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Abstract. We propose a Bayesian framework for representing and recognizing local image motion in terms of two
basic models: translational motion and motion boundaries. Motion boundaries are represented using a non-linear
generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion
of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We represent the
posterior probability distribution over the model parameters given the image data using discrete samples. This dis-
tribution is propagated over time using a particle filtering algorithm. To efficiently represent such a high-dimensional
space we initialize samples using the responses of a low-level motion discontinuity detector. The formulation and
computational model provide a general probabilistic framework for motion estimation with multiple, non-linear,
models.
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1. Introduction

A particularly rich source of visual motion information
is found at surface boundaries where optical flow is typ-
ically discontinuous due to motion parallax or the in-
dependent motion of objects. This gives rise tomotion
boundariesbetween adjacent image regions having dif-
ferent image velocities. These motion boundaries pro-
vide information about the position and orientation of
surface boundaries in the scene. Moreover, analysis of
the occlusion or disocclusion of pixels at motion bound-
aries can provide information about the relative depth
ordering of the neighboring surfaces. In turn, informa-
tion about surface boundaries and depth ordering may
be useful for tasks as diverse as navigation, structure
from motion, video compression, perceptual organiza-
tion, and object recognition.

While motion boundaries provide valuable infor-
mation about the scene, they also cause problems for

optical flow techniques that assume the image motion
is spatially smooth. Therefore, the detection of motion
boundaries is often seen as a means for improving op-
tical flow estimation. This, combined with the salience
of motion boundaries for inferring scene properties, has
made the detection and analysis of motion boundaries
an important research topic in computer vision. De-
spite this, approaches reported to date have produced
somewhat disappointing experimental results and mo-
tion boundary detection remains problematic.

In this paper we formulate a probabilistic, model-
based, approach to image motion analysis; that is, the
image motion in each local neighborhood of an image
is estimated and represented using one of several pos-
sible models. This approach allows us to use different
motion models that are suited to the diverse types of
optical flow that occur in natural scenes. In this paper
we consider two models, namely, smooth motion and
motion boundaries. Regions of smooth motion may be
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modeled using conventional constant or affine mod-
els while the complex phenomena that occur at motion
boundaries are accounted for by an explicit, non-linear,
boundary model.

To cope with image noise, matching ambiguities,
and model uncertainty, we adopt a Bayesian probabilis-
tic framework that integrates information over time and
represents multiple, competing, hypotheses. Our goal
is to compute the posterior probability distribution over
models and model parameters, conditioned on image
measurements. The computation of the posterior dis-
tribution is expressed in terms of a likelihood function
and a prior probability distribution. The likelihood rep-
resents the probability of observing the current image
data given the model parameters. The prior represents
our belief about models at the current time based on
previous observations. This “temporal” prior embodies
our assumptions about the temporal dynamics of how
the models and model parameters evolve over time.

Our Bayesian formulation rests on the specifica-
tion of generativemodels for smooth motion and mo-
tion boundaries. These generative models define our
probabilistic assumptions about the spatial structure of
the motion within a region, the temporal evolution of
the model parameters, and the probability distribution
over the image measurements that one would expect
to observe given a particular instance of the model
parameters.

The motion boundary model, illustrated in Fig. 1,
encodes the orientation of the boundary, the image ve-
locities of the pixels on each side of the boundary, the
foreground/background assignment for the two sides,
and an offset of the boundary from the center of the

Figure 1. Model of an occlusion boundary, parameterized by foreground and background velocities,uf andub, an orientationθ with normal
nθ , and a signed distanced from the neighborhood centerxc. With this model we predict which pixels are visible between frames at timest − 1
andt .

region. With this explicit model, we can predict the
visibility of occluded and disoccluded pixels so that
these pixels may be excluded when estimating the prob-
ability of a particular model. Moreover, the explicit off-
set parameter allows us to predict the location of the
edge within the region of interest, and hence track its
movement through the region. Tracking the motion of
the edge allows foreground/background ambiguities to
be resolved. Explicit generative models such as this
have not previously been used for detecting motion
discontinuities due to the non-linearity of the model
and the consequent difficulty of estimating the model
parameters.

