradient-
based optical flow estimation [7, 18, 21], and in linear sub-
space methods for the estimation of 3D translation [10].

By way of application domains, we are motivated by two
problems in motion analysis, namely, the estimation of op-
tical flow and the estimation of 3D camera translation. In
gradient-based optical flow estimation, assuming brightness
constancy, the velocity v(x; t) = (vx(x; t); vy(x; t)), at po-
sition x and time t, is related to the spatio-temporal inten-
sity gradient, ~rI(x; t) = (Ix(x; t); Iy(x; t); It(x; t)) 0, by
the gradient constraint equation [8]:

~rI 0vh = 0 ; (1)

where x 0 denotes the transpose of x, and vh = (vx; vy; 1)
0

denotes the unknown velocity vector in homogeneous coor-
dinates. Uncertainty is caused by noise in measuring image
derivatives and by violations of brightness constancy.

Linear constraint equations also arise in subspace meth-
ods for estimating the 3D direction of camera translation
[9, 10]. In this case local optical flow vectors are combined
linearly to obtain a set of constraints, ~� , that satisfy

~� 0T = 0 ; (2)

where T is the unknown camera translation. Because of un-
certainty in optical flow, the subspace constraint measure-
ments, ~� , will be noisy.

Previous approaches to problems like these have either
assumed simplified noise models, or they have avoided
computing the full likelihood or posterior by formulating
ML/MAP estimators instead. For example, with gradient-
based optical flow estimation it is often assumed that mea-
surements of spatial image derivatives in (1) are noiseless,
while noise in temporal derivative measurements is additive
and Gaussian. It is then straightforward to show that the
likelihood function is Gaussian, from which one can derive



linear ML estimator. Simoncelli et al. [18] used this noise
model, with a constant velocity model incorporating addi-
tive noise (within an image region), and a Gaussian prior
that prefers slow velocities, to derive a Gaussian posterior
pdf and a MAP estimator. Luettgen et al. [14] used this
noise model, with a multiscale, Gaussian Markov random
field (MRF) prior, to formulate a posterior pdf over optical
flow fields.

In many cases one cannot assume such simple measure-
ment noise models. This is true in gradient-based optical
flow if one considers noise in measurements of spatial im-
age derivatives. It is certainly true with subspace transla-
tion constraints (2), where uncertainty in optical flow affects
all components of the 3D measurement vector, ~� . In these
cases, with linear constraints and noise in all components of
the measurement vector, total-least-squares (TLS) [5] has
been used as an estimator, both for optical flow [21, 1] and
3D translation direction [9, 15].

The TLS estimator is a ML estimator for independent
and identically distributed (IID) additive Gaussian noise
[4, 20]. However, the TLS formulation does not provide a
likelihood function. Previous approaches to obtain this like-
lihood function, like error-in-variables [4], introduced the
true (noiseless) values of the measurements as new param-
eters of the likelihood function. These parameters are of-
ten called nuisance parameters because we are typically not
interested in estimating them. For example, the nuisance
parameters in Eq. (1) are the noiseless values of the spatio-
temporal derivatives and the nuisance parameters in Eq. (2)
are the true values of the ~� vectors. The problem with in-
cluding nuisance parameters in the likelihood function is
that the dimensionality of the likelihood function then in-
creases with the number of equations (i.e., with the num-
ber of measurements), rather than with the number of un-
knowns we wish to estimate. This poses a serious problem
for the practical application of the likelihood function in a
Bayesian calculation, and for the derivation of confidence
bounds on the estimates.

In this paper, we derive a likelihood function whose di-
mension is equal to the number of unknowns. This sim-
plified, low-dimensional likelihood function is easier to use
in practice (e.g., propagated using belief propagation, or in
Bayesian tracking). In addition, we derive the Cramer-Rao
lower bound -CRLB- (a bound on the covariance of the er-
ror in the estimates). Several approximations of the CRLB
have been proposed to obtain a confidence measures for ML
estimators in TLS problems. We propose a different approx-
imation of the CRLB and we show, using Monte Carlo sim-
ulations, that our approximation compares favorably with
the previous approximations.

