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AbstractÐAlthough most optical flow techniques presume brightness constancy, it is well-known that this constraint is often violated,

producing poor estimates of image motion. This paper describes a generalized formulation of optical flow estimation based on models

of brightness variations that are caused by time-dependent physical processes. These include changing surface orientation with

respect to a directional illuminant, motion of the illuminant, and physical models of heat transport in infrared images. With these

models, we simultaneously estimate the 2D image motion and the relevant physical parameters of the brightness change model. The

estimation problem is formulated using total least squares (TLS), with confidence bounds on the parameters. Experiments in four

domains, with both synthetic and natural inputs, show how this formulation produces superior estimates of the 2D image motion.

Index TermsÐOptical flow, physics-based brightness variation, total least squares.

æ

1 INTRODUCTION

THIS paper examines the use of physical models of time-

dependent brightness variation to estimate optical flow

and physical parameters of a scene from image sequences.

Although studied extensively [2], [16], reliable flow estima-

tion remains difficult when brightness constancy is violated.

The problems arise from the complex physical processes

involved in scene illumination, surface reflection, and the

transmission of radiation through surfaces and the atmo-

sphere [17], [31], [32], [38], [41]. For example, brightness

variations are caused by changing surface orientations with

respect to a directional illuminant, by motion of an

illuminant, and by thermal diffusion and decay in infrared

images. The goal of this work is to formulate the problem of

optical flow estimation in ways that take physical causes of

brightness variation into account, leading to methods for

estimating both the optical flow and the physical para-

meters of the brightness variation.
Like conventional formulations of optical flow estima-

tion, our goal is to estimate an accurate approximation to

2D motion fields corresponding to the 3D motion of object

surfaces [17], [38]. Many optical flow formulations assume

brightness constancy, i.e., they estimate the 2D velocity of

points of constant image brightness. For graylevel images

g�x; t�, where x � �x; y�T denotes spatial position and t

denotes time, this amounts to finding a path x�t� along

which image brightness remains constant,

g�x�t�; t� � c; �1�

for some constant c. The total temporal derivative of both
sides of (1) yields the well-known brightness constraint
equation [17]:

dg

dt
� �rg�Tv� gt � 0; �2�

where v � v1; v2� �T� dx=dt; dy=dt� �T is the flow field that
we wish to estimate, gi denotes the partial derivative of
g with respect to the coordinate i 2 fx; y; tg, and
�rg�T � gx; gy

� �
. Because (2) provides one constraint in

two unknowns, it is common to combine constraints at
pixels in a local neighborhood, assuming that the motion is
smooth in the region [17], [20]. Constant and affine motion
models have been used successfully [2], [3], [11], yielding
linear constraints on the local flow. The resulting systems
of equations can be solved using (weighted) least squares
[20] or total least squares (TLS) [39], [40]. To further
constrain the estimates, the neighborhoods can be extended
into time if v is smooth within local temporal windows
(e.g., [4], [10], [29]).

If brightness is not conserved, then the optical flow field
estimated from (2) can be a severely biased approximation
to the underlying 2D motion field of interest [5], [6], [14],
[26], [28], [31], [32], [38]. Causes of brightness variation
include moving illumination envelopes, shadows cast on
moving objects, changing surface orientation under direc-
tional illumination, and atmospheric influences in outdoor
applications. Other instances occur in scientific applications
where the quantitative analysis of dynamic processes is
essential [15], [19]. For example, Figs. 1b and 1c illustrate
the influence of brightness changes on optical flow
estimation with two examples of physical transport
processes in infrared images; although the surface translates
in each case, the flow fields that conserve brightness
converge or diverge.

Estimation of the parameters of the physical processes
that cause brightness variation is often just as important as
the accurate estimation of the motion. An example can be
found in physical oceanography where the dynamics of
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water surface heat patterns provides important information
about the hydrodynamic processes underneath the water
surface. As depicted in Fig. 2, although only the surface
layer of the ocean may be visible to infrared sensors, by
estimating the parameters of a physics-based model for
brightness variations one can sometimes infer the proper-
ties of the complex 3D transport processes beneath the
surface layer [15]. Let T �X; t;pT � denote the 3D temperature
distribution at 3D location X and time t, where pT is a
parameter vector for the physical process. From a model of
image formation, one can relate the 3D transport para-
meters to the parameters of the image brightness variation.
This provides one with a generative model, g�x; t;pg�, that
expresses the time-varying behavior of image brightness in
terms of 2D model parameters pg and image coordinates x:

T �X; t;pT � ÿ! image formation ÿ! g�x; t;pg�
temperature and calibration image brightness

" #
model

verification parameter
estimation

" #
pT  ÿ inverse mapping  ÿ pg

One goal of the current work is to estimate the 2D model
parameters, pg. Ideally, one can then attempt to solve the
inverse problem to find the 3D transport process, pT .

This paper describes a generalized framework for
incorporating physical models of brightness changes into
motion analysis. Brightness changes are either parameter-
ized as time-varying analytical functions or by the differ-
ential equations that model the underlying physical
processes. We only require that the brightness variation
be linear in the model parameters. With this, we obtain a
linear system of equations that comprise a generalization of
the brightness constancy assumption.

