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ABSTRACT

Over-determined linear systems with noise in all measure-
ments are common in computer vision, and particularly in
motion estimation. Maximum likelihood estimators have been
proposed to solve such problems, but except for simple cases,
the corresponding likelihood functions are extremely com-
plex, and accurate confidence measures do not exist. This
paper derives the form of simple likelihood functions for such
linear systems in the general case of heteroscedastic noise.
We also derive a new algorithm for computing maximum like-
lihood solutions based on a modified Newton method. The
new algorithm is more accurate, and exhibits more reliable
convergence behavior than existing methods. We present an
application to affine motion estimation, a simple heteroscedas-
tic estimation problem.

1. INTRODUCTION

Problems with noisy linear constraints, especially with noise
in all measurements, are ubiquitous in computer vision. Ex-
amples include line-fitting [1], gradient-based optical flow
estimation [2, 3], linear subspace methods for the estima-
tion of 3D translation [4], and methods for camera calibra-
tion and estimation of the fundamental matrix [5]. Such for-
mulations are often called error-in-variables (EIV) problems
in the statistical literature, and total-least-squares (TLS) in
the numerical computation literature. Van Huffel and Van-
dewalle [6] linked both approaches, showing that the TLS
solution is a Maximum Likelihood Estimator (MLE) for in-
dependent, identically distributed (IID), isotropic Gaussian
noise. Recently, a MLE has been proposed for the more gen-
eral case of heteroscedastic (nonidentically distributed) error-
in-variable (HEIV) problems [5]. This is important since an
IID assumption is often unrealistic.

One simple HEIV problem is the estimation of affine op-
tical flow from gradient constraints of the form
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which relate the spatiotemporal image gradient ���� �� � ���
and the spatial coordinates ��� ��, with the six unknown pa-
rameters of the affine motion model, ���� ��� ��� ��� ��� ���.
ML estimators for the affine parameters are formulated us-
ing a collection of gradient constraints from within a local
image neighborhood. Measurement noise in Eq. 1 is caused

by image formation, by numerical computation of the gra-
dients, and by violations of brightness constancy. Further-
more, even if the noise affecting the gradient were isotropic
and IID, the noise affecting the terms in the gradient con-
straint in Eq. 1 will be non-IID. In particular, the gradient
measurements in Eq. 1 are scaled by the spatial position of
the measurement. Accordingly, if �� were the variance of
each component of the gradient, the effective covariance ma-
trix for the different terms in the linear gradient constraint in
Eq. 1 would be given by
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Our goal in this paper is to derive likelihood functions
for HEIV problems like this one. As is well-known [7], ex-
isting EIV likelihood functions are expressed as functions of
both the parameters of interest (the affine parameters above),
as well as the so-called nuisance parameters. The nuisance
parameters refer to the measurement quantities in the absence
of noise (the true spatial gradients in Eq. 1). As a conse-
quence, these likelihood functions are expressed in a param-
eter space whose dimension increases linearly with the num-
ber of measurements. This makes it difficult to derive con-
fidence measures, and impractical for Bayesian inference.
The likelihood function we seek is a function only of the pa-
rameters of interest (e.g., the affine motion parameters), and
hence it lies in a low dimensional parameter space.

In deriving the likelihood function for the general case
of heteroscedastic noise we establish constraints on the nui-
sance parameters that must hold for one to obtain a closed-
form expression for the likelihood, whose maximum is iden-
tical to that of previous MLE objective functions [5]. The re-
sultant likelihood function can be used in several ways. First,
it can lead to improved optimization procedures. Second,
it can be used to obtain confidence measures based on the
Cramer-Rao lower bound. Finally, as noted by Gull [8], the
inclusion of suitable priors that may be different from that
implicitly assumed in previous MLEs also improves the ac-
curacy of the estimator.



2. LIKELIHOOD FUNCTION FOR LINEAR
CONSTRAINTS

Consider the problem of estimating an � -dimensional vari-
able, x, in an over-determinedlinear system, A�x � �, where
our only observations, A, are noisy measurements of A �. To
derive the desired likelihood function, ��A � x�, we begin by
formulating the likelihood function for a single linear con-
straint with isotropic noise. Then, we formulate the likeli-
hood function for a single constraint with an arbitrary noise
covariance. Finally, we consider the heteroscedastic case with
multiple constraints.

2.1. One Linear Constraint

A single linear constraint with noisy measurements can be
expressed in homogeneous coordinates with the following
two equations:

a��x � � (3)

a � a� � n (4)

where a� (the nuisance parameters) are the true values for
which the linear constraint holds exactly, x is the parameter
vector we wish to estimate, a is the vector of noisy measure-
ments, and x� denotes the transpose of x. Our objective is to
derive the likelihood function��a � x�. We do so by marginal-
izing the joint conditional probability of the true values and
noisy measurements, ��a� a� � x�, over a�:

��a � x� �

�
a�

�a� ��a� a� � x�� (5)

Applying Bayes rule to the joint conditional probability, and
noting that a is independent of x when conditioned on a �, we
find that ��a � x� is given by

��a � x� �

�
a�

�a� ��a � a�� ��a� � x�� (6)

Given Eq. 4 it follows that ��a � a�� � �n�a � a��, where
�n�n� is the pdf of the noise. It is also clear from Eq. 6 that
we need to specify a conditional prior on the nuisance pa-
rameters, i.e., ��a� � x�.