2. Likelihood Function for Linear Constraints

Consider the problem of estimating an N -dimensional
variable, x, in an over-determined linear system, A0x = b0,
where our only observations A and b, are noisy measure-
ments of A0 and b0. This problem has been studied in-
dependently from a statistical perspective, called error-in-
variables (EIV) [4], and from a numerical analysis perspec-
tive, called total-least-squares (TLS) [5]. Van Huffel and
Vandewalle [20] linked the results obtained in the EIV anal-
ysis with the TLS solution, showing that TLS is a maximum
likelihood estimator for IID Gaussian noise.

TLS has a direct geometrical interpretation. For nota-
tional convenience, we define ci as a N+1 dimensional vec-
tor formed by taking the transpose of the i-th row of the ma-
trix A, a 0

i
, together with the i-th element of the column ma-

trix b, bi, i.e., ci � (a 0
i
; bi)

0; we also define xh � (x 0;�1) 0.
Then, TLS can be interpreted as finding the characteris-
tic vector xh of a hyperplane passing through the origin,
which minimizes the sum of squared orthogonal distances
between the points ci and the hyperplane, given generically
by c 0xh = 0. Therefore, the TLS solution xTLS minimizes
the following function:

xTLS = argmin
x

x 0
h

C 0Cxh
jjxhjj2

(3)

where C � [Ajb] so that the i-th row of C is c 0
i
. Given the

Singular Value Decomposition (SVD) of C = U�V 0, it has
been shown [20] that the xTLS which minimizes Eq. (3) is
given by taking the negative of the result of normalizing the
first N elements of the last column of V by the last element
of V.

Our goal here is to obtain a simple expression for the
likelihood function on x, given measurementsA and b. Our
approach starts with the likelihood function formulated by
the EIV analysis, which includes the nuisance parameters.
Then we eliminate the nuisance parameters, resulting in a
likelihood function defined only in the parameters of inter-
est, x, and therefore having a much lower dimensionality
than the original likelihood function. One interesting result
is the need of a prior probability distribution on the true val-
ues underlying the noisy measurements [6]. We show that
certain choices of the prior and noise distributions lead to
a likelihood function that is maximized by the same values
of the parameters x that maximize the full likelihood func-
tion given by the EIV approach, which are given by the TLS
solution.

2.1. One Constraint

We start by considering one equation from the above
over-determined linear system, a00x = b0, where a0 and
b0 are the true values for which the constraint holds exactly.



2.1.1. EIV Likelihood Function. Following the EIV ap-
proach [4], let the measurements be contaminated by addi-
tive noise:

a = a0 + na

b = b0 + nb = a00x + nb
(4)

where (a 0; b) 0 are the measurements, composed of signal
(a 0

0; b0)
0 and noise n � (n 0

a; nb)
0. From Eq. (4) and the pdf

of the noise, pn(n), it is straightforward to derive the EIV
likelihood function [4] as follows:

p(a; b j x; a0) = pn ((n 0
a; nb)

0) (5)

where, from Eq. (4), na = a � a0 and nb = b � b0. (For
the sake of notational simplicity, we omit the subscript on
the probability functions when they are the same random
variables as the arguments to the function.) In Eq. (5), a 0

are the nuisance parameters.
The problem with the EIV formulation is that the dimen-

sion of the likelihood function grows with the number of
nuisance parameters, and hence with the number of mea-
surements. This a serious disadvantage if we are interested
in estimating x only, in computing confidence bounds on a
ML estimator for x, or in propagating a distribution over x
as part of a larger Bayesian calculation.

2.1.2. Integration of the Nuisance Parameters. To obtain
a more compact expression for the likelihood function, our
approach is to integrate over the nuisance parameters, a0 in
Eq. (5). We formulate this using Bayes’ rule as follows:

p(a; b j x) =

Z
a0

da0 p(a; b; a0 j x)

=

Z
a0

da0 p(a; b j x; a0) p(a0 j x) (6)

where the simplified likelihood function depends on the full
likelihood function in Eq. (5), and on the conditional pdf
p(a0jx), which is a conditional prior on the true values of
the nuisance parameters a0. As with any prior probability,
this conditional prior has to be specified according to the
knowledge that we have about the problem. The ease with
which one can solve the integral in Eq. (6) depends on both
the prior and the noise distribution.