Estimates of the model parameters can then be obtained
using TLS over local spatiotemporal neighborhoods. It is
important that these neighborhoods are extended in time to
more than two frames. With two consecutive frames, we
can only adequately constrain simple temporal models such
as linear brightness change. For more complicated bright-
ness dynamics, we need multiple frames to constrain
parameter estimation. Even then not all parameters of the
model are necessarily well-constrained, much like the well-
known aperture problem. Accordingly, it is important that
we obtain error covariance matrices for the parameter
estimates to characterize parameter uncertainty [33].

After describing previous work on this topic, we outline
our mathematical formulation with reference to several
different sources of brightness variation, and we then
describe the computational procedure. Finally, using
experimental work, we show that this method produces
improved optical flow estimates in several application
domains. It also yields estimates of model parameters that
characterize the physical processes in each case.

2 PREVIOUS WORK

Violations of brightness constancy are well-known [18],
[28], [38]. One approach to coping with them has been to
preprocess the image to extract image properties whose
deformations through time provide reliable estimates of the
flow field. One example involves band-pass filtering and
contrast gain normalization to remove smooth illumination
variations [1]. Another technique involves the extraction of
image features, such as edges or regions, to achieve
robustness with respect to large brightness variations [27],
[38]. Fleet and Jepson [11], [12] proposed the tracking of
band-pass phase information. Phase is stable with respect to
smooth variations in illumination and smooth geometric
deformations between frames. Moreover, locations of phase
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Fig. 1. Illustration of errors in the optical flow estimation due to brightness changes. All three examples depict translational motion between two
images. (a) The left-most image pair satisfies brightness constancy. The other examples exhibit exponential decay (b) and diffusion (c), which are
common in infrared images and, hence, do not satisfy brightness constancy. The vectors shown depict the optical flow that would be consistent with
brightness constancy in each case.

Fig. 2. The temperature patterns on the surface of a moving object,

imaged by an infrared camera, are subject to complex 3D transport

processes underneath the surface layer.



instability can be detected and, therefore, ignored, making
the subsequent estimation of optical flow more robust [12].

Alternatively, brightness variations have been accomo-
dated by modifying the gradient constraint equation [6],
[14], [26], [28], [32]. A general framework for this is
proposed in [32], which permits changes in contrast and
mean intensity. This is formulated using a multiplier and an
offset field to yield constraints of the form

g�x; t� ÿ g�x� v; t� 1� � m�x; t�g�x; t� � c�x; t�: �3�
It is certainly true that all changes between two images can
be modeled by (3). Indeed, with the introduction of m�x; t�
and c�x; t�, there are now four unknowns at every image
location (two for v�x; t�, plus m�x; t� and c�x; t�), and it is,
therefore, necessary to impose constraints on them, such as
smoothness, in order to obtain a unique solution. However,
despite the generality of (3), this formulation only models
brightness changes between successive time instants; it does
not allow us to discriminate different physical causes of
brightness changes, or to constrain the estimation to satisfy
particular physical models. With two frames, the model
only captures linear brightness changes. By contrast, with
the models we consider below, it is important that the
neighborhoods are extended to more than two frames so
higher-order brightness changes can be modeled.

In work on target tracking, Hager and Belhumeur [14]
combine illumination changes and pose-dependent geo-
metric image distortions into a parameterized model. They
use robust area-based regression to fit the image to a linear
combination of basis templates (eigenmodels). One dis-
advantage of the approach is that the basis set must be
computed from the target, under varying illumination,
prior to the tracking. Also, the resulting parameters specify
a location in the eigenspace of training images, rather than a
physical model of the brightness variation. Black et al. [5]
express the change between two frames of an image
sequence as a mixture of causes, including both motion
and illumination effects, but they have not considered
realistic time-varying physical models. Moreover, their use
of mixture models, robust statistics, and the EM algorithm
are computationally expensive compared to the solution
developed here.

The techniques mentioned above are confined to bright-
ness changes between two images; they do not exploit the
physical nature of brightness variation over more than two
frames. In contrast, the approach described in this paper
generalizes the temporal brightness changes in ways
governed by the underlying physical process. By confining
the classes of permitted solutions to those of physical
relevance, we constrain the solutions and simultaneously
estimate the physical parameters of interest along with the
optical flow.

Finally, this work also bears some similarity to research
by Michel et al. [23] on the thermophysical interpretation of
static images. Based on the principle of energy conserva-
tion, internal object composition, and object surface proper-
ties, they define object features that remain invariant under
viewing and scene conditions. As such, they use physical
models of heat transport to define object-specific features in

infrared images. But, these models were not used for
motion estimation.

Wildes et al. [41] propose a formulation for motion
estimation for fluid flows and transmittant media based on
a conservation of mass prinicple. This use of physical
models is similar to the approach taken here and comple-
ments the physical models we discuss below.

