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Abstract: Working toward efficient (real-time) implementations of optical flow methods, we have
applied simple recursive filters to achieve temporal smoothing and differentiation of image intensity,
and to compute 2d flow from component velocity constraints using spatiotemporal least-squares min-
imization. Accuracy in simulation is similar to that obtained in the study by Barron et al. [3], while

requiring much less storage, less computation, and shorter delays.

1 Introduction

Many methods exist for computing optic flow, but few currently run at frame rates on reasonably
priced, conventional hardware. The goal of this paper is to outline simplifications to a successful
gradient-based approach that reduce computational expense with little degradation in accuracy. Our
specific concerns include temporal smoothing and differentiation of image intensity, and temporal
integration of component velocity constraints to solve for 2d velocity.

More generally, we are working toward efficient implementations of differential and phase-based
methods for computing optical flow. We concentrate on these methods because of their simplicity,
and because of their performance as compared to other methods [3]. A problem with these methods
is their spatiotemporal filtering and differentiation, which involve a significant amount of storage and
computation, as well as a temporal delay. Low-pass prefilters are required by differential techniques
for reliable numerical differentiation, while band-pass filters are an essential ingredient of energy-
based and phase-based approaches [1, 2, 8, 9, 11, 12]. Despite the use of separable filters and
reasonably efficient implementations, the filters are a major computational burden of these methods.

We concentrate on gradient-based methods here because of their lower computational demands,
which make them good candidates for real-time implementations. This paper examines a class of
causal temporal filters that are applied recursively for low-pass filtering and differentiation, with
small storage requirements and shorter delays. These low-pass filters are also readily generalized
to band-pass filters, and are therefore applicable to phase-based methods [18]. We also examine a

simple form of recursion in solving for optical flow from normal velocity constraints.
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2 Local Gradient-Based Method

Gradient-based techniques compute velocity from first-order derivatives of image intensity,? or filtered
versions of the image (using low-pass or band-pass filters);

VI(x,t)-v(x,t) + L(x,t) = 0, (1)

where VI(x, t) = (I(x, t), I,(x, t))T denotes the spatial gradient of I(x, t), I;(x, t) denotes the
partial temporal derivative of I(x, t), and VI(x, t) - v(x, t) denotes the usual dot product. The
space-time gradient effectively measures the instantaneous velocity of level intensity contours, which
can be derived from a conservation assumption (e.g. dI(x, t)/dt = 0). This measures the speed s in
the direction of the image gradient n(z, t), given by

VI(x, t)

s(x, t) = VI (2)

T

But (1) represents only one constraint on the two unknowns in v(x, t), and therefore further
constraints are necessary to solve for both. Three possibilities are well-known: (%) to use higher-order
derivatives with additional conservation assumptions (e.g. [10, 24]); (ii) to impose global smoothness
constraints (regularization) on the velocity field (e.g. [13, 20]); and (%iz) to impose a parametric model
(e.g. constant or linear variation) on the velocity field locally (e.g. [1, 4, 9, 17, 21, 22]).

The latter approach is adopted here, based on its performance in [3]: we compute velocity using
a weighted least-squares fit of local first-order constraints (1) to a constant model for v(x, ¢) in each

small spatiotemporal neighbourhood 2 by minimizing

Yo Wx, t)[VIx, t)-v + Lix, ). (3)
(x,t)eN

W (x, t) is a window that gives more influence to constraints near the centre of the neighbourhood.
The constant model for v, and the support W (x, t), reflect assumptions of spatial and temporal
coherence (or smoothness) in the local behaviour of v (e.g. [5, 22, 23]).

The minimization in (3) leads to a linear system W Av = Wb, the solution of which is given by

v = [ATWA'ATWD (4)
where, for n points (x;,t;) € Q,
A = [VI(x1, t1), ., VI(%n, ta)]",
= dia’g[W(xla tl)a ) W(Xn, tn)]a
b = —(I(x1, t1), oo, It(%Xn, tn))T

2These methods assume I(x, t) is differentiable, and hence aliasing should be avoided. If aliasing cannot be avoided,
then one could apply the method in a coarse-fine manner where estimates are first produced at coarse scales where
aliasing is less severe (where speeds are less than 1 pixel/frame). This is not addressed here in detail.