2.1.3. Prior Distributions on the Nuisance Parameters.
If there is not enough a priori knowledge about the prob-
lem, several assumptions can be made. One idea might be
to assume that a0 is independent of x, and therefore the
conditional prior on a0jx is just a prior on a0. However,
this assumption is problematic, because it means that we do
not impose any limit on the variance, or power, of b 0jx; yet
all signals of practical interest have limited power. Indeed,
because of the linear relationship that relates a 0

0x = b0, it
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Figure 1. Illustration of the behavior of the conditional
prior variances for the independent prior model.

0b

010 bxa =

]|[ 1
2
0 xa

]|[ 1
2
0 xb 0a

0b

020 bxa =

]|[ 2
2
0 xa

0a]|[ 2
2
0 xb

Figure 2. Illustration of the behavior of the conditional
prior variances for the constant power model.

follows (assuming also that E [a0] = 0, where E [�] is the ex-
pected value) that E [b20jx] = x 0E [a0a 0

0]x. Therefore, as jjxjj
increases, E [b20jx] also increases.

This is illustrated in Fig. 1 in 1 dimension. In these
graphs, the two vertical, dashed lines denote some bounds
on a potential distribution of a0. For example, they can be
the limits of a uniform distribution over a0. Each panel cor-
responds to a different value of the parameter x. The vari-
ance of the conditional distribution of a0jx is independent
of x, as is reflected by the same value of E [a20] in both pan-
els of Fig. 1. When x is given, a0 and b0 should lie in the
line given by a0x = b0. Therefore, as jxj increases, E [b20jx]
also increases (compare the greater variance of b0jx2 in the
right graph, with that of b0jx1 in the left graph).

Fig. 2 illustrates another possible model for the prior,
in which the sum of the variances of a0 and b0, given x,
remain constant. This is represented by the dashed circle,
which in this case is a limit on a potential joint distribution
of (a0; b0). As jxj increases, E [b20jx] increases (compare
the greater variance for b0jx2 in the right graph, with that
of b0jx1 in the left graph), but this is compensated by a de-
crease of E [a20jx] (compare the smaller variance for a0jx2
in the right graph, with that of a0jx1 in the left graph), such
that the sum of both variances remain constant. This last
model seems more reasonable in practical applications, be-
cause the power of the total signal (a0; b0) is not allowed
not grow without bound.



In what follows, we use this second (constant power)
prior. Moreover, we assume a Gaussian distribution for this
prior, which yields an analytical solution for the integral in
Eq (6). Given x, we know that a 0

0x = b0, and therefore
the joint conditional probability p(a0; b0jx) is only nonzero
along the hyperplane given by the constraint, a 0

0x � b0. In
the example of Fig. 2, p(a0; b0jx) lies on the diagonal line
in each panel. The joint conditional probability can thus be
expressed as proportional to a multidimensional Dirac delta
function, i.e. Æ(a 0

0x � b0). To make this pdf integrable,
we multiply the delta function by an isotropic Gaussian in
(a0; b0), such that the final pdf is also isotropic. Intuitively,
this is a soft version of the circles in Fig. 2. Thus, the power
of the total signal (a0; b0) remains constant independent of
x. Letting c0 � (a 0

0; b0)
0 and xh � (x 0;�1) 0 for notational

convenience, the joint conditional prior is then given by:

p(a0; b0jx) =
k1

(2��20)
N=2

Æ(c 00xh) exp
�
�c 00c0
2�20

�
(7)

where N is the dimension of the parameter vector x. It turns
out that k1 = jjxhjj (where jj � jj denotes the modulus (2-
norm) of a vector) to make the integral of the pdf equal to 1
(see Appendix I).

Finally, to obtain the desired prior p(a0jx), we integrate
the joint conditional prior in Eq. (7) over b0, resulting in:

p(a0jx) =
jjxhjj

(2��20)
N=2

exp

�
�a 0

0�
�1
x a0

2�20

�
(8)

where �x = (IN + xx 0)�1 = IN � xx 0=jjxhjj2, and where
IN is the N �N identity matrix. Eq. (8) provides the con-
ditional prior on the nuisance parameters needed in Eq (6).