3 PHYSICS-BASED BRIGHTNESS VARIATION

As a generalization of the brightness conservation equation
(1), we define a path x�t�, depicted in Fig. 3, along which
brightness can change according to a parameterized
function, h; that is,

g�x�t�; t� � h�g0; t; a�; �4�

where g0 � g�x�t0�; t0� denotes the image at time 0, and a �
a1; . . . ; aQ
� �T

denotes a Q-dimensional parameter vector for

the brightness change model. Without loss of generality, we

choose a parameterization such that a � 0 produces the

identity transformation, i.e., h�g0; t; a � 0� � g0. While a is

assumed to be constant within small temporal windows, h is

expressed as a function of time so that we can capture

nonlinear temporal brightness changes.
The total derivative of both sides of (4) then yields a

generalized brightness change constraint equation

�rg�Tv� gt � f�g0; t; a�; �5�
where f is defined as

f�g0; t; a� � d

dt
h�g0; t; a�� �: �6�

When brightness is conserved, as in (1), h is constant as a
function of time and, therefore, f � 0. In this case, (5)
reduces to (2).

Given constraints like that in (5), our goal is to estimate
the parameters of the optical flow field v, and the
parameters a of the physical model f . In (5), we used a
constant flow model for which the flow parameters are v1
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Fig. 3. Illustration of the generalized model that allows the object
brightness to change within a few images. Solutions of the
brightness constancy assumption are confined to the gray plane
(g�x; t� ÿ g�x0; t0� � 0).



and v2. But, it is straightforward to use other linear
parameterized models [3], [7], [8], [13].

Finally, there are two different ways to determine the
form of f . One can derive f using (6) and a known
analytical form for h, or one can choose f according to the
differential equations of the underlying physical process.
We illustrate this in Sections 3.1, 3.2, 3.3, and 3.4 below,
before returning to the general formulation in Section 3.5.

3.1 Diffusion

Infrared (IR) image sequences capture spatiotemporal
thermal patterns of a scene. The heat distribution is time-
varying because of object motion and because of the
thermal transport processes that occur on and in the objects,
such as diffusion and convection in fluid systems. Such
thermal transport processes depend on physical properties
of the emitting material and on the shape of the heat
distribution itself at any instant. Thermal transport can
cause significant variation in the brightness of infrared
sequences and should be considered in order to separate the
apparent variation in the heat distribution over the body
from the motion of the object.

Diffusion provides a useful model for brightness changes
due to thermal transport where there exist steep tempera-
ture gradients over the surface of an object. These
temperature gradients diffuse according to the well-known
diffusion equation:

f � dg

dt
� r D rg� �; D � D11 D12

D12 D22

� �
; �7�

where D is refered to as the diffusion tensor, a positive-
definite symmetric matrix that generally depends on spatial
position and time. When the diffusion tensor is shift-
invariant (i.e., independent of spatial position), then (7)
reduces to

dg

dt
� D11

@2g

@x2
� 2D12

@2g

@x@y
�D22

@2g

@y2
; �8�

with constants D11, D12, and D22. If the surface diffusion
process is also isotropic and the object surface is frontopar-
allel (perpendicular to the optical axis), then the brightness
variation in (8) reduces further to

dg

dt
� D @2g

@x2
� @

2g

@y2

� �
; �9�

where D is now a scalar diffusion constant. As above, because
f is linear in the diffusion parameters (i.e., Dij and D in (8)
and (9)), we have found a linear constraint equation that
relates the flow v, the diffusion parameters, and the image
gradients.

3.2 Exponential Decay

In oceanographic applications, researchers have used lasers
to induce artificial thermal distributions on the water
surface. Then, from infrared image sequences, they can
measure the motion of the water surface to study air-sea gas
exchange [15]. However, infrared cameras only sense the
thermal pattern that lies within the top 10-50 �m of the
water surface. Accordingly, one must account for brightness
variations that result from the transport of heat from the

water surface into deeper layers that are beyond the range

of the sensors. Thermal transport from surface to deeper

layers is caused by diffusion and by turbulent convection.

One reason for this is that laser radiation is absorbed within

only the first 10 �m of the water surface. Thus, the vertical

temperature gradient is usually orders of magnitude larger

than temperature gradients along the water surface. The

lateral gradients are a function of the cross-sectional shape

of the laser beam, which is typically about 10 mm wide.

Because diffusion is a function of the heat gradient (as in

(7)), vertical diffusion can dominate the thermal transport at

the water surface.
Haussecker [15] showed that the net temporal tempera-

ture variation sensed by an infrared camera could be

approximated by an exponential decay model. In this case,

the brightness function h in (4) has the analytical form

h�g0; t; �� � g0 exp ÿ� t� �: �10�
Accordingly, the parameter vector a in (4) reduces to a

scalar decay constant, �. From (6) and (10), it then follows that

f�g0; t; �� � dg

dt
� ÿ�g0 exp ÿ� t� � � ÿ�g�x�t�; t�: �11�

This is the well-known differential equation of exponential

decay. It states that the rate of change at any time is

proportional to the current value. Because f is linear in �,

our brightness constraint equation is linear in the flow

parameters v and in the decay parameter �.

3.3 Moving Illumination Envelope

Brightness changes caused by moving, nonuniform illumi-

nation envelopes have been considered in the 2-frame case

[32]. Here, we focus on illuminants with a relatively narrow

envelope, such as flashlights or spotlights. Diffuse shadows

provide another case of interest when they are cast on a

surface, the motion of which we wish to estimate.
We model the image as the product of an underlying

surface albedo function gc that translates with image

velocity v, and an illumination envelope E (surface

irradiance) that translates with velocity u:

g�x; t� � gc�xÿ t v� E�xÿ t u�: �12�
To characterize this brightness transformation, it is con-

venient to use a coordinate reference frame that is fixed on

the underlying surface, i.e., xr � xÿ t v. The motion of the

envelope relative to this reference frame is given by the

relative motion of the envelope and the surface, ur � uÿ v.