The use of multiple models, including the non-linear
motion boundary model, means that the posterior prob-
ability distribution will be non-Gaussian. In most cases,
we expect it to be multi-modal. Therefore, rather than
represent and propagate the posterior in time using a
simple parametric form (as in a Kalman filter), here we
represent the posterior distribution using factored sam-
pling, and we propagate it through time using a particle
filter (Gordon et al., 1993; Isard and Blake, 1998a; Liu
and Chen, 1998).

The parameter space we must represent is of a rela-
tively high dimension. It includes a discrete parameter
to encode the type of motion model (smooth motion or
motion boundary), and a vector of continuous parame-
ters (2 parameters for the smooth motion model, and 6
for the motion boundary model). Given the dimension-
ality of the parameter space, naive sampling methods
will be extremely inefficient. But if the samples can
be directed to the appropriate portion of the parameter
space, small numbers of samples can well characterize
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such distributions (Isard and Blake, 1998b). It is for
this purpose that, in addition to the temporal prior, we
use an initialization prior. At the low level, a set of
dense detectors signal the presence of potential motion
boundaries and give estimates of the model parameters.
These detectors are based on approximate linear mod-
els of motion boundaries, the coefficients of which can
be estimated with robust optical flow techniques (Fleet
et al., 2000). Neighborhoods of these filter outputs pro-
vide a prior distribution over model parameters that
is sampled from when initializing the full non-linear
models.

While the method described here can be thought
of simply as a motion boundary detector, the frame-
work has wider application. The Bayesian formula-
tion and computational model provide a general proba-
bilistic framework for motion estimation with multiple,
non-linear, models. This generalizes previous work on
recovering optical flow using linear models (Bergen
et al., 1992; Fleet et al., 2000). Moreover, the Bayesian
formulation provides a principled way of choosing be-
tween multiple hypothesized models for explaining the
image variation within a region.

We illustrate the method on natural image sequences
and show how the Bayesian formulation and the par-
ticle filtering method allow motion discontinuities to
be detected and tracked over multiple frames. These
experiments also show how depth ambiguities can be
resolved by observing the motion of the boundary over
time.

2. Previous Work

The detection of motion boundaries has been a long-
standing problem in optical flow estimation, primarily
because most approaches to computing optical flow
fail to be reliable in the vicinity of motion discontinu-
ities (Barron et al., 1994; Fleet, 1992; Otte and Nagel,
1994). In addition, it has long been acknowledged that
motion boundaries provide useful information about
the position and orientation of surface boundaries.

Most previous approaches for detecting occlusion
boundaries have treated the boundaries as a form of
“noise”; that is, as the violation of a smoothness as-
sumption. This approach is taken in regularization
schemes where robust statistics, weak continuity, or
line processes are used to locally disable smoothing
across motion discontinuities (Cornelius and Kanade,
1983; Harris et al., 1990; Heitz and Bouthemy, 1993;

Konrad and Dubois, 1988; Murray and Buxton, 1987;
Nagel and Enkelmann, 1986; Schunck, 1989; Shulman
and Hervé, 1989; Thompson et al., 1985). Robust re-
gression (Black and Anandan, 1996; Sawhney and
Ayer, 1996) and mixture models (Ayer and Sawhney,
1995; Jepson and Black, 1993; Weiss and Adelson,
1996) have been used to account for the multiple mo-
tions that occur at motion boundaries but these methods
fail to explicitly model the boundary and its spatiotem-
poral structure; in particular, they do not model the ori-
entation of the boundary, the pixels that are occluded
or disoccluded, or the depth ordering of the surfaces at
the boundary.