2.1.4. Likelihood function for Gaussian Noise. With the
Gaussian conditional prior in Eq. (8), and the full likeli-
hood function in Eq. (5), we can now return to Eq. (6)
to obtain the desired likelihood function. For the special
case of isotropic Gaussian noise, n � N (0; �2

n
IN+1), with

c � (a 0; b) 0 for notational convenience, one can derive the
following analytical solution for the likelihood:

p(a; bjx)=k2 exp

�
�

1

2�2
n

�
(1� )c 0c + 

c 0xhx 0
h

c
jjxhjj2

��
(9)

where k2 = N=2=[(2�)(N+1)=2�N0 �n]. The factor  �
�
2

0

�2
n
+�2

0

is related with the signal to noise ratio (SNR). If the

SNR is high (�20 � �2
n

), then  ' 1.
For non-Gaussian priors or non-Gaussian noise it may

be necessary to use numerical integration to approximate
the likelihood function.

2.2. Multiple Constraints

We now generalize to the case of L constraints, ex-
pressed in matrix form as A0x = b0. The rows of A0 are

formed by the true values for each equation, a 0
0i

, and b0 is
a column vector containing the true values b0i . Following a
similar notation, we collect the noisy measurements a 0

i
into

matrix A, and bi into column vector b.
If the L constraints are independent, we can express the

complete likelihood as the product of the individual likeli-
hoods:

p(A; b j x) =
LY
i=1

p(ai; bi j x) (10)

In the case of IID Gaussian noise, and identical Gaussian
conditional priors for every constraint, the pdf in (10) sim-
plifies to

kL2 exp

�
�

1

2�2
n

�
(1� )tr(CC 0) + 

x 0
h

C 0Cxh
jjxhjj2

��
(11)

where C � [Ajb], and tr(�) is the trace of a matrix. One
important characteristic of this likelihood function is that,
although it has been derived considering a particular form
for the conditional prior distribution of the nuisance param-
eters, its maximum occurs at the estimate of x given by TLS
[20], independent of . This becomes clear by comparing
the error function that minimizes the TLS solution in Eq. (3)
with the likelihood function in Eq. (11). In addition, this
estimate also maximizes the original likelihood function in
Eq. (5) of the EIV approach for IID Gaussian noise.

The particular choice of the conditional joint prior in
Eq. (7) has led to a likelihood function whose maximum is
the same as the TLS estimator. However, different choices
for this prior can lead to likelihood functions whose maxima
are not the same as the TLS solution, and which, in princi-
ple, produce more accurate estimates than the TLS estima-
tor, because of the introduction of prior knowledge.

3. Confidence Bounds

The likelihood function derived in the previous Section
can be used in Bayesian computations. However, there are
situations in which it is enough to give a ML estimate. In
those cases, it is important to provide confidence bounds on
the accuracy of the estimates. A standard procedure is to
give the Cramer-Rao lower bound (CRLB) on the variance
of the estimates. The CRLB is given by the inverse of the
expected value of the Hessian of the negative log-likelihood
function, evaluated at the true values of the parameters (for
unbiased estimators). This lower bound is achieved by the
Maximum Likelihood estimator.

One important consequence of having derived the likeli-
hood in Eq. (11) is that we can derive the CRLB for the TLS
solution easily. The first result towards this end is that the
Hessian of the negative log-likelihood function in Eq. (11)



can be shown to be

H = 

�2
n
jjxhjj2

�
M� 1

jjxhjj2
(x 0

h
Dxh)IN+

4
jjxhjj4

�
(x 0

h
Dxh)x� jjxhjj2(Mx� A0b)

�
x0
� (12)

where M � A 0A, and D � C 0C. This Hessian is relevant
because it will be used to approximate the CRLB, providing
an accurate confidence bound (see below).