When (ATW A)~! exists we can solve for v, which is easy because ATW A is a 2 by 2 matrix:

SWIZ S WILI,

ATWA = 5
YW, YWI

(5)

oy - [ W]

YW, I,

where all sums are taken over points in the spatiotemporal neighbourhood (2.

Finally, if we treat [ATW A]~! as the covariance matrix for v, then unreliable estimates may be
identified using its inverse eigenvalues (as confidence measures) (e.g. [17, 23]). That is, accuracy tends
to improve with an increase in the eigenvalues of ATW A, \; and \a, which reflect the magnitudes
and the range of orientations of the spatial gradients. Possible confidence measures include the trace
of ATWA, A\ + X\ [22], or the magnitude of its smallest eigenvalue Mo [3]. Such measures are
important to the success of this technique.

As an example of the method, an implementation described in [3] used FIR spatiotemporal
filtering with Gaussian support and a standard deviation of 1.5 pixels-frames, followed by 4-pt
central differences for numerical differentiation. Temporal support for the entire process was 15
frames, and therefore a delay of 7 frames was necessary. The minimization in (3) involved a purely

spatial domain 2 at each frame to avoid further delays and computational expense.

3 Causal Recursive Temporal Filters

We now consider the use of recursive filters to alleviate the computation and storage requirements
of FIR filters. First, let the smoothing filter be separable in space-time, so that the response can
be computed as R(x,t) = E(t) x [B(x) * I(x, t)], and we may examine its spatial and temporal
components independently. The class of temporal filters we consider is derived from the truncated

exponential [6, 7]:

Texp|—7t] , t>0

6
0 L t<0 (6)

E(t) = H{t)te™™ = {

where H(t) is a Heaviside step function. Equation (6) is a low-pass causal filter where 7!, the time
constant, determines the duration of temporal support. The Fourier transform of E(t) is

A T

Bw) = : (7)

T+ iw

2:

where ¢ —1. The corresponding amplitude and phase spectra are

) = =y o arelB@)] = ! (2) (8)

The amplitude spectrum is low-pass, symmetric about the origin where it takes a value of 1, and
broad (decaying like 1/w at high frequencies). The phase spectrum is nearly linear, especially at the
low frequencies; linear phase (a distortionless filter) is difficult to achieve with IIR causal filters.

One concern with E(t) is the slow decay of its amplitude spectrum, making it susceptible to



noise and temporal aliasing. To alleviate this we may cascade E(t) repeatedly to achieve some useful
properties. For example, following [6], it can be shown that repeated convolution of E(t) is equivalent
to convolution with a single kernel that has a particularly simple form:

_ “n (k)Y
Eft) = [BOI" = B (9)
From the Central Limit Theorem it also follows that this cascaded convolution tends to a Gaussian
function [6]. The mode (peak) of the impulse response E,(t) is straightforwardly shown to be
(n —1)/7. The corresponding mean (centre of mass) and standard deviation are given by n/7 and
vn/T. When using (9) it is therefore important to note that with increasing numbers of cascades
there is an implicit time delay in response, which we take to be between the mean and the mode.
As suggested above, as the number of cascades increases, the filter becomes more Gaussian-like,
more low-pass, and its phase spectrum remains nearly linear. Its amplitude and phase spectra are

n

|En(w)| = , arg[En(w)] =n tan ! <E>

(12 4+ w?)n T

The amplitude spectra decays to half height, i.e. |E’n (w)| = 0.5, when w = 7/22/7 — 1 .

4 Temporal Differentiation

The gradient-based method involves low-pass smoothing followed by differentiation. As discussed
above, because of the assumed separability of the filters, we can treat the temporal and spatial
components of the filter independently, in which case

OR,(x, t) dE,(t)

o = g * B+ I(x, )], (10)

where R, (x,t) = E,(t) *x [B(x) * I(x, t)]. However, it is expensive to apply a different temporal
filter for differentiation, either in cascade or in parallel with the low-pass filter.