Then, the image brightness becomes

gw�xr; t� � g�xr � t v; t� � gc�xr�E�xr ÿ t ur�; �13�
where gw�xr; t� is a warped version of g�x; t�, for which the

motion of the surface is stabilized.
To parameterize the brightness variation through time,

we approximate E�xr ÿ t ur� by a Taylor series, up to

second order with respect to time, about the point �xr; 0�:

E�xr ÿ t ur� � E�xr� ÿ t rETur � 1

2
t2uTr H ur; �14�
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where rE and H are the gradient and Hessian of E at
�xr; 0�. Substituting (14) into (13) yields the brightness
function given by

h � gc E ÿ t rETur � 1

2
t2uTr H ur

� �
; �15�

where, for notational convenience, E, rE, and H are
evaluated at �xr; 0�. Then, from (6), the brightness change,
f , is given by

f � a1 � a2t; �16�
where a1�xr� � ÿgcrETur and a2�xr� � gc uTr H ur. The
brightness change f is linear in the parameters a � a1; a2� �T .

If the moving envelope can be approximated by (14),
then the quadratic time-varying model in (15) is expected to
reduce the bias in optical flow estimates. By comparison, if
the envelope were nearly linear in the spatial coordinates,
i.e., if jt uTr H urj � jrETurj, then a first-order temporal
model for h and, hence, a constant model for f , would
suffice. In either case, solving for the polynomial model
coefficients in a at a single instant of time does not allow us
to separate the exact shape of E from its motion ur.
However, it does provide information about the combined
impact of both.

The derivation of the brightness model (16) is based on
the assumption that the surface albedo function exhibits
small-scale texture while the illumination envelope shows
only smooth spatial variation. We have also assumed that
the motion of the textured surface is the relevant motion to
be estimated rather than the motion of the illuminant. The
determination of both motions simulataneously is outside
the scope of this paper (however, see [9]).

3.4 Changing Surface Orientation

In the last case, we address concerns over brightness
variations caused by surface rotation under directional
illumination. As is well-known, even Lambertian surfaces
exhibit brightness changes if the angle between the surface
normal, n, and the direction of incident illumination, r,
changes with time. Although one might attempt to evenly
illuminate a scene to avoid these effects, directional
illumination cannot be avoided in most cases. Examples
include outdoor scenes in direct sunlight, indoor illumina-
tion through a single window, and exploration of dark
scenes using a collimated light source.

Given a combination of ambient illumination and a fixed,
distant, point light source from direction r (where jjrjj � 1),
the surface radiance from a Lambertian surface with unit
normal n can be expressed as c0�c1 max�0; nTr�, where c0

is the ambient component and c1 is proportional to the
surface albedo and the intensity of the illuminant. Here, the
inner product is bounded below by zero to account for cases
when nTr < 0 in which case the illuminant is not visible
from the surface.

If we assume that the body is rotating about an axis r0 at

a rate of ! radians per unit time, then we can write the

surface normal at time t as nt � Rtn0, where n0 is the

surface normal at time 0 and Rt is the 3D rotation matrix

that maps the normal at time 0 to the normal at time t

(through a rotation of ! t radians). Then, the time-varying

radiance becomes c0�c1 max�0; n0
TRt

Tr�. One can show

that the extent to which the radiance changes with time

depends on the angle between the light source direction r

and the axis of rotation r0. To see this, let r � � r0 � � r1,

where jjr0jj � jjr1jj � 1, � � rTr0, and �2 � �2 � 1. With this

and assuming that initially n0
T r0 > 0, it follows that the

time varying radiance is

L�t� � c0 � c1 � n0
Tr0 � � max�0;n0

TRt
Tr1�

ÿ �
: �17�

Finally, with the use of trigonometric identities on the
elements of the rotation matrix and the unit normal vectors
in (17), one can show that this reduces to the general form of

L�t� � �1 � �2 max�0; cos !t� �� ��; �18�
where �1 � c0 � c1� n0

Tr0, �2 � c1�, and ! is the frequency
of the temporal modulation.

One can see from the form of (18) that significant
brightness oscillations occur when the angle between the
surface normal and the light source direction changes
significantly. For an object rotating on a level turntable and
illuminated from the side, the axis of rotation is normal to
the light source direction (i.e., � � 0 and � � 1). In this case,
the surfaces will move through grazing angles with respect
to the light source to produce large brightness variations.
Conversely, if the object on the turntable is illuminated
from above, so the light source direction and the axis of
rotation are parallel (i.e., � � 1 and � � 0), then we expect
surface radiance to remain invariant through time, regard-
less of the surface normal.

With respect to estimation, it is obvious from (18) that
radiance, and, hence, image brightness, is not linear in
parameters of interest �!; ��. However, all possible angles
between visible (opaque) surfaces and the illumination
direction are confined to the interval ÿ�=2; �=2� �. Within
this interval, the cosine can be approximated by a second-
order polynomial, which provides a brightness function
that is linear in its parameters, that is,

h�g0; t; a1; a2� � 1� a1t� a2t
2

ÿ �
g0 �O�t3�; �19�

where the parameters a1 and a2 are functions of ! and �.
Using (19) and ignoring terms higher than second-order in
t, gives us the following approximation for f :

f � g0a1 � 2g0a2t; �20�
which is linear in the parameters. Once an approximate
parameter set, a1 and a2, has been estimated using (20) in
(5), the quadratic approximation of h can be fitted to (18) to
estimate the parameters �!; ��.
3.5 Generalized Formulation

In Sections 3.1, 3.2, and 3.3, the parametric brightness
change models were linear in the parameters a. For the
cosinusoidal brightness change in Section 3.4, we approxi-
mated the brightness function, h, with a second-order
polynomial in t. In general, all smoothly varying functions
can be locally expanded by a Taylor series and approxi-
mated by a polynomial of order Q and, therefore, we can
assume that h is analytic in a set of parameters a �
a1; . . . ; aQ
� �T

without loss of generality. Accordingly,
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remembering that h�g0; t; a � 0� � g0, we can expand h as a
Taylor series about a � 0:

h�g0; t; a� � g0 �
XQ
k�1

ak
@h

@ak
: �21�

Using (21), we can express f , the temporal brightness
variation defined in (6), as

f�g0; t; a� � dh�g0; t; a�
dt

�
XQ
k�1

ak
d

dt

@h

@ak
; �22�

where ak is assumed to be constant within local windows of
spatiotemporal support. As h is analytic in a, we can
exchange the order of differentiation to obtain the general
form of our constraints:

f�g0; t; a� �
XQ
k�1

ak
@f

@ak
� �raf�Ta: �23�

That is, f can be written as a scalar product of the parameter
vector a and a vector containing the partial derivatives of f
with respect to the parameters ak.

This formulation constitutes a generic extension of the
brightness change constraint equation to parameterized
models of brightness variation. The choice of an appropriate
brightness change model remains crucial and must be
designed for the application domain; in general, the physics
of image formation provides the correct physical model of
brightness variation. This paper does not address the
problem of automatically selecting an appropriate model.

4 COMPUTATIONAL FRAMEWORK

In each of the above formulations, we obtain linear
constraints that relate the optical flow parameters, the
brightness change parameters, and the image measure-
ments. The form of the constraints, assuming a translational
model of optical flow, can be expressed as

cTph � 0; �24�
where

c � �raf�T ; �rg�T ; gt
h iT

; �25�

ph � pT ; 1
� �T

; �26�

p � ÿaT ; vT
� �T

: �27�
Here, the �Q� 2�-dimensional vector p contains the para-
meters of interest, namely, the flow field parameters and the
brightness parameters of h, and ph denotes its homogeneous
counterpart (26). The �Q� 3�-dimensional vector c combines
the image derivative measurements and the gradient of f
with respect to the parameters a. This form of constraint is
easily generalized from a constant flow model to higher-
order parameterized motion models [3], [7], [8], [13].

Equation (24) provides one constraint on several un-
knowns. To further constrain the estimation of p, we
assume that p remains constant within a local space-time

neighborhood. Assuming N independent constraints at
pixels within the region, ignoring measurement noise, we
obtain a linear system of equations

G ph � 0; �28�
where G � c1; . . . ; cN� �T . Assuming isotropic Gaussian
noise in all measurements (the elements of G), including
spatial and temporal image gradients, the maximum like-
lihood estimate for the unknown parameter vector is given
by the total least squares (TLS) solution [7], [13], [33], [34],
[37], [40]. The total least squares (TLS) method seeks to
minimize jjGphjj2, subject to the constraint that ph

Tph � 1
to avoid trivial solutions. As is well-known, this formula-
tion yields a solution, p̂h, given by the right singular
direction associated with the smallest singular value of
G [24], [33], [37]. Moreover, one must normalize p̂h, so that
its last component is unity to obtain p.

The algorithmic aspects of TLS parameter estimation
have been explored in some detail [24], [25], [33], [36], [37].
As mentioned above, if the measurement noise (in each cj)
is independent, isotropic and Gaussian, then TLS yields an
unbiased, maximum-likelihood estimate [37], [33], and the
smallest singular value provides an estimate of the noise
variance. In practice, it is generally the case that errors in
the measurement of temporal image derivatives are larger
than those in the measurement of spatial derivatives.
Similarly, derivative measurement noise at neighboring
pixels in an image is often correlated [30]. Therefore, the
noise might not be i.i.d. (independent and identically
distributed). In this case, the direction of the singular
vectors is biased and, in severe cases, the order of the
singular values can be swapped. This problem can be
handled by renormalization or equilibration techniques, as
discussed in [21], [25], or with the approach proposed by
[22]. In this paper, we have not performed a careful
examination of noise variances, nor have we applied
renormalization.

Finally, as in conventional optical flow techniques, our
confidence in the parameter estimates depends on the
distribution of constraints and the magnitude of the noise.
Poor conditioning of the solution, resulting from near
degeneracy of the constraints, is often refered to as the
aperture problem. Here, we capture estimator reliability
with an approximation to the error covariance matrix
(Cramer-Rao lower bound). Nestares et al. [33] derived a
Cramer-Rao bound for total least squares; beginning with
an error-in-variables formulation of the likelihood [37], they
integrate out the true values of the measurements, given a
conditional Gaussian prior over the noiseless measure-
ments. This yields the TLS likelihood function, from which
the Cramer-Rao lower bound can be determined from the
Hessian of the log-likelihood, H. Following [33], we
approximate the error covariance matrix by � � Hÿ1,
where the Hessian is evaluated at the TLS estimate
p̂h � �p̂T ; 1�T :

H � 

�2
njjp̂hjj2

 
Mÿ 1

jjp̂hjj2
�p̂ThCp̂h� IQ�2 � 4

jjp̂hjj4

�p̂ThCp̂h�p̂ÿ jjp̂hjj2�Mp̂�ATb�
h i

p̂T

!
;

�29�
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where C � GTG, A contains all but the last column of G, b
is the last column of G, M � ATA, and IQ�2 denotes a
�Q� 2� � �Q� 2� identity matrix. Also,  � �2= �2

n � �2
ÿ �

,
where �2 denotes the signal power in the measurements
(i.e., the expected magnitude of the measurements in G)
and �2

nIQ�3 is the covariance of the IID Gaussian noise.

5 EXPERIMENTAL RESULTS

We have applied the method described above to synthetic
image sequences for which ground truth is available and to
natural image sequences. The application domains include
scientific applications with infrared images and computer
vision applications with natural lighting. In all cases,
estimation was based on space-time neighborhoods of
support with Gaussian weights centered about the center
of the space-time support window. The temporal support
extended between 5 and 9 frames, and the spatial support
was varied between 5� 5 pixels and 32� 32 pixels for
different experiments. As spatial and temporal gradient
operators, we used optimized differential operators pro-
posed in [35].

The experimental results include estimates of optical
flow and of the brightness change parameters. Error
covariances (29) are also estimated. Below, we show optical
flow estimates for natural images and error vector fields for
synthetic sequences for which ground truth is available. In
each case, we also show error ellipses that satsify
eT�ÿ1

v e � 4:6, where �v is the 2D error covariance sub-
matrix for v1 and v2. These ellipses capture approximately
90 percent of the expected errors. Finally, for display
convenience, we don't show estimates at those image
locations for which the L2 norm of the error covariance is
extremely large.

5.1 Changing Surface Orientation

Figs. 4a and 4b show two frames from a computer generated
image sequence of a randomly textured 3D sphere under
directional illumination. The sphere was rendered to be
illuminated under an angle of 45� with respect to viewing
direction, and it was rotating about a vertical axis through
its center. The angular velocity of the sphere was varied in
several experiments, staying within the spatiotemporal
sampling limits imposed by the scale of the spatial texture
(this allowed us to avoid the need for a coarse-to-fine

estimation strategy in the current experiments). In some
cases, we rotated the light source in one direction while
rotating the sphere in the other. This allowed us to increase
the rate of brightness change while keeping image velocities
reasonable small. The temporal brightness function was
modeled using either brightness constancy (2), a linear
brightness change model, or the quadratic approximation to
the cosinusoidal relationship in (19).

As expected, we found that the constant brightness model
performed poorly compared to the linear and quadratic
models which account for brightness variations. For slow
rotational speeds, the linear and quadratic models produced
similar results. With faster rotational velocities (or with the
light source and sphere rotated in opposite directions),
larger brightness changes are produced which exaggerate
differences between the linear and quadratic models. Figs. 4c
and 4d show optical flow results with uncertainty ellipses
for the constant and the quadratic brightness model,
respectively. Because the synthetic sequence provides
ground truth, we plot the difference between the estimated
flow and ground truth. One can see that the optical flow field
estimated with the quadratic model is more accurate than
that found with the constant model. The errors are largest
where the illumination is near grazing angles.

Another example of brightness variation caused by
changing surface orientation is shown in Fig. 5. Here, a
human arm was illuminated by natural light from a
window in a workplace environment. The arm is rotating
about its main axis towards the left while slightly translat-
ing to the right, so that the resultant flow field is close to
stationary. Fig. 5e shows the optical flow field estimated
with the quadratic model. Fig. 5d shows optical flow
estimates obtained with the brightness constancy model. By
comparison, one can see by inspection that the quadratic
model produces more plausible estimates than the constant
model. Smoothness in Figs. 5d and 5e is in part due to the
fact that we estimate motion at every pixel while using
filters with spatial support of 32� 32 pixels.

5.2 Moving Illuminant

Our next experiment involved moving illuminants. To
generate a synthetic example, we multiplied a sample of
smoothed white noise with a Gaussian envelope. The
Gaussian simulates the illumination envelope, and it is
the motion of the noise signal that we wish to estimate.
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Fig. 4. Rotating sphere under directional illumination. (a) and (b) Frames 1 and 5. (c) and (d) Difference between the ground truth image motion and

the optical flow estimated using brightness constancy (c) and the quadratic temporal brightness model (d). Also, shown are the corresponding

uncertainty ellipses in each case.



Following the formulation in Section 3.3, both signals
translated with constant velocity.

Fig. 6 shows results for the different temporal brightness
models, namely, the constant (2), linear (3), and quadratic
(15) models. As above, with the synthetic sequence, we plot
the difference between the estimated flow and the ground
truth. Due to the shape of the illumination envelope, no part
of the moving pattern remains at constant brightness along
its path. As a consequence, the constant brightness model
fails to predict the true velocity (Fig. 6c). The linear model
correctly accounts for brightness changes in regions where
the instantaneous motion of the illumination envelope is
mainly parallel to its level contours (Fig. 6d). In these
regions, the parameter a1 in (16) exceeds the parameter a2,
and the temporal brightness changes are nearly linear.
However, the linear model fails in regions of high positive
or negative values of the combined motion/curvature
parameter a2, which correspond to the dark and bright
regions in Fig. 6f. The quadratic brightness change model
allows us to accurately estimate the motion of the pattern
(Fig. 6e).

The next experiment comprised an individual walking
over a dark textured carpet, where the only illumination
was a flashlight carried by the subject. Two frames from the
sequence are shown in Figs. 7a and 7b. Negahdaripour [32]
investigated an analogous instance of a nonuniform
illuminant in an underwater scene. He showed that the
linear brightness change model (3) performs well in
estimating the correct optical flow as compared to the bias
that occurs with the constant brightness model. However, in
his case, the illuminant was stationary with respect to the

camera. We find the same result; for small ur � ÿv, the

linear model performs as well as a quadratic model. For

faster motions jjurjj � jjvjj, the quadratic terms in (15)

become more significant, so the quadratic model yields

better results (compare Figs. 7d and 7e).

5.3 Exponential Decay

The next two examples involve thermal transport processes

in infrared image sequences. Initial experiments with

exponential decay were conducted with a synthetic image

sequence of a noisy, Gaussian-shaped brightness distribu-

tion that is subject to exponential decay while moving with

a velocity v � ÿ1; 0� �T pixels/frame. The decay constant

was � � 0:3 framesÿ1. Parameter estimation was performed

first with the brightness constancy model and then with the

exponential decay model (11). Results are shown in Fig. 8.
As expected, the constant brightness model performs

poorly. The error vector field, e, in Fig. 8d shows that the

constant brightness model interprets the decaying heat spot

as a convergent flow field. The most severe errors occur in

regions of highest brightness values where the decay rate is

highest according to (11).
When we used the correct physical transport model, the

optical flow field is estimated more accurately as shown by

the difference between the true flow field and the estimated

flow in Fig. 8e. In addition to the improved accuracy in the

flow estimates, the exponential decay model yields an

estimate of the decay constant � (Fig. 8f). Within the image

region where the L2 norm of the error covariance matrix

shows the problem to be reasonably well conditioned (i.e.,
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Fig. 5. A human arm, under directional illumination, is rotating about its main axis towards the left while slightly translating to the right. (a) Full image
indicating the area displayed in the right images. (b) and (c) Frames 1 and 3. (d) and (e) Optical flow estimates and uncertainty ellipses for the
constant and quadratic temporal brightness models. The estimates are shown only at those locations where the L2 norm of the error covariance
matrix was below a threshold.
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Fig. 6. Synthetic moving illumination envelope. The underlying texture and the envelope move with velocities v � 1; 1� �T and uE � ÿ2;ÿ2� �T pixels/

frame, respectively. (a) and (b) Frames 2 and 6. (c), (d), and (e) Difference between the true and estimated flow, with the uncertainty ellipses, for the

constant, linear, and quadratic temporal brightness models, respectively. (f) Estimated parameter a2 of the combined curvature and motion of the

envelope (see (16)).

Fig. 7. Moving flashlight illuminates a carpet. The envelope moves down and to the right while the carpet texture remains almost stationary. (a) and

(b) Frames 2 and 6. (c) and (d) Optical flow estimates and uncertainty ellipses for constant and linear brightness models. (e) and (f) Flow estimates

with the quadratic model and an image of estimates of parameter a2 which depends on the curvature and motion of the envelope.



locations with estimates in Fig. 8f), the relative error in the
estimates of the decay constant is well below 20 percent.

Comparing the accuracy estimates of the two optical
flow fields (Figs. 8d and 8e) reveals an interesting feature of
the parameter estimation. While the error covariance
ellipses for the exponential decay model correctly capture
the residual errors in the optical flow estimate, the constant
brightness model seems to severely underestimate the
errors. The constant model forces the optical flow estimates
to directions that conserve brightness within the spatio-
temporal neighborhood. As these directions can often be
found with high confidence, and the number of parameters
estimated is small, the error covariances are sometimes
quite small. However, these directions do not correctly
capture the underlying optical flow field, which helps to
underline the importance of using the correct physical
model of the brightness variation.

Fig. 9 shows an application from physical oceanography
where heat spots are artificially generated by a laser so that
the water surface can be tracked with an infrared camera.
One of the scientific tasks was to estimate the decay rate of
heat spots on the water surface in a wind/wave tank. The size
of the depicted region in Fig. 9 is approximately 5� 2:5 cm.
The heat decay rate is directly related to the transfer velocity
of heat across the air/water interface, which is to be
estimated. In addition to the exponential decay, the thermal
pattern deforms according to the underlying turbulent flow
field, which we also wish to estimate.

If the brightness is assumed to remain constant (Fig. 9d),
the estimated flow, especially the convergent flow in the
center, is unrealistic. In fact, the heat spot in this example is
sheared and elongated from one frame to the next. Using an
exponential decay model, by comparison, the estimated flow
field is much more realistic (Fig. 9e), as are the estimates of
the decay rate �. An estimate � is obtained by averaging ��x�
over all image points where the estimation was reasonably
well conditioned (where the L2 norm of the error covariance
matrix � lies below a threshold as discussed above). For the
example depicted in Fig. 9, the average decay rate is
� � 4:02 sÿ1. This value is in good agreement with the
expected value at the same wind speed [15].

5.4 Heat Diffusion

Our last experiments concern thermal diffusion in infrared
images. As above, we first generated a synthetic test
sequence of a noisy Gaussian-shaped brightness distribu-
tion that is subject to diffusion while moving with a velocity
v � ÿ1; 0� �T pixels/frame. The diffusion constant was set as
D � 2:5 pixels2 framesÿ1. Estimation was done first with the
brightness constancy model and then with the diffusion
model (9). The results are shown in Fig. 10.

As expected, the constant brightness model performs
poorly compared to the diffusion model. The error vector
field in Fig. 10d shows that the constant brightness model
yields convergent and divergent optical flow in regions of
negative or positive image curvature. The most severe
errors occur in the center of the image where the brightness
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Fig. 8. Synthetic test sequence of an object subject to exponential decay. A Gaussian shaped object is moving with the velocity v � ÿ1; 0� �T pixels/
frame and simultaneously exponentially decaying with the decay rate � � 0:3 framesÿ1. (a), (b), and (c) First, third, and fifth frame of the sequence.
(d) Difference vector field e � vÿ v0 between the true and the estimated velocity field and uncertainty ellipses estimated with the constant brightness
assumption. (e) Difference vector field and uncertainty ellipses estimated with the exponential decay model. (f) Relative error in the decay rate �,
ranging from 0 percent (black) to 25 percent (white) threshold by the confidence measure. The arrows in (d) and (e) are drawn to the same scale in
order to compare the differences in the estimated error vector fields.



variation, according to the diffusion equation (9), is greatest.
By comparison, with the correct physical transport model
the estimated flow field is more accurate; Fig. 10e shows the
corresponding errors. In addition to the superior flow
estimates, the diffusion model yields an estimate of the
diffusion constant D (Fig. 10f). Within the region containing
pixels at which the problem was reasonably well-condi-
tioned, the relative error in the estimated diffusion constant
is below 25 percent.

The last example shows a natural infrared image
sequence (Fig. 11) of a localized heat spot induced by a
laser on a thin object. The underlying material, with the heat
spot, is translating towards the top of the image. As it
translates the heat spot is simultaneously diffusing along
the target surface. Figs. 11d and 11e show the optical flow
fields computed with the constant brightness model and
with the diffusion model. The flow field computed with the
constant brightness model shows convergence about the
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Fig. 9. Application example of an exponentially decaying heat spot on a wavy water surface in a laboratory wind-wave tank. (a), (b), and (c) First,

third, and fifth frame of the sequence. (d) Optical flow field v and uncertainty ellipses estimated with the constant brightness assumption. (e) Optical

flow field and uncertainty ellipses estimated with an exponential decay model.

Fig. 10. Synthetic test sequence of an object subject to diffusion. A Gaussian shaped object is moving with the velocity v � ÿ1; 0� �T pixels/frame and
simultaneously diffusing with the diffusion constant D � 2:5 pixels2=frame. (a), (b), and (c) first, second, and third frame of the sequence.
(d) Difference vector field e � vÿ v0 between the true velocity field v and the estimated velocity field v0, and uncertainty ellipses estimated with the
constant brightness assumption. (e) Difference vector field and uncertainty ellipses estimated with a diffusion model. (f) relative error in the diffusion
constant D, ranging from 0 percent (black) to 25 percent (white) threshold by the confidence measure. The arrows in (d) and (e) are drawn to the
same scale in order to compare the differences in the estimated error vector fields.



center of the heat spot, while the diffusion model yields a
translational flow field within the same region. Also, as in
the synthetic case, use of the diffusion model allows one to
estimate the diffusion constant of the heat spot, which was
estimated to D � 1:34 � 10ÿ3cm2sÿ1. The estimates obtained
were similar to those obtained using the same experimental
setup, but without motion so that brightness change was
known to be solely a function of thermal diffusion.

6 CONCLUSIONS

This paper presents a new approach to quantitatively
estimating motion and physical parameters of image
sequences. We use physical models of brightness change
to facilitate the estimation of both optical flow and physical
parameters of the scene. Previous approaches have accom-
modated violations of brightness constancy with the use of
robust statistics or with generalized brightness constancy
constraints that allow generic types of contrast change.
Here, we consider models of brightness variation that have
time-dependent physical causes, including changing sur-
face orientation with respect to a directional illuminant,
motion of the illuminant, and physical models of heat
transport (diffusion and decay) in infrared images.

The new technique is a straightforward extension of the
standard brightness change constraint equation to incorpo-
rate the spatiotemporal signature of particular dynamic
processes. With our formulation, the resulting problems
result in linear systems of constraint equations that can be
solved by standard numerical techniques, such as total-
least-squares. The method provides both accurate optical

flow estimates and accurate estimates of the relevant

physical parameters. The usual sensitivity of total least

squares to measurement noise and conditioning [40] is, in

part, mitigated with the use of the error covariance.
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