The CRLB is obtained by taking the expected value of H
with respect to the noisy measurements, A and b, inverting
the result, and evaluating it at the true value of the parame-
ters x0. It can be shown that this results in:

E [H]�1 =
1


�2njjx0h jj

2 M�1
0 (13)

where M0 � A 0
0A0. Although this CRLB corresponds to a

likelihood function obtained using a specific prior for the
true values, it is equivalent to the asymptotic (i.e., for a
large number of equations) covariance matrix of the esti-
mates found by Gallo [3, 20]. In addition, if the SNR is high
( ' 1), the CRLB in Eq. (13) reduces to the approxima-
tions found by Koopmans [13], and later by Kanatani [11],
that were derived without knowing the likelihood function.

3.1. Approximations of the CRLB

The CRLB depends on the true values, A0 and x0, on
the variance of the noise �2

n
, and on . However, in practi-

cal estimation problems we do not know these values, and
therefore it is necessary to approximate the CRLB. Usually,
the true value of x is approximated by its estimate, ~x. The
power of the noise is estimated as the square of the smallest
singular value of the augmented data matrix, [Ajb], normal-
ized by the number of equations [20] (we call this estimate
~�2n). Because we have obtained the Hessian of the likeli-
hood function, Eq. (12), we can use it directly to approxi-
mate the CRLB:

1. We propose here the direct use of the inverse of the
Hessian in Eq. (12), C1 = H�1, that depends only on
the measurements. In doing so, we are effectively ap-
proximating the expected value in Eq. (13) by a single
realization.

Interestingly, several different approximations of the CRLB
in Eq. (13) have been proposed. We define here two of the
approximations of the CRLB, which we compare with the
proposed C1:

2. Ohta [17] proposes the direct use of M, composed by
the noisy measurements, as an approximation of M0 in
Eq. (13), and assuming high SNR ( ' 1); this results
in the approximation C2 = ~�2

n
jj~xhjj2M�1.

3. Van Huffel and Vandewalle [20] propose to correct M
to account for the power of the noise, and with  ' 1;
this produces the approximation C3 = ~�2

n
jj~xhjj2(M �

L~�2nIN )�1.

C2 and C3 are high SNR approximations to the CRLB,
taken as  ! 1. Because the proposed approximation C1

accounts for the factor , we also considered generaliza-
tions of the last two approximations, including the factor 
as in Eq. (13):

4. Generalized version of C2, that is, C4 = (1=)C2.

5. Generalized version of C3, that is, C5 = (1=)C3.

3.2. Monte Carlo Evaluation

To determine which of these 5 approximations to the er-
ror bound is more accurate, we ran an extensive series of
Monte Carlo simulations. We found that C1 is the most ac-
curate approximation to the CRLB.

We simulated a 2D estimation problem (i.e., N=2). For
each trial of the simulation, we drew a random set of L inde-
pendent vectors fa0ig; 1 � i � L, from the same Gaussian
conditional prior compatible with the true value of the pa-
rameter vector x0, given by Eq. 8. The corresponding true
values of b0i are given by the linear constraint, bi0 = a 0

0i
x0.

The power of the signal was in all cases �2
0 = 1. Then, we

added IID Gaussian noise of variance �2
n to the true values,

to obtain the noisy observations.
For each trial we estimated x using the TLS estimator

~x. We then obtained an error e = ~x � x0, and the five
confidence bounds (Cj ; 1 � j � 5) defined above 1. To
obtain a measure of the accuracy of each confidence bound,
we used Cj to whiten the error e, i.e., we obtain a normal-
ized error ewj = Q�1

j
e, such that Qj is a matrix that sat-

isfies Cj = QjQ 0
j (e.g., the Cholesky decomposition, or

the eigenvector matrix multiplied by the square root of the
eigenvalue matrix). Therefore, if the confidence bound is
equal the covariance of the error (Cj = E [ee 0]), then the
covariance of the whitened error has to be the identity ma-
trix (E [ewje 0wj ] = IN ).

We measured the accuracy of the different confidence
bounds by running a large number of simulations, and com-
puting the sample covariance of the whitened errors. Better
bounds should yield sample covariances that are close to the
identity matrix. To summarize the deviation of the sample
covariances from the identity matrix, we have computed the
norm of the singular values of the difference between the
sample covariance and the identity matrix. This norm (E)
should be close to 0 when the sample covariance is close to
the identity.

1in C1, C4 and C5 we have used the true power of the signal, �2
0

, and
the estimated power of the noise, ~�2

n
, to compute .
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Figure 3. Comparison of the accuracy of the five different
CRLB approximations. Top panel, well-conditioned sys-
tem. Bottom panel, poorly conditioned system. Both panels
plot the error (E) of the CRLB approximation as a function
of the signal-to-noise parameter ().

We ran 10,000 simulations, for two different data set
sample sizes (small, L = 20, and large, L = 500) and two
different condition numbers (�) of A0 (a well-conditioned
system of equations, � = 1:4, and a poorly-conditioned
system, � = 3:3). The poorly-conditioned system was
obtained by modifying the covariance matrix of the condi-
tional prior on a0jx (i.e., in this case we were sampling from
a different prior than that used to compute the likelihood),
such that the condition number of the resulting systems was
on average the desired one, and at the same time forcing the
total signal power to be unchanged (� 2

0 = 1). In all simula-
tions the true value of the parameter was x0 = (0:75; 0:75) 0.
The power of the additive noise (�2

n) was varied between
1/16 and 2 (i.e.,  between 0.94 and 0.33).

The graphs in Figure 3 plot the error of the CRLB ap-
proximations (E) as a function of the signal-to-noise pa-
rameter (), for the two cases having a small sample size
(L = 20). As expected, the high SNR approximations (C2

and C3), suffer a large degradation as  diminishes, but even
for  close to 1, results are worse than the corrected versions

(C4 and C5). Also as expected, C5 is generally better than
C4 because M is corrected by the power of the noise (like-
wise, C3 is better than C2). One problem with the corrected
version of M (used to compute both C3 and C5), however,
is that as the SNR decreases, we found that the inverse of
(M � L~�2

n
IN ) was not always positive definite, which is

inconsistent with the definition of a covariance matrix (we
have omitted those cases in the computation of the sample
covariance matrices of the normalized errors).

The accuracy obtained using C1 (the inverse of the Hes-
sian) is similar or better than that obtained using any of the
other confidence bounds. If  is not known, one can still use
a version of C1 with  = 1; we found that this approxima-
tion was still better than C3. In addition, the inverse of the
Hessian is, by definition, positive definite, which is a great
advantage with respect to bounds (C3 and C5) that use the
corrected version of M.

Finally, for the large sample size (L = 500, graphs not
shown here), the accuracy of all 5 CRLB approximations
improved dramatically, especially for C1 and C5, which in
this case gave E � 0 for all the conditions tested.

4. Application to Estimation of the 3D Direc-
tion of Translation

The approach that we have described can be applied to
a number of problems in computer vision. In particular,
it can be applied to optical flow estimation. Indeed, TLS
has already been used in optical flow estimation [21, 1], but
without providing confidence bounds on the accuracy of the
estimates, nor in a Bayesian framework.

Here we apply this method to derive likelihood functions
for the direction of camera translation, from probability dis-
tributions of optical flow. We have extended the linear sub-
space method for recovering the direction of translation pro-
posed by Jepson and Heeger [9, 10], to accept, as input,
probability distributions of optical flow.

The linear subspace algorithm linearly combines optical
flow vectors from different locations to obtain a set of three
dimensional vectors f~�ig, that are orthogonal to the direc-
tion of camera translation:

~� 0
i

T = 0; i = 1; : : : ; N (14)

where T is the direction of translation of the camera, and N
the number of equations 2. Because the ~�i vectors are a lin-
ear combination of a large number of optical flow vectors,
it can be assumed that the noise affecting ~�i is Gaussian.
Thus, we can use a generalized version of Eq. (9) for an
arbitrary noise covariance, to formulate the likelihood func-
tion for each individual constraint. However, we can not

2Typically, if the number of locations where the optical flow is available
is M , it is possible to obtain N =M � 6 equations [10].
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Figure 4. Left: Central frame of the Yosemite sequence,
with the selected pixels displayed in white. Right: Likeli-
hood (in arbitrary units) as a function of the two first com-
ponents of the direction of translation (X is the true direc-
tion of translation).

use Eq. (11) because the covariance of the noise is different
for each ~�i. Here we evaluate numerically the likelihood for
each constraint, and then, assuming independence between
constraints, we apply Eq. (10) to obtain the total likelihood.

4.1. Results

We tested this probabilistic formulation with the syn-
thetic Yosemite fly-through image sequence, where the true
translation velocity is known. For this purpose we have used
the probability distributions of optical flow generated by an
optical flow estimation method described in [16], for the
central frame of the sequence. This method gives an es-
timate of the optical flow and of its associated covariance
matrix at every pixel.

We have selected a reduced number of pixels (about
1300 with the highest confidence, shown in white in the
left image of Fig. 4) to avoid an excessive computational
cost. From this set of selected pixels, we generated all the
possible ~�i vectors (the number of pixels minus 6).

The resulting likelihood distribution is depicted in the
right graph of Fig. 4, as a function of the two first com-
ponents of T. The maximum of this distribution is located
at Tmax = (0:07; 0:15; 0:98). The angular error with re-
spect to the true translation velocity T0 = (0; 0:17; 0:98)
(marked with an X) is 4:5o. We also used the original al-
gorithm [10] to obtain a least squares estimate of the direc-
tion of translation from the same set of pixels, resulting in
a Test = (0:16; 0:13; 0:98), whose angular error (9:7o) is
twice the error obtained with the probabilistic method. In
addition, we have obtained a full likelihood function, from
which confidence measures can be extracted.

5. Conclusion

We have presented a method for computing low dimen-
sional likelihood functions in cases were the variables of in-
terest are linearly constrained by noisy measurements. Such
likelihood functions are highly valuable both as part of a

Bayesian calculation, and as a means for establishing confi-
dence bounds on ML estimators.

The simplified likelihood functions require the introduc-
tion of prior probabilities on the true values underlying the
noisy measurements. Different prior models can lead to
substantially different likelihood functions, and therefore,
to different estimators that should be more accurate than
the TLS solution, because of the introduction of some prior
information.

In this paper we have used a Gaussian, constant power
prior, which results in the simplified likelihood functions in
Eq. (9), in the case of a single constraint, and in Eq. (11), for
multiple constraints. This last function has two interesting
properties. First, its maximum is the same as the maximum
found by TLS. Second, the Cramer-Rao lower bound for
this simplified likelihood function is equivalent to previous
approximations that were derived without knowing the like-
lihood function.

In addition, the simplified likelihood functions have two
advantages with respect to previous results. (1) We can ap-
proximate the CRLB using the inverse of the Hessian of the
negative log-likelihood, given in Eq. (12). We have shown
that this approximation is both more accurate and stable (it
is always positive definite) than previous approximations.
(2) The simplified likelihood function can be used as part of
a larger Bayesian calculation very efficiently (without the
need of including the nuisance parameters).

We have also applied the formulation to compute prob-
ability distributions for the direction of camera translation.
Starting with the linear subspace method, we introduced full
probability distributions for the estimated optical flow and
we end up with a full pdf for the direction of translation.
The estimate we obtained using this method is more accu-
rate than the estimate given by the original method [10], and
the new method computes as additional information the full
distribution of the likelihood function.
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Appendix I

Here we derive the value of k1 in Eq. (7) that makes the
pdf integrate to 1. First, we note the following property to

convert integrals with multidimensional Dirac delta func-
tions into surface integrals [2]:

Z
c0

dc0 Æ(g(c0; x)) p(c0) =

Z
S�fc0jg(c0;x)=0g

ds
p(c0)

jj~rc0g(c0; x)jj
(15)

where, ~rc0 is the gradient operator with respect to c0, and
ds is a surface differential. Then, it follows that:

k =
1R

c0
dc0

Æ(c 0

0
xh)

(2��2
0
)N=2

exp
�
�c 0

0
c0

2�2
0

� = jjxhjj (16)

where jj � jj denotes the modulus (2-norm) of a vector.