2.2. Isotropic Gaussian Noise and Prior Distributions

We first consider the case of isotropic Gaussian measurement
noise, n�� ��� ����� �, where �� denotes the � �� iden-
tity matrix. We also consider an isotropic, zero-mean Gaus-
sian prior for the true values, a��� ��� ����� �. The condi-
tional prior on a�, given x, will be confined to a plane in the
a� space for which the constraint in Eq. 3 holds. This can be
formulated as the product of the density for a� and a Dirac

delta function that is nonzero in the hyperplane defined by
Eq. 3. Given the normal pdf for a�, this yields
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where the scaling factor is chosen to make the pdf integrate
to 1. This prior is basically equivalent to the constant power
model proposed in [7], but adapted to the homogeneous pa-
rameterization we are using here. Introducing a Gaussian
pdf for the noise, with this prior, one can solve the integral
in Eq. 6 to obtain the following likelihood function:
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where the factor 
 � ��
�
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is related to the signal to noise

ratio (SNR� ��
�

��
�

), and 	 � 
��������������������
� ���.

For non-Gaussian priors and/or non-Gaussian noise it may
be necessary to use numerical integration to approximate the
likelihood function.

2.3. Arbitrary Noise and Prior Covariances

Next we consider the case of Gaussian noise with an arbi-
trary covariance matrix, n � � ��� ��

����, with ���� � �.
In this case we first re-normalize the measurements, thereby
mapping the problem to a new parameter space in which the
noise covariance is isotropic [9]:

R�a���
a�

� R�a�� � �
a��

�R�n���
n�

(9)

where R� is such that C��
� � R �

�R�.
To obtain the previous isotropic formulation one addi-

tional assumption is necessary. That is, the covariance of the
re-normalized true values, a�� , is isotropic, which will be
the case only if the covariance of the true values is propor-
tional to the covariance of the noise. This is a strong assump-
tion that is needed mainly for mathematical convenience to
keep the expression simple. For the more general case of ar-
bitrary covariances for both the noise and the prior on the
true measurements, the resulting likelihood function is not
given in closed-form. Making this additional assumption we
can apply the previous isotropic result to the re-normalized
values, and then undo the re-normalization to obtain the fol-
lowing likelihood function:
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2.4. Multiple Constraints

We now generalize to the case of � independent constraints,
expressed in matrix form as A�x � �, where the rows of A�



are formed by the true values for each equation, a �

�� . Follow-
ing the same notation, we collect the noisy measurements a �

�

into matrix A. Because we assume that the � constraints are
independent, the complete likelihood function is the product
of the individual ones:

��A � x� �
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�	�

��a� � x� (11)

In the case of Gaussian noise with different noise covariances
for each constraint (the heteroscedastic case), and assuming
again prior covariances proportional to noise covariances,
we obtain the following likelihood function:
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where the noise covariance at each constraint is � �
��C�� , and


� is related to the SNR for the �
 constraint. The negative
log-likelihood function is then given by
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(13)

where D� � a�a �

� .
This log-likelihood function is closely related to the opti-

mization criterion proposed in [5] for the non-intercept case.
Indeed, one can show that they share the same minimum for
high SNR cases (i.e., for 
� � � for all ). The main differ-
ence between the two formulations is the inclusion of prior
information for the nuisance parameters, i.e., the variance of
the true values. As a consequence this formulation should
produce more accurate parameter estimates [8]. In addition,
because this likelihood function is expressed in closed-form
one can derive its gradient and Hessian. This facilitates the
use of gradient-descent minimization procedures, and also
helps one estimate confidence measures based on the Cramer-
Rao lower bound.

3. MINIMIZATION OF �

Given Eq. 13 we can derive the gradient and Hessian of �
with respect to x. This makes it possible to apply any of the
standard methods for function minimization (gradient descent,
conjugate gradient, Newton, etc.). In most cases these are
guaranteed to converge to a local minima.

We developed a version of Newton’s method for mini-
mizing�. It differs from the standard Newton minimization
because of the structure of the negative log-likelihood func-
tion in the parameter space of x. In particular, note from Eq.
13 that � is invariant to change in the magnitude of x. It
follows that � is constant in the radial direction, which of
course is consistent with our use of a homogeneous coor-
dinate system whose solution is a direction in the space of

x (except for degenerate cases). This structure of the nega-
tive log-likelihood function causes the gradient to be orthog-
onal to the direction of x, and the gradient modulus to be in-
versely proportional to ��x��, being 0 at the minimum direc-
tion. A gradient modulus decreasing in the radial direction
means that the Hessian is non-positive definite. For this rea-
son, we modify the standard Newton method by replacing
the negative singular values of the Hessian by 0. In addition,
at each iteration we re-normalize the updated value of x so
that ��x�� � �. This is not strictly necessary but has proven
to improve numerically stability to the algorithm (so the so-
lution does not increase or decrease without bound).