With this in mind it is interesting to note that the temporal derivative can be computed using the
same class of exponential filters discussed above. In particular, observe that the temporal derivative
of E,(t) in (9) has the form

dEy,(t)
dt

= 0(t) Ba(t) + Ea 1(t) — TEa(t) (11)

which uses the fact that the derivative of H(t) is a Dirac delta function. Moreover, if we assume
that n > 2, for which E,(0) = 0, then the derivative becomes

dE,(t)
dt

= 7[Ep_1(t) — Ep(t)], forn>2. (12)

That is, the derivative is a weighted difference of E,_;(t) and E,(t). If the low-pass response is
computed as a cascade of E,_1(t) and E;(t) then all the information necessary to compute the



derivative is already available in the computation of the low-pass filter.

5 Digital Filter Design

In order to realize discrete IIR implementations of (9) and (12), we use a bilinear transformation to
map the Laplace transform (the s-domain) of the continuous filter onto the z-domain [14]: i.e.,

HE) = Bl (1 (13)

Although the impulse invariant transformation is somewhat simpler,[14] it is susceptible to severe

aliasing problems, which in this case distort the differentiation when computed according to (12).
The Laplace transform of the truncated exponential (6) is simply L[E(t)] = 7/(s+ 7). Using the

fact that convolution in the time domain is equivalent to multiplication in the s-domain, the Laplace

transform of E,(t) is easily shown to be

om0l = [ (14

Rewriting this s-domain representation of the low-pass filter as a cascade of an (n — 1)"~order filter
and a first-order filter (used for (12)), we apply the bilinear transformation to obtain the z-transform

Hn(z) = (8_17)(”_1) <317>‘s:2(£) ' (15)

1+z*1

For example, H3(z) is given by
1422714272 1+2z71
H. = ¢
3(2) e (1 +2rz-1 + 7’2z2> (1 +rz—1

where ¢ = 7/(7 +2) and r = (1 — 2) /(7 + 2).
Discrete implementations then follow directly from the z-transform, using a direct-form-IT struc-

ture [14]. Figure 1 shows a cascaded implementation of the low-pass filter and the differentiator when
n = 3. The difference equations (with ¢ now a discrete variable) for the first stage of the cascade are

w(t) = I(t) — 2rw(t—1) — rPw(t —2)
Ry(t) = Qwt) +2¢wt—1) 4+ FPwt—2) (16)

while the second stage is given by
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Figure 1. This direct-form-II structure shows the combination of delays, adders and multipliers used
to implement the cascaded low-pass filter E3(t) and differential filter dE5(t)/dt.

and the temporal derivative is given by

dR3(t)
dt

= 7[Ra(t) — Rs(t)] . (18)

In order to reduce aliasing, the bilinear transform effectively warps frequency space in a nonlinear
manner, so the difference of low-pass filters in (12) will no longer be a perfect differentiator. As a
consequence it is interesting to examine the accuracy of this IIR scheme in comparison to the common
forward and central-difference schemes. One measure of the accuracy of a numerical differentiation
scheme is the difference between its transfer function (i.e., its Fourier transform) and iw, since
differentiation is equivalent to multiplication with iw in frequency space, F[df (t)/dt] = iw F[f(t)].
Given the Fourier transform of the differentiation scheme ﬁ(w), our measure of error is

E(w) =

D(w) = iw] . (19)

Table 1 gives the convolution masks for several common FIR filters for numerical differentiation,
and their respective transfer functions (see [16] for more details). It also gives a RMS measure of
error, computed as the integral of F(w)? over radian frequencies 0 < w < 1.0 (the lowest third of
the frequency spectrum). With all these schemes, accuracy degrades and noise becomes more severe
at higher frequencies, which is why it is common to smooth the signal before differentiation. For
example, Gaussian filters with standard deviations ¢ = 1.5 and ¢ = 2 have half-height band-limits
of w=10.78 and w = 0.58 radians.

The transfer function for the IIR method can also be derived without much trouble: Remember
that the relationship between our derivative filter and its corresponding low-pass components (12)
is exact. It is also straightforward to show that this relationship holds in the Laplace domain since

the Laplace transform is linear; that is, from (12) and (14),

LIAE,t)/dt]  T(L[E@p-1)(t)] — LIEL(1)])

LIE,(t)] L[E,(1)] =5 (20)




| Scheme | Convolution Mask | Transfer Function | RMS Error (0 <w < 1.0) |

fd2pt (1, -1) 1 — cos(w) + isin(w) 0.219
cd2pt 3(1,0, -1) isin(w) 0.061
cddpt | 5(=1,8,0,=8,1) [ iz[8sin(w) —sin(2w)] 0.0091

Table 1. FIR differentiation schemes are shown with their associated convolutions masks and Fourier
transforms, including a 2-point forward-difference formula (fd2pt), a 2-point central-difference for-
mula (cd2pt), and a 4-point central difference (cd4pt).
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Figure 2. The accuracy of differentiation in frequency space is shown for the IIR method and the
three FIR schemes given in Table 1. Remember that the effective band-limits of the low-pass prefilters
are assumed to be below w = 1.0, which determines the critical band for which errors must be small.

Applying the bilinear transformation s = 2(1 — 27 1)/(1 4+ 2z~ !) to transform this to the Z-domain,
and substituting for z = e, we obtain the transfer function

Digr(w) = 2<1_z_1>‘ _ A2sinlw) (21)

1+271 1 + cos(w)

Figure 2 shows the errors (19) for the FIR differentiators compared to this IIR scheme based on
the bilinear transformation. It can be seen that the IIR scheme should perform better than 2-point
schemes for reasonably low frequencies and worse than a 4-point central difference scheme. The RMS
error for the IIR scheme, in comparison to those listed in Table 1, is 0.034.

6 Estimation of Optical Flow

We now consider the weighted least-squares estimation of image velocity from the normal constraints
(3). For convenience, we assume separability of the window W (x, t) in (3) that determines the

support of the minimization so that its spatial and temporal components can be examined separately.



Ignoring the temporal component of the window, like the implementations described by others
[3, 22], we first note that the spatial collection of squared constraints (the components of (5) at each
pixel) can be expressed as convolution. In other words, given the partial derivatives of the low-pass
filtered image R(x, t), we first form the five images

Ri(x,t), Ri(x, 1), Ro(x, )Ry(x, t), Ra(x, t)Re(x, 1), Ry(x, t)Re(x, t) . (22)

The entries in the linear system in (5), at each pixel, are then given by the convolution of these
intermediate images with spatial component of the window which we take to be a Gaussian, G(x).
The use of temporal support is somewhat more problematic because of the computational ex-
pense and storage needed to accumulate normal constraints and solve the minimization problem at
each time. To alleviate this problem, yet exploit some degree of temporal coherence, it is natural
to consider incremental methods. For example, Singh [23] uses recursive estimation based on the
Kalman filter, while Black and Anandan [5] describe an MRF-based method. Although simplifica-
tions are made to the optimization procedures in each of these cases, they still involve considerable
computational expense and storage.? There also remain questions about the convergence of such
techniques, and the choice of arbitrary parameters such as process noise in the Kalman framework.
The approach taken here returns to the original minimization but with an implicit rather than an
explicit temporal window. As mentioned above, the accumulation of constraints through space and
time can be viewed as low-pass filtering of the intermediate images in (22). In space we apply an FIR
Gaussian filter. In time we use a causal IIR filter with exponential support (6), the implementation of
which requires no more than a first-order temporal difference. More precisely, let A(x, t) and b(x, t)
represent the linear system of normal equations formed by convolution of the intermediate images
(22) at time ¢ with the Gaussian weights G(x). Then, the temporal accumulation of constraints

within an exponential window of support (6), with time constant 7, ', is computed as

Ax,t) = aA(x,t—1) + (1—a)A(x, t), (23)
b(x,t) = ab(x,t—1)+ (1-a)b(x, 1),

where a@ = exp(—72) . The solution to the resultant normal equations is then given by
v = [A(x, t)] 'b(x, 1) . (24)

Observe that with & = 0 in (24) we remove the temporal coherence in this computation.
This recursion directly involves the normal equations rather than the final velocity estimates.
Although this is perhaps the simplest form of temporal coherence, it comes at a very small cost.*

%It should be added that they also attempt to solve for occlusion boundaries as well as optical flow and therefore
address a somewhat broader problem than that addressed here.

“For example, compared to a Kalman framework, there is no need for the explicit propagation of covariance matrices,
nor for the introduction of process noise, which is often difficult to do effectively without sophisticated knowledge of
the underlying system. Also, the exponentially decaying temporal window might be regarded as a form of the process
noise, where the relative amounts of measurement and process noise remain fixed.
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Figure 3. (A) Shows the texture on the moving surface at a single frame. (B) 2D motion field for
the translating tree sequence, where the camera moves along its x-axis normal to its line of sight with
image velocities between (1.73,0.0) and (2.3,0.0) pizels/frame. (C) 2D motion field for the diverging
tree sequence, where the the camera moves along its line of sight. The focus of expansion is at the
image centre, and speeds vary from 1.4 pizels/frame on one side to 2.0 pizels/frame on the other.

7 Experimental Results

In summary, the implementation described above can be broken into two main stages of processing:

1. Spatiotemporal low-pass smoothing and differentiation of I(x, t), accomplished in three stages:

a) Gaussian low-pass spatial filter G(x) with a standard deviation oy;

b) n'"-order TIR temporal filters E,,(t) and dE,(t)/dt with time constant 7; (16)—(18),
yielding the low-pass output R(x, t) its temporal derivative R;(x, t);

c) computation of R, (x, t) and Ry(x, t) from R(x, t) using 4-pt central differences
(convolutions with 1d mask -5(—1,8,0,—8,1) ).

2. Computation of 2d velocity from the normal constraints in three stages:

a) computation of intermediate images (22);

b) separable low-pass smoothing of intermediate images by a spatial Gaussian G(x) with
a standard deviation o2, and a first-order IIR filter F;(¢) with time constant 7o (24);

c) solution of the normal equations (24).

Following the computation of v(x, t) we compute confidence measures based on eigenvalues of
A(x, t). In terms of computational efficiency, the simplest reasonable measure is the trace of A(x, t)
in (24); i.e., the sum of its eigenvalues \; + A\o. However, in our current implementation we use only
the smallest eigenvalue A2 [3], with a simple threshold Ay < 1.0 to detect situations in which the
aperture problem prevails or the gradient magnitudes are too small. Note that we do this mainly for
convenience in comparing our results to those of others; in general, we acknowledge that confidence
measures should be maintained with the velocity estimates, using a conservative threshold only to

remove clear outliers. Other questions with the use of eigenvalues concerns their dependence on



the image contrast (e.g. a lower threshold may be required on low-contrast input), and hence the
relationship between the eigenvalues and confidence measures is unclear (however see [22]).

In summary, the entire method (with the confidence threshold) can be viewed as a sequence of
image operations, suitable for SIMD or pipeline hardware. It also lends itself to fast implementation
on serial machines. The main parameters include those of the initial filtering (o1, 71 and n), and
those that determine the domain of the least-squares minimization (o2 and 75). The temporal delay
in velocity estimation is due only to the first stage of filtering, and depends on the order of the IIR
filter and the time-constant. Although our implementation here uses only a single spatial scale, the

method generalizes easily to multiple spatial scales for which we expect improved results.

7.1 Error Measure

Following [3, 8] we view velocity as orientation in space-time and use an angular measure of error. If
velocity v = (vy,v2)7 is represented as a 3-d unit direction vector, ¥ = \/ﬁ(vl, v, 1)T, then
vy U3

the error between the correct velocity V. and an estimate v, is
g = arccos(V, - V) . (25)

This error measure is useful because it handles large and very small speeds without the amplification
inherent in a relative measure of vector differences. An error of two degrees when the actual speed
is 1 pixel/frame corresponds to a relative error of about 6% [9].

7.2 Results

Our quantitative results are derived from two synthetic image sequences with smooth motion fields
for which the true 2d motion fields are known. They are convenient since they have been used in
the extensive comparative study of Barron et al. [3] and by others (e.g., [11]). Each sequence depicts
a textured plane moving with respect to a camera. The textured plane and the known 2d motion
fields are shown in Figure 3.

Table 2 shows results reported by others on the same sequences. The gradient-based implementa-
tion by Barron et al., described above in Section 2, uses spatiotemporal Gaussian low-pass filtering,
and a spatial domain for the minimization (3) with Gaussian weights (with a standard deviation
of 1.1 pixels). Our implementations retain these parameters where appropriate. The energy-based
technique of Haglund [2, 11] produced accurate results, but the density of measurements was lower
than the other methods shown. This technique also had a longer duration of temporal support,
and hence a longer delay.> The phase-based technique [8, 9] produced more accurate results, with a
higher density of measurements on most sequences. It also has a long duration of temporal support,
and hence a long delay. Moreover, like energy-based methods, its computational demands that stem
from spatiotemporal filters make it expensive on conventional hardware.

By comparison, Table 3 shows results obtained from our implementation with different forms of
ITR temporal prefiltering, all with the same spatial prefiltering and the same domain of minimization.

SHaglund reports results with smaller temporal extents but the accuracy in these cases is somewhat poorer.

10



Other Temporal | Delay | Trans. Tree Error Stats. Div. Tree Error Stats.
Implementations Support mean, st. dev. & density | mean, st. dev. & density
Barron et al. [3] 15 7 0.66° 0.67° 39.5% 1.94° 2.06° 48.2%

Haglund [11] 21 10 0.85° 0.42° 21% 1.77° 1.14° 1%
Fleet & Jepson [8, 9] 21 10 0.23° 0.19° 49.7% 0.8° 0.73° 46.5%

Table 2. This shows results of other implementations on the same data.

Params. Extent, 1/2-height Delay | Trans. Tree Error Stats. Div. Tree Error Stats.
n, 7'1_1 \/ﬁTl_l , Tv22/n—1 mean, st. dev. & density | mean, st. dev. & density

3 1.0 1.73 0.76 2 1.19° 0.77° 49.3% 1.99° 1.77°  51.9%
31.25 2.16 0.61 3 0.97° 0.66° 45.6% 1.89° 1.63° 50.9%
4 1.0 2.0 0.64 3 1.03°  0.63° 46.6% 1.93° 1.78° 48.8%
5 1.0 2.2 0.56 4 0.85° 0.57° 44.3% 1.86° 1.61° 50.8%

Table 3. This shows results obtained with different forms of temporal prefiltering; i.e., different orders
of IIR filters n and different time constants 71_1. Also shown are the effective duration of support
\/ﬁTl_l, the spectral extent at half-height T\/22/" —1 and the temporal delay. Other parameters
remained fized at oy = 1.5, 09 = 1.2, and 75, ' = 0.83 (so that « = 0.3 ).

Temporal Extent | Trans. Tree Error Stats. Div. Tree Error Stats.
Ty Voo mean, st. dev. & density | mean, st. dev. & density
0.0 0.0 1.06° 0.8° 38.6% 2.01° 1.7° 49.0%
0.62 0.2 1.0°  0.7° 42.7% 1.92° 1.66° 50.1%
0.83 0.3 0.97° 0.66° 45.6% 1.89° 1.63° 50.9%
1.1 04 0.92° 0.62° 49.0% 1.85° 1.57° 52.5%

Table 4. This shows results obtained with different time constants for the exponential window on the
domain of least-squares minimization (with o1 = 1.5, n =3, Tl_l = 1.25, and o9 = 1.2).

In these cases we have used relatively low-orders of IIR filters, and a relatively small time-constant
to keep the storage, computation and the delay small. In practice the delay should be between the
mode (n—1)7; " and the mean n7 " of the impulse response (9). We find that the errors are typically
minimal with a delay close to the mean, but there is not much difference between the estimates at the
mode and the mean. For example, Figure 4 shows the mean error as a function of the temporal delay
for the diverging tree sequence (the standard deviation is roughly constant because of the smooth
change in the motion field from frame to frame, and is not shown). In most instances reported in
Table 3, the parameters were chosen so that an integer delay was reasonably close to the mode.
Our main experimental concern is of course the quantitative accuracy of these methods. Ac-
cordingly, it is evident from Table 3 that the results are comparable to those in Table 2, with the
greatest differences in the somewhat poorer results obtained for the translating tree sequence. Even
the third-order filter with a delay of only 2 frames produces good results which is encouraging. These
results also agree with the analysis in Section 5 that shows the IIR differentiation scheme to be some-
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Figure 4. Mean error is shown as a function of delay. Although the minimum error occurs at o delay
close to the mean, errors are generally small everywhere between the mode and the mean. We use
the mode instead of the mean as it involves a shorter delay.

what less accurate than a 4-point central difference (used by Barron et al.). Although not reported
in detail, we found that the IIR method produces significantly better results than the 2-point FIR
formulas in Table 1 for numerical differentiation.

Interestingly, performance tends to degrade when the time constant gets much smaller than 1.0.
In part this may be due to the the increased temporal band-limit in these cases, where noise is a
greater problem for differentiation schemes. The effective temporal extent of the filters and their
temporal band-limits (at half amplitude) are given in Table 3. As mentioned in Section 5 they are
comparable to those obtained with FIR Gaussian smoothing with standard deviations between 1.5
and 2.0. However, note that Gaussian spectra fall off more sharply about their half-height band-limit
compared to cascaded exponential filters, the band-limits of which are given in Table 3.

Table 4 shows results for different temporal extents in the least-squares minimization (24) with
the same prefiltering. It shows improvement with increasing temporal support. However, we also
find that with sufficient spatial neighbourhoods, the temporal support of the minimization does not
always improve the results significantly; spatial and temporal coherence complement one another in
many cases, but not always. The temporal coherence does however help fill in small holes where
aperture problem occurs in textured patches. This may be important for egomotion methods that
require dense flow (e.g., the convolution form of subspace methods [15]).

Finally, Figure 5 shows the flow fields computed from the synthetic sequences using a third-order
prefilter with 7, 1 = 1.25, the quantitative results for which are given in the second row of Table 3.
Figure 6 shows results of the same filters on two real image sequences that were also used by Barron
et al. [3]. They show that the technique performs reasonably well, but produces occasional outliers

and problems at occlusion boundaries, also shown in [3].
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Figure 5. These are estimated flow fields for the translating and diverging tree sequences using third-
order IIR prefilters with a time-constant of Tl_l = 1.25 Other parameters were similar to those used
for the results reported in Table 3. The tiny dots represent pizels at which the velocity estimate did
not satisfy the eigenvalue threshold.

8 Discussion

This paper reports results that may be useful in developing more efficient implementations of
gradient-based and phase-based optical flow techniques. Here we concentrate on a class of low-
pass IIR temporal filters that can be used efficiently to produce both the low-pass output and the
temporal derivative. These filters can be applied with much shorter delays, and substantially less
intermediate storage and computation compared to existing FIR-based approaches. We also examine
a very simple form of recursion in solving for optical flow from normal velocity constraints. Further-
more, note that the durations of temporal support at both stages of computation can be extended
with no increase in computation or storage, and only minor increases in temporal delay. Using syn-
thetic and real sequences it was shown that optical flow methods based on these recursive filters can
approach the accuracy and reliability of explicit methods.
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Figure 6. Real Sequences: These show a single frame and o flow field estimated for that frame
using the same technique as that for Figure 5. The tiny dots represent pizels at which the velocity
estimate did not satisfy the eigenvalue threshold.
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