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Abstract

Image “appearance” may change over time due to
a variety of causes such as 1) object or camera mo-
tion; 2) generic photometric events including varia-
tions in illumination (e.g. shadows) and specular re-
flections; and 3) “iconic changes” which are specific
to the objects being viewed and include complex occlu-
sion events and changes in the material properties of
the objects. We propose a general framework for repre-
sentingand recovering these “appearance changes” in
an image sequence as a “mixture” of different causes.
The approach generalizes previous work on optical
flow to provide a richer description of image events and
more reliable estimates of image motion.

1 Introduction
As Gibson noted, the world is made up of surfaces that “flow
or undergo stretching, squeezing, bending, and breaking in
ways of enormous mechanical complexity” ([9], page 15).
These events result in a wide variety of changes in the “ap-
pearance” of objects in a scene. While motion and illu-
mination changes are examples of common scene events
that result in appearance change, numerous other events oc-
cur in nature that cause changes in appearance. For exam-
ple, the color of objects can change due to chemical pro-
cesses (eg., oxidation), objects can change state (eg., evap-
oration, dissolving), or objects can undergo radical changes
in structure (eg., exploding, tearing, rupturing, boiling). In
this paper we formulate a general framework for represent-
ing appearance changes such as these. In so doing we have
three primary goals. First, we wish to “explain” appearance
changes in an image sequence as resulting from a “mixture”
of causes. Second, we wish to locate where particular types
of appearance change are taking place in an image. And,
third, we want to provide a framework that generalizes pre-
vious work on motion estimation.

We propose four generative models to “explain” the
classes of appearance change illustrated in Figure 1. A
change in “form” is modeled as the motion of pixels in one
image to those in the next image. An image at time t � �

Form Change

Iconic Change

Illumination Change

Specular Reflection

Figure 1: Examples of appearance change.

can be explained by warping the image at time t using this
image motion.

Illumination variations (Figure 1, upper right), may
be global, occurring throughout the entire image due to
changes in the illuminant, or local as the result of shadow-
ing. Here we model illumination change as a smooth func-
tion that amplifies/attenuates image contrast. By compari-
son, specular reflections (Figure 1, lower right) are typically
local and can be modeled, in the simplest case, as a near sat-
uration of image intensity.

The fourth class of events considered in this paper is
iconic change [6]. We use the word “iconic” to indicate
changes that are “pictorial.” These are systematic changes
in image appearance that are not readily explained by physi-
cal models of motion, illumination, or specularity. A simple
example is the blinking of the eye in Figure 1 (lower left).
Examples of physical phenomena that give rise to iconic
change include occlusion, disocclusion, changes in surface
materials, and motions of non-rigidobjects. In this paper we
consider iconic changes to be object specific and we “learn”
models of the the iconic structure for particular objects.

These different types of appearance change commonly
occur together with natural objects; for example, with artic-
ulated human motion or the textural motion of plants, flags,
water, etc. We employ a probabilistic mixture model for-
mulation [14] to recover the various types of appearance
change and to perform a soft assignment, or classification,
of pixels to causes. This is illustrated in Figure 2. In natural



Proc. Sixth Int. Conf. on Computer Vision (ICCV’98), Mumbai, India, Jan. 1998 c� IEEE 1998 2

p(

p(

) =

) =

a0 + a1 + a2 + ...

Iconic explanation
(linear combination of basis images)

Motion explanation (warp)

Image at t+1

Image at t

Weights

=

=

Figure 2: Object specific appearance change between a im-
ages at times t and t� � is modeled as a mixture of motion
and iconic change (see text).

speech the appearance change of a mouth between frames
can be great due to the appearance/disappearance of the
teeth, tongue, and mouth cavity. While changes around the
mouth can be modeled by a smooth deformation (image t��
warped to approximate image t) the large disocclusions are
best modeled as an iconic change (taken here to be a lin-
ear combination of learned basis images). We use the EM-
algorithm [14] to iteratively compute maximum likelihood
estimates for the deformation and iconic model parameters
as well as the posterior probabilities that pixels at time t are
explained by each of the causes. These probabilities are the
“weights” in Figure 2 and they provide a soft assignment of
pixels to causes.

Below we describe this mixture-model formulation and
some simple appearance-change models that generalize the
notion of brightness constancy used in estimating optical
flow.