4. RESULTS

4.1. Monte-Carlo simulations

We have tested our modified Newton minimization of the
negative log-likelihoodfunction simulating estimation prob-
lems with 3 and 5 dimensional parameter vectors, and three
different number of equations (� � ��� ��� �) and average
SNRs (0.5, 1 and 10). For each condition, we ran 400 trials.

For each trial, random values for a� and x were gener-
ated. The measurements a were obtained adding Gaussian
noise to a�, with different, random covariance for each equa-
tion. For each trial we obtained parameter estimates using
our proposed HEIV Newton minimization method and us-
ing the method described by Matei and Meer [5]. For both
we made comparisons with 
� � � (the high SNR approx-
imation) and with use of the true values of 
 �. The starting
point for each of the iterative algorithms was the solution re-
turned by the Total-Least-Squares (TLS) estimator.

We then measured the angular error between the estimates,
�x, and the true value x�, defined as � � �������x���x�. We
found that angular errors averaged over all conditions were
similar for the two methods (0.54 for modified Newton and
0.55 for Matei and Meer). The slight difference in the re-
sults is due to a small fraction of trials on which the method
of Matei and Meer failed to converge.

More interesting is the comparison between errors for the
high SNR approximation with those obtained using the true
values of 
�. Fig. 1 compares averaged errors as a function
of SNR, for estimates obtained using our modified Newton
method in simulations with � � �, and for 3D and 5D pa-
rameter vectors. As expected, the average error is always
greater when using the high SNR approximation, and both
errors tend to be equal when the approximation
 � � � holds
(i.e., for high SNR). It is important to notice that the true val-
ues where generated using an isotropic prior, which is not in
agreement with the assumption that the prior has a covari-
ance proportional to that of the noise. Despite this fact, there
is a decrease of about 5% when averaging the error for all
conditions tested. This is consistent with previous findings
[8].
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Fig. 1. Average angular errors (rad.) for � � �� equations, as
a function of SNR, using a high SNR approximation with �� � �

(continuous line) or the true values of �� (dotted line), for 5- (red)
and 3-dimensional (blue) parameter vector.

4.2. Affine motion estimation

We also tested the HEIV estimation method with the affine
motion estimation problem described in Section 1. To illus-
trate the performance of the method in this particular task,
we have used a noisy version of the diverging tree sequence
[10], with a SNR close to 14 dB (see Fig. 2, left).

Gradients were computed using 5-tap derivative filters in
space and time, making the noise variance similar for spatial
and temporal derivatives. Taking Eq. 1 for every 5 pixels
in the image (to enforce constraint independence) we esti-
mated the parameters of the affine flow using LS and TLS
estimators. Additionally, we used the covariances in Eq. 2
to estimate the parameters using the HEIV estimator. From
the estimated parameters we computed the estimated opti-
cal flow, and its error with respect to the true velocity field.
Fig. 2 shows the error (scaled to facilitate visualization) on
the estimated flow for the TLS (center) and HEIV (right) es-
timators. Errors are significantly higher for the TLS estima-
tor, which does not take into consideration the different co-
variance matrix of the noise at each location. The angular
error of the optical flow [10] averaged over all pixels is 5.65
deg. for LS, 6.03 deg. for TLS, and 2.78 deg. for HEIV (error
is higher than the one reported in [10] because of the added
noise). Using the wrong noise model the TLS solution is of-
ten worse than the simple LS solution that assumes an even
simpler noise model. By comparison, using the right noise
model with the HEIV estimator produces significantly more
accurate optical flow results.

5. CONCLUSIONS

We have derived simplified likelihood functions for HEIV
problems, defined only on the parameters of interest. Under
some conditions, these functions can be expressed in closed-
form. This permits one to compute the gradient and Hessian
of the negative log-likelihood which may play a significant
role in the optimization. Here we have implemented a mod-
ified Newton method, showing more reliable convergence
behavior than previous proposed algorithms in our simula-
tions.

Fig. 2. Frame 20th of diverging tree after adding noise (left), and
error of the estimated flow using TLS (center) and HEIV (right).

Deriving the likelihood function requires the introduc-
tion of a priori distribution over the true values underlying
the noisy measurements. If such prior information is avail-
able then the estimates are more accurate than the correspond-
ing MLE without prior information. This is consistent with
the use of prior information reported by Gull [8].

We have presented an application to affine motion esti-
mation where the noise affecting the measurements is non-
IID, and therefore the accuracy of the estimated optical flow
improves greatly when using the HEIV estimator.

We are currently working on the computation of confi-
dence measures on the estimates based on Cramer-Rao lower
bounds for the general case (for the isotropic case, see [7]),
and on methods for estimating 
� factors from the data, for
situations when this information is unavailable.
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