Numerous methods have attempted to detect discon-
tinuities in optical flow fields by analyzing local dis-
tributions of flow (Spoerri and Ullman, 1987) or by
performing edge detection on the flow field (Potter,
1980; Schunck, 1989; Thompson et al., 1985). It has
often been noted that these methods are sensitive to
the accuracy of the optical flow and that accurate op-
tical flow is hard to estimate without prior knowledge
of the occlusion boundaries. Other methods have fo-
cused on detecting occlusion from the structure of a
correlation surface (Black and Anandan, 1990), or of
the spatiotemporal brightness pattern (Beauchemin and
Barron, 2000; Chou, 1995; Fleet and Langley, 1994;
Niyogi, 1995). Still others have used the presence of un-
matched features to detect dynamic occlusions (Mutch
and Thompson, 1985; Thompson et al., 1985).

None of these methods explicitly model the spatial
structure of the image motion present in the immediate
neighborhood of the motion boundary, and they have
not proved sufficiently reliable in practice. Recent ap-
proaches have formulated explicit (approximate) mod-
els of motion boundaries using linear combinations of
basis flow fields (Fleet et al., 2000). Estimating the im-
age motion with these models is analogous to the esti-
mation of motion from image derivatives using conven-
tional linear parameterized models such as affine flow.
Moreover, from the estimated linear coefficients, one
can compute the orientation of the boundary and the
velocities on either side. However, these linear models
still provide only a coarse approximation to the mo-
tion at a boundary. For example, they do not explicitly
model which image pixels are occluded or disoccluded
between frames. This means that these pixels, which
are not visible in both frames, are treated as noise. With
our explicit non-linear model, these pixels can be pre-
dicted and therefore taken into account in the likelihood
computation.
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Additionally, most of the above methods have no ex-
plicit temporal model. With our generative model, we
predict the motion of the occlusion boundary over time
and hence integrate information over multiple frames.
When the motion of the discontinuity is consistent with
that of the foreground surface we can explicitly deter-
mine the foreground/background relationships (depth
ordering) between the surfaces.

3. Generative Models

For the purposes of this work, as suggested in Fig. 1, we
decompose an image into a grid of circular neighbor-
hoods in which we estimate motion information. We
assume that the motion in any region can be modeled
by one of several motion models. Here we consider
two models, namely smooth motion and motion bound-
aries. Generative models of these motions are used to
specify the model parameters of interest, the probabilis-
tic relationship between these parameters and image
observations, and the way in which we expect these pa-
rameters to vary over time (i.e. the temporal dynamics).

For the smooth motion model, we express the optical
flow within the circular region as simple image transla-
tion; more complex models, such as affine motion, can
also be used. The translational model has two param-
eters, namely, the horizontal and vertical components
of the velocity, denotedu0= (u0, v0). Exploiting the
common assumption of brightness constancy, the gen-
erative model states that the image intensity,I (x′, t),
of a pointx′ = (x′, y′) at timet in a regionR is equal
to the intensity at some locationx at time t − 1 with
the addition of noiseνn :

I (x′, t) = I (x, t − 1)+ νn(x, t), (1)

wherex′ = x + u0. Here, we are assuming that the
noise,νn(x, t), is white and Gaussian with a standard
deviation ofσn; that is,νn ∼ N (0, σ 2

n ).
The motion boundary model is more complex and

contains 6 parameters: the edge orientation, the veloci-
ties of the foreground (uf ) and the background (ub), and
the distance from edge to the center of the regionxc. In
our parameterization, shown in Fig. 1, the orientation,
θ ∈ [−π, π), specifies the direction of a unit vector,
n = (cos(θ), sin(θ)), that is normal to the occluding
edge. We represent the location of the edge by its signed
perpendicular distanced from the center of the region
(positive meaning in the direction of the normal). The

edge is therefore normal ton and passes through the
pointxc+ d n. Relative to the center of the region, we
adopt a convention that defines the foreground to be the
side to which the normaln points. Therefore, a point
x is on the foreground if(x − xc) · n > d. Similarly,
points on the background satisfy(x− xc) · n < d.

At most motion boundaries some pixels will be ei-
ther occluded or disoccluded and, as a consequence,
one should not expect to find corresponding pixels in
adjacent frames. It is therefore important that we iden-
tify these pixels when formulating the likelihood func-
tion. Towards this end, let us assume that the motion
boundary edge moves with the same velocity as the
pixels on the foreground side of the edge (i.e., the oc-
cluding side).1 With this assumption, the occurrence
of occlusion or disocclusion depends solely on the dif-
ference between the background and foreground veloc-
ities. Pixels are occluded from one frame to the next
when the background moves faster than the foreground
in the direction of the edge normal. More precisely, if
ufn = uf · n andubn = ub · n denote the two normal
velocities, occlusion occurs whenubn− ufn> 0. Dis-
occlusion occurs whenubn − ufn< 0. The width of
the occluded/disoccluded region, measured normal to
the occluding edge, is|ubn− ufn|.

With this model, parameterized by(θ, uf, ub, d),
we can now specify how pixels move from one frame
to the next. A pixelx at timet−1, that remains visible
at timet , moves to locationx′ at timet given by

x′ =
{

x+ uf if (x− xc) · n > d

x+ ub if (x− xc) · n < d + w (2)

wherew = max(ubn− ufn, 0) is the width of the oc-
cluded region. Finally, withx′ defined by (2), along
with the assumptions of brightness constancy and white
Gaussian image noise, the image observations associ-
ated with a motion edge are given by (1).

Referring to Fig. 1 (right), in the case of disocclu-
sion, a circular neighborhood at timet − 1 maps to a
pair of regions at timet , separated by the width of the
disocclusion region|ubn−ufn|. Conversely, in the case
of occlusion, a pair of neighborhoods at timet−1, sep-
arated by|ubn−ufn|, map to a circular neighborhood at
time t . Being able to look forward or backward in time
in this way allows us to treat occlusion and disocclusion
symmetrically.

So far we have focused on the spatial structure of the
generative models. We must also specify the evolution
of the model parameters through time since this will
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be necessary to disambiguate which side of the mo-
tion boundary is the foreground. From optical flow
alone one cannot determine the motion of the occlusion
boundary using only two frames. The boundary must
be observed in at least two separate instances (e.g.,
using three consecutive frames) to discern its motion.
The image pixels whose motion is consistent with that
of the boundary are likely to belong to the occluding
surface. Thus, to resolve the foreground/background
ambiguity, we propose to accumulate evidence over
time.

Towards this end, we assume that the parameters of
the motion models obey a first-order Markov process
and, hence, parameter values at timet depend only on
the parameter values att − 1. For the smooth motion
model, we assume that the expected image translation
remains constant from one time to the next. More pre-
cisely, we assume that the image translation at timet ,
u0,t , is given by

u0,t = u0,t−1+ νu, νu ∼ N
(
0, σ 2

u I2
)
, (3)

whereI2 is the 2D identity matrix. Here, the Gaussian
noise represents the modeling uncertainty (error) im-
plicit in this simple first-order dynamical model.

For the motion boundary model, we assume that
the expected velocities on either side of the bound-
ary, along with the expected orientation of the bound-
ary, remain constant. Moreover, as discussed above,
we assume that the expected location of the boundary
translates with the foreground velocity. The dynamics
are then governed by

uf,t= uf,t−1+ νu,f, νu,f ∼ N
(
0, σ 2

u I2
)

(4)

ub,t= ub,t−1+ νu,b, νu,b ∼ N
(
0, σ 2

u I2
)

(5)

θt = [θt−1+ νθ ] mod 2π, νθ ∼ N
(
0, σ 2

θ

)
(6)

dt = dt−1+ nt−1 · uf,t−1+ νd, νd∼N
(
0, σ 2

d

)
. (7)

Here we use a wrapped-normal distribution over an-
gles; therefore, orientation,θt−1, is propagated in time
by adding Gaussian noise and then removing an inte-
ger multiple of 2π so thatθt ∈ [−π, π). The location
of the boundary moves with the velocity of the fore-
ground, and therefore its expected location at timet is
equal to that at timet − 1 plus the magnitude of the
component of the foreground velocity in the direction
of the boundary normal. As above, Gaussian noise is
included to represent the modeling errors implicit in

this simple dynamical model. Note that more sophis-
ticated models of temporal dynamics (e.g., constant
acceleration) could be used.

4. Probabilistic Framework

Given the generative models described above, we are
now ready to formulate our state description and the
computation of the posterior probability density func-
tion over models and model parameters. First, letstates
be denoted bys= (µ, p), whereµ is the model type
(translation or motion boundary), andp is a parameter
vector appropriate for the model type. For the transla-
tional model the parameter vector is two-dimensional,
p= (u0). For the motion boundary model it is 6-
dimensional,p= (θ, uf, ub, d). Our goal is to find the
posterior probability distribution over states at time
t given the measurement history up to timet ; i.e.,
p(st | EZt ). Here, EZt = (zt , . . . , z0) denotes the mea-
surement history.

From the generative models above, it follows that
the temporal dynamics of the motion models form a
Markov chain for which states at timet depend only
on states at the previous time instant:

p(st | ESt−1) = p(st | st−1),

where ESt = (st , . . . , s0) denotes the state history. In
other words,st andESt−2 are conditionally independent
given st−1. The generative models also assume con-
ditional independence of the observations and the
dynamics. In other words, givenst , the current obser-
vation zt and the previous observationsEZt−1 are in-
dependent. With these assumptions one can show that
the posterior distributionp(st | EZt ) can be factored and
reduced using Bayes’ rule to obtain

p(st | EZt ) = kp(zt | st ) p(st | EZt−1) (8)

wherek is a constant used to ensure that the distribu-
tion integrates to one. Here,p(zt | st ) represents the
likelihood of observing the current measurement given
the current state, whilep(st | EZt−1) is referred to as a
temporal prior, the prediction of the current state given
all previous observations.

The specific form of the likelihood functionp(zt | st )

follows from the generative models. In particular, the
state specifies the motion model and the mapping from
visible pixels at timet−1 to those at timet . The obser-
vation equation, derived from the brightness constancy
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assumption (1), specifies that the intensity differences
between corresponding pixels at timest andt−1 should
be white and Gaussian, with zero mean and standard
deviationσn.

Using Bayes’ rule and the conditional independence
assumed above, it is straightforward to show that the
temporal prior can be written in terms of the temporal
dynamics that propagate states from timet − 1 to time
t and the posterior distribution over states at timet−1.
In particular,

p(st | EZt−1
)= ∫ p(st | st−1) p(st−1 | EZt−1) d st−1, (9)

where the conditional probability distribution
p(st | st−1) embodies the temporal dynamics, and
p(st−1 | EZt−1) is the posterior distribution over the state
space at timet − 1.

This completes our description of the state space,
and the mathematical form of the posterior probabil-
ity distribution over the possible interpretations of the
motion within an image region.

5. Computational Model

We now describe the details of our computational
embodiment of the probabilistic framework outlined
above. First, we consider the representation of the pos-
terior distribution and its propagation through time us-
ing a particle filter. We then address the computation
of the likelihood function and discuss the nature of the
prior probability distribution that facilitates the state
space search for the most probable models and model
parameters.

5.1. Particle Filter

The first issue concerns the representation of the poste-
rior distribution, p(st | EZt ). Because of the non-linear
nature of the motion boundary model, the existence
of multiple models, and because we expect fore-
ground/background and matching ambiguities, we can
assume thatp(st | EZt ) will be non-Gaussian, and often
multi modal. For this reason we represent the posterior
distribution in a non-parametric way, using factored
sampling. We then use a particle filter (with sequen-
tial importance resampling) to propagate the posterior
through time (Black, 1999; Gordon et al., 1993; Isard
and Blake, 1998a; Liu and Chen, 1998).

The posterior is represented with a discrete,
weighted set ofSrandom samples{(s(i )t , w

(i )
t )}i=1,...,S.

At each time step, following the Condensation algo-
rithm (Isard and Blake, 1998a), the posterior is com-
puted by drawing a fair set of state samples from the
prior probability distribution and then evaluating the
likelihood of each sample. Normalizing the likelihoods
of the state samples, so that they sum to one, produces
the weightsw(i )t :

w
(i )
t =

p
(
zt

∣∣ s(i )t

)∑S
n=1 p

(
zt

∣∣ s(n)t

) .
These weights ensure that our sample set{(s(i )t ,

w
(i )
t )}i=1,...,S contains properly weighted samples with

respect to the desired posterior distributionp(st | EZt ).
A sufficiently large number of independent sam-
ples then provides a reasonable approximation to the
posterior.

5.2. Likelihood

The next issue concerns the detailed computation of
the likelihood. To evaluate the likelihoodp(zt | s(i )t ) of
a particular state, we draw a uniform random sampleR
of visible image locations (as constrained by the gener-
ative model and the current state). Typically we sample
50% of the pixels in the region. Given this subset of
pixels, we compute the un-normalized likelihood as

p
(
zt

∣∣ s(i )t

)=(exp

[
−1

2σ 2
n

∑
x∈R

E
(
x, t; s(i )t

)2])1/T

(10)

whereE(x, t; s(i )t ) = I (x′, t)− I (x, t−1), T = |R| is
the number of sampled pixel locations, and the warped
image locationx′ is a function of the states(i )t (as, for ex-
ample, defined in (2)). The warped image valueI (x′, t)
is computed using bi-linear interpolation. Note that
sampling a fraction of the pixels gives some measure of
robustness to outliers (Bab-Hadiashar and Suter, 1997).

Note that this likelihood function is equivalent to
that specified by the generative model, but raised to
the power 1/T . This is computationally, rather than
probabilistically, motivated. A large value ofT has the
effect of smoothing the posterior distribution making
the peaks broader. Within a sampling framework, this
allows a more effective search of the parameter space,
reducing the chances of missing a significant peak.
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5.3. Prior

The prior probability distribution serves to constrain
our samples to relevant portions of the parameter space.
We are seeking solutions (drawing state samples) from
within a seven-dimensional state space. This is a rela-
tively high dimensional space and naive approaches for
representing or searching it will be infeasible. There-
fore, unlike a conventional particle filter for which the
prior is derived solely by propagating the posterior from
the previous time instant, we also exploit an initializa-
tion prior that provides a form of bottom-up informa-
tion to initialize new states. This is useful at time 0 when
no posterior is available from the previous time instant.
It is also useful to help avoid getting trapped at local
maxima thereby missing the occurrence of novel events
that might not have been predicted from the posterior
at the previous time. For example, it helps to detect the
sudden appearance of motion edges in regions where
only translational state samples existed at the previous
time instant. This use of bottom-up information, along
with the prediction from the temporal prior, allows us
to effectively sample the most interesting portions of
the state-space.

The actual prior used here is a linear mixture of a
temporal prior and an initialization prior. In the exper-
iments that follow we use constant mixture proportions
of 0.8 and 0.2 respectively; that is, 80% of the samples
are drawn from the temporal prior. Importance sam-
pling (Gordon et al., 1993; Isard and Blake, 1998b;
Liu and Chen, 1998) provides an alternative way of
achieving similar results.

5.3.1. Temporal Prior. According to the generative
model for translational motion, the temporal dynam-
ics (3) yield

p(st | st−1) = Gσu(1u0) (11)

whereGσu denotes a multivariate mean-zero Gaussian
with covariance matrixσ 2

u I2, and1u0 = u0,t − u0,t−1

denotes the temporal velocity difference. Similarly, the
generative model for the motion boundary ((4)–(7))
specifies that

p(st | st−1) =
Gσu(1uf)Gσu(1ub)Gσd(1d − n · uf,t−1)Gw

σθ
(1θ)

(12)

whereGw denotes a wrapped-normal (for circular dis-
tributions) and, as above,1θ = θt − θt−1 and1d =
dt − dt−1.

Because the posterior,p(st | EZt−1), at timet − 1 is
represented as a weighted sample set and the condi-
tional priors, ((11) and (12)), are Gaussian, the tem-
poral prior given by (9) can be viewed as a