2 Context and Previous Work
Previous work in image sequence analysis has focused on
the measurement of optical flow using the brightness con-
stancy assumption. The assumption states that the image
brightness I��x� t� at a pixel�x � �x� y� and time t is a simple
deformation of the image at time t� �:

I��x� t� � I��x � �u��x�� t� ��� (1)

where �u��x� � �u��x�� v��x�� represents the horizontal and
vertical displacement of the pixel. This model is applied in
image patches using regression techniques or locally using
regularization techniques. The recovered image motion can
be used to “warp” one image towards the other.

While optical flow is an important type of image appear-
ance change it is well known that it does not capture all the
important image events. One focus of recent work in motion

estimation is to make it “robust” in the presence of these un-
modeled changes in appearance (ie. violations of the bright-
ness constancy assumption) [3]. The approach here is quite
different in that we explicitly model many of these events
and hence extend the notion of “constancy” to more com-
plex types of appearance change.

One motivation for this is our interest in recognizing com-
plex non-rigidand articulated motions, such as human facial
expressions. Previous work in this area has focused on im-
age motion of face regions such as the mouth [5]. But im-
age motion alone does not capture appearance changes such
as the systematic appearance/disappearance of the teeth and
tongue during speech and facial expressions. For machine
recognition we would like to be able to model these inten-
sity variations.

Our framework extends several previous approaches that
generalize the brightness constancy assumption. Mukawa
[15] extended the brightness constancy assumption to allow
illumination changes that are a smoothly varying function
of the image brightness. In a related paper, Negahdaripour
and Yu [17] proposed a general linear brightness constraint

I��x� t� � m��x� t� I��x� �u��x�� t� �� � c��x� t� (2)

wherem��x� t� and c��x� t� are used to account for multiplica-
tive and additive deviations from brightness constancy and
are assumed to be constant within an image region.

Another generalization of brightness constancy was pro-
posed by Nastar et al. [16]. Treating the image as a sur-
face in 3D XYI-space, they proposed a physically-based ap-
proach for finding the deformation from an XYI surface at
time t to the XYI surface at t � �. This allows for a gen-
eral class of smooth deformations between frames, includ-
ing both multiplicative and additive changes to intensity, as
does the general constraint in (2).

A number of authors have proposed more general linear
models of image brightness [2, 10, 11, 18]. For example,
Hager and Belhumeur [10] use principal component analy-
sis (PCA) to find a set of orthogonal basis images, fBj��x�g,
that spans the ensemble of images of an object under a wide
variety of illuminant directions. They constrain deviations
from brightness constancy to lie in the subspace of illumi-
nation variations, giving the constraint

I��x� t� � I��x� �u��x� �m�� t� �� �
nX

j��

bjBj��x�� (3)

where �u��x� �m� is a parameterized (affine) model of image
motion. The authors estimate the motion parameters �m �
�m�� � � � �mk� and the subspace parameters b����bn. Hal-
linan [11] proposed a model that included both a model
of illumination variation and a learned deformation model
(EigenWarps). These approaches are also related to the
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eigentracking work of Black and Jepson [4] in which sub-
space constraints are used to help account for iconic changes
in appearance while an object is being tracked.

In [6] we extended these general linear brightness models
by allowing spatially varying explanations for pixels

I��x� t� � w���x�IMotion��x� � w���x�IIconic��x��

The terms wi��x� are spatially varying “weights” between
zero and one that indicate the extent to which a pixel can be
explained, or modeled, by the individual causes.

The approach presented here casts the above models in a
probabilistic mixture model framework. The models above
can be thought of as different generative models that can
be used to construct or explain an image; in a sense, they
embody different “constancy” assumptions. Unlike the ap-
proaches above, however, the mixture model framework
factors appearance change into multiple causes and per-
forms a soft assignment of pixels to the different models

3 Mixture Model of Appearance Change
Mixture models [14] have been used previously in motion
analysis for recovering multiple motions within an image
region [1, 13, 19]. The basic goals are to estimate the pa-
rameters of a set of models given data generated by multi-
ple causes and to assign data to the estimated models. Here
we use this idea to account for co-occurring types of appear-
ance change. Within some image regionRwe may expect a
variety of appearance changes to take place between frames.

In particular, we assume that a pixel I��x� t� at location
�x � R and time t is generated, or explained, by one of n
causes ICi

, i � �� � � � � n. The causes, ICi
��x� t� ��i�, can

be thought of as overlapping “layers” and are simply im-
ages that are generated given some parameters ��i. We will
consider four causes below namely: motion (IC�

), illumina-
tion variations (IC�

), specular reflections (IC�
), and iconic

changes (IC�
). Given these causes, the probability of ob-

serving the image I��x� t� is then

p�I��x� t�j���� � � � � ��n� ��� � � � � �n� �
nX

i��

�ipi�I��x� t�j��i� �i�

where the �i are mixture proportions [14] which we take
to be ��n for each i indicating that each cause is equally
likely. The ��i are parameters of model ICi

for which we
seek a maximum likelihood estimate and the�i are scale pa-
rameters. Here we make the very crude assumption that the
causes are independent.

In contrast to the traditional mixture of Gaussians formu-
lation, the component probabilities, pi�I��x� t�j��i� �i�, are
defined to be

pi�I��x� t�j��i� �i� �
���

���� � �I��x� t�� ICi
��x� t� ��i�����

�

M� M� M� M� M� M�

Figure 3: Affine flow basis set.

L� L� L�

Figure 4: Linear illumination-change basis images.

This is a robust likelihood function (Figure 5) the tails of
which fall off more sharply than those of a normal distribu-
tion. This reflects our expectation that the residuals I��x� t��
ICi

��x� t� ��i� contain outliers [12].
Below we define the individual sources of appearance

change.

Motion: Motion is a particularly important type of ap-
pearance change that is modeled by

IC�
��x� t� �m� � I��x � �u��x� �m�� t� �� �

This represents the image at time t��warped by a flow field
�u��x� �m�. We use a parametric description of optical flow in
which the motion in an image region is modeled as a linear
combination of k basis flow fields Mj�x�:

�u��x� �m� �
kX

j��

mj Mj��x�� (4)

where ��� � �m � �m�� � � � �mk� is the vector of parameters
to be estimated. An affine basis set, shown in Figure 3, is
used for the experiments in Section 5.

Illumination Variations: Illumination changes may be
global as a result of changes in the illuminant, or local as
the result of shadows cast by objects in the scene. The mix-
ture formulation allows both of these types of variation to
be modeled.

We adopt a simple model of illumination variation

IC�
��x� t��l� � L��x� �l� I��x � �u��x� �m�� t� ��� (5)

which states that the illumination change is a scaled version
of the motion-compensated image at time t��. When esti-
mating the parameters ��� � �l we assume that the motion �u
is known and fixed.

We take L��x��l� to be a parametric model, expressed as a
weighted sum of basis images. For example, in the case of
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pi�I��x� t�j��i� �i� ��r� ��

Figure 5: A robust likelihoodpi and� (the derivative of the
log likelihood).

linear spatial variation, L is given by

L��x��l� � l� � l��x� xc� � l��y � yc� �
�X

i��

li Li��x�

where �xc� yc� is the center of the relevant image region,�l �
�l�� l�� l�� are the model parameters, and Li��x� denote the
basis images, like those for the linear model in Figure 4.

Specularity Model: Specularities are typically local and
result in near saturation of image brightness. While more
sophisticated models of specularities may be formulated, we
have experimented with a simple model which works well
in practice:

IC�
��x� t��s� � s��s��x�xc��s��y�yc� �

�X

i��

si Si��x�

where Si are the same linear basis images as in Figure 4 and
��� � �s.

Iconic Change: In addition to the generic types of ap-
pearance change above, there are image appearance changes
that are specific to particular objects or scenes. Systematic
changes in appearance exhibit spatial or temporal structure
that can be modeled and used to help explain appearance
changes in image sequences. Recall the example of human
mouths in Figure 2.

As with the models above, we use a parametric model
of iconic change. However, here we learn the appropriate
model by constructing a linear, parametric model of the in-
dividual frames of a training image sequence using principal
component analysis. This is described in Section 6; for now
it is sufficient to think of the iconic model, like the specular-
ity model, as a linear combination of basis images Ai

IC�
��x� t� �a� �

qX

i��

aiAi��x�� (6)

where ��� � �a � �a�� � � � � aq� is the vector of scalar values
to be estimated.

4 EM-Algorithm
We seek a maximum likelihood estimate of the parameters
���� � � � � ��n and a soft assignment of pixels to models. If the

parameters of the models are known, then we can compute
the posterior probability, wi��x� �i�, that pixel �x belongs to
cause i. This is given by [14]

wi��x� �i� �
pi�I��x� t�j��i� �i�Pn

j�� pj�I��x� t�j��j� �j�
� (7)

These ownership weights force every pixel to be explained
by some combination of the different causes. As the � go
to zero, the likelihood function approaches a delta function
hence, for small values of �, the weights will tend towards
zero or one.

The maximum likelihood estimate [14] of the parameters
is defined in terms of these ownership weights and can be
shown to satisfy

X

x�R

nX

i��

wi��x� �i�
�

���i
log pi�I��x� t�j��i� �i� � 	 (8)

where � log pi�I��x� t�j��i� �i�����i �

��I��x� t�� ICi
��x� t� ��i�� �i�

�

���i
ICi

��x� t� ��i�� (9)

and where

��r� �� �
�
r

�� � r�
(10)

is a robust influence function [12] (Figure 5) that reduces the
effect of “outliers” on the maximum likelihood estimate.

In the case of mixtures of Gaussian densities, the param-
eters can be computed in closed form. In the case of the ro-
bust likelihood function we incrementally compute the ��i

satisfying (8). Briefly, we replace ��i with ��i � 	��i where
	��i is an incremental update. We approximate (8) by its
first order Taylor expansion, simplify, and solve for 	��i. We
then update ��i � ��i � 	��i and repeat until convergence.

The EM algorithm alternates between solving for the
weights given an estimate of the ICi

(the Expectation step),
and then updating the parameters with the weights held fixed
(the Maximization step). A continuation method is used to
lower the value of � during the optimization to help avoid
local maxima. For all the experiments in this paper the value
of �i began at 
��	 and was lowered by a factor of 	���
at each iteration of the optimization to a minimum of �	�	.
These same values of � were used for all the models. The
algorithm is embedded within a coarse-to-fine process that
first estimates parameters at a coarse spatial resolution and
then updates them at successively finer resolutions.

As in [13] we can add an explicit “outlier layer” with a
fixed likelihood

p� �
���

���� � ���������
�
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a: I�t� b: I�t � �� c: flow

d: stable e: w� f: w�

Figure 6: Illumination Experiment (cast shadow of a hand).

This term is used only in the normalization in Equation (7)
which is performed over i � 	� � � � � n. Residual errors
greater than ���� will have weights lower than the outlier
layer and which will be reduced further by the normaliza-
tion.

5 Generic Appearance Change
This section presents examples of generic appearance chan-
ges that are common in natural scenes, namely, motion, il-
lumination variations, and specularities.

5.1 Shadows
We first consider a mixture of motion and illumination vari-
ation (Figure 6). In this experiment we use a mixture of
just two models: the affine motion model (IC�

) and the lin-
ear illumination model (IC�

). We estimate the ownership
weights w���x� and w���x� that assign pixels to the models
and the motion parameters ��� and illumination parameters
��� as described in the previous section. A three level pyra-
mid is used in the coarse-to-fine estimation and the motion
is computed using the affine model presented in Section 3.

The appearance variation between Figures 6a and b
includes both global motion and an illumination change
caused by a shadow of a hand in frame t � �. The esti-
mated motion field (Figure 6c ) contains some expansion as
the background surface moved towards the camera. Figures
6e and f show the weight images w���x� and w���x� in which
the shadow region of the hand is clearly visible. The mo-
tion weights w���x� are near 1 (white) when the appearance
change is captured by motion alone. When there is illumi-
nation change as well as motion, the weightsw���x� are near
0 (black). The gray regions indicate weights near 	�� which
are equally well described by the two models.

We can produce a “stabilized” image using the weights:

IStable��x� � w���x�IC�
��x� t� ���� � w���x�IC�

��x� t� �����

a: I�t� b: I�t � �� c: flow

d: stable e: w� f: w�

Figure 7: Specularity Experiment (a moving stapler).

The stabilized image is shown in Figure 6d; note the shadow
has been removed and the image is visually similar to
I��x� t�.

The illumination model only accounts for a globally
linear illumination change while the actual shadow fades
smoothly at the edges of the hand. To account for local vari-
ations in illumination one could replace the linear model L
with a regularized model of the illumination variation (see
[19] for regularization in a mixture-model framework).

5.2 Specularities

Consider the example in Figure 7 in which a stapler with
a prominent specularity on the metal plate is moved. We
model this situation using a mixture of motion (IC�

) and
specularity (IC�

) models. This simplified model of specu-
larities assumes that some regions of the image at time t can
be modeled as a warp of the image at time t�� while others
are best modeled as a linear brightness function.

A four level pyramid was employed to capture the large
motion between frames; other parameters remained un-
changed. The estimated flow field is shown in Figure 7c.
The stabilized image, using motion and the estimated lin-
ear brightness model is shown in Figure 7d. Note how the
weights in Figures 7e and f are near zero for the motion
model where the specularity changes significantly. The re-
gion of specularity in the lower right corner of the metal
plate is similar in both frames and hence is “shared” by both
models.

6 Experiments: Iconic Change

Unlike the generic illumination and reflection events in
the previous section, here we consider image appearance
changes that are specific to particular objects or scenes. First
we show how parameterized models of image motion and
iconic structure can be learned from examples. We then use
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Figure 8: Example frames from training sequences of facial
expressions (anger, joy, sadness).

these in our mixture model framework to explain motion
and iconic change in human mouths.

6.1 Learned Iconic Model
To capture the iconic change in domain-specific cases, such
as the mouths in Figure 8, we construct a low-dimensional
model of the p images in the training set using principal
component analysis (PCA). For each s � n � m training
image we construct a 1D column vector by scanning the pix-
els in the standard lexicographic order. Each 1D vector be-
comes a column in an s � p matrix B. We assume that the
number of training images, p, is less than the number of pix-
els, s, and we use singular value decomposition (SVD) to
decompose B as

B � AaV
T
a � (11)

Here, A is an orthogonal matrix of size s � s, the columns
of which represent the principal component directions in the
training set. a is a diagonal matrix with singular values

�� 
�� � � � � 
p sorted in decreasing order along the diago-
nal.

Because there is a significant amount of redundancy in the
training sequence, the rank of B will be much smaller than
p. Thus if we express the ith column of A as a 2D basis im-
ageAi��x�, then we can approximate images like those in the
training set as

IC�
��x� t� �a� �

qX

i��

aiAi��x� � (12)

where �a � �a�� � � � � aq� is the vector of scalar values to be
estimated and q � p.

Figure 8 shows samples of mouth images taken from a
training set of approximately 500 images. The training set
included image sequences of a variety of different subjects
performing the facial expressions “joy,” “anger,” and “sad-
ness.” The faces of each subject were stabilized with re-
spect to the first frame in the sequence using a planar mo-
tion model [5]. The mouth regions were extracted from the
stabilized sequences and PCA was performed. The first 11
basis images account for ��� of the variance in the training
data and the first eight of these are shown in Figure 9.

1 2 3 4

5 6 7 8

Figure 9: First eight basis appearance images, A���x�� � � � �
A���x�, for the facial expression experiment.

1 2 3 4

5 6 7 8

Figure 10: First eight basis flow fields, M���x�� � � � � M���x�
for the facial expression mouth motion.

6.2 Learned Deformations
We learn a domain-specific model for the deformation com-
ponent of the appearance change in much the same way us-
ing PCA (see [7]). We first compute image motion for each
training sequence using the brightness constancy assump-
tion and a robust optical flow algorithm [3]. The training
set consists of a set of p optical flow fields. For images with
s � n�m pixels, each flow field contains �s quantities (i.e.,
the horizontal and vertical flow components at each pixel).
For each flow field we place the �s values into a column vec-
tor by scanning u��x� and then v��x� in lexicographic order.
The resulting p vectors become the columns of a �s�p ma-
trix F .

As above we use PCA to decomposeF asF �MmV T
m .

Flow fields like those in the training set can then be approx-
imated as

�u��x� �m� �
kX

j��

mj Mj��x��

where k � p, and Mj��x� denotes the jth column of M in-
terprated as a 2D vector field. Note that this learned model is
conceptually equivalent to the affine models used above ex-
cept that it is tailored to a domain-specific class of motions.

Figure 10 shows the first eight basis flow fields recovered
for this training set. The first 11 basis flow fields account for
��� of the variance in the training set.

6.3 Mixture of Motion and Iconic Change
We model appearance change of a mouth as a mixture of the
learned motion and iconic models. We performed a num-
ber of experiments with image sequences of subjects who
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were not present in the training set. In our experiments we
used 11 basis vectors for both motion and iconic models.
We estimated the parameters for deformation ��� � �m,
iconic change ��� � �a, and the ownership weights, w� and
w� between each consecutive pair of frames using the EM-
algorithm as described earlier with a four-level pyramid.

Figure 11 shows two consecutive frames from a smiling
sequence; notice the appearance of teeth between frames.
The motion model, (IC�

��x� t� ����), does a good job of cap-
turing the deformation around the mouth but cannot account
for the appearance of teeth. The recovered flow field is
shown in Figure 11d and one can see the expansion of the
mouth. The iconic model, IC�

, on the other hand, does a
reasonable job of recovering an approximate representation
of the image at time t (Figure 11c). The iconic model how-
ever does not capture the brightness structure of the lips in
detail. This behavior is typical. The iconic model is an ap-
proximation to the brightness structure so, if the appearance
change can be described as a smooth deformation, then the
motion model will likely do a better job of explaining this
structure.

The behavior of the mixture model can be seen in the
weights (Figures 11g and 11h). The weights for the motion
model, w���x�, are near zero in the region of the teeth, near
one around the high contrast boarder of the lips, and near 	��
in the untextured skin region which is also well modeled by
the iconic approximation IC�

.
Figure 11f is the “stabilized” image using both motionand

iconic models (w���x�IC�
��x� t������ �w���x�IC�

��x� t� ����)
Note how the stablized image resembles the original im-
age in Figure 11a. Also notice that the iconic model fills in
around the edges of the stabilized image where no informa-
tion was available for warping the image.

6.4 Discussion

Our motivation in exploring image deformation and iconic
change is to address a general theory of appearance change
in image sequences. While optical flow characterizes
changes that obey brightness constancy, it is only one class
of appearance change. Occlusion/disocclusion is another
class in which one surface progressively covers or reveals
another. While optical flow and occlusion/disocclusion
have been studied in detail, other types of appearance vari-
ations have not. In particular, with complex objects such as
mouths, many of the appearance changes between frames
are not image deformations that conserve brightness.

One could ask: “Why model image deformation”? While
all image changes might be modeled by iconic change
this does not reflect the natural properties of objects (their
“structural texture” [9]) and how they change. Motion is a
natural category of appearance change that is important to
model and recover.

One could also ask: “Why model iconic change”? While

optical flow methods exist that can ignore many appear-
ance changes that do not obey brightness constancy, it is
important to account for, and therefore model, these im-
age changes. Iconic change may be important for recogni-
tion. For example, we postulate that the systematic appear-
ance/disappearance of teeth should be a useful cue for aid-
ing speech and expression recognition. In addition, we be-
lieve that the temporal change of some objects may not be
well modeled as image deformation. For example, bushes
and trees blowing in the wind exhibit spatiotemporal texture
that might best be modeled as a combination of motion and
iconic change.

7 Future Directions
The experiments here have focused on pairs of causes. A
natural extension of the work would be to combine all four
types of appearance change in a single mixture formulation.
Towards this end, a research issue that warrants further work
is the use of priors on the collection of models that enable
one to prefer some explanations over others.

Additionally, we may expect more than one instance of
each type of appearance change within an image region. In
this case we will need to estimate the number of instances
of each appearance model that are required. There has been
recent work on this topic in the area of multiple motion es-
timation [1, 20].

A related issue is the use of spatial smoothness in the
modeling of appearance change. In place of the parameter-
ized models we might substitute regularized models of ap-
pearance change with priors on their spatial smoothness. In
a mixture model framework for motion estimation, Weiss
[19, 20] has shown how to incorporate regularized models
and smoothness priors on the ownership weights.

Another outstanding research issue concerns the learn-
ing and use of domain-specific models when more than one
domain of interest exists. When one has several domain-
specific models the problems of estimation, indexing, and
recognition become much more interesting (cf. [7]).

8 Conclusions
Appearance changes in image sequences result from a com-
plex combination of events and processes, including mo-
tion, illuminationvariations, specularities, changes in mate-
rial properties, occlusions, and disocclusions. In this paper
we propose a framework that models these variations as a
mixture of causes. To illustrate the ideas, we have proposed
some simple generative models.

Unlike previous work, the approach allows us to pull
apart, or factor, image appearance changes into different
causes and to locate where in the image these changes oc-
cur. Moreover, multiple, competing, appearance changes
can occur in a single image region. We have implemented
and tested the method on a variety of image sequences with
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Figure 11: Facial Expression Experiment.

different types of appearance change.
One way to view this work is as a generalization of cur-

rent work in the field of motion estimation. The framework
presented here is more general than previous approaches
which have relaxed the brightness constancy assumption.
We expect that more complex models of illumination varia-
tion and iconic change can be accommodated by the frame-
work and we feel that it presents a promising direction for
research in image sequence analysis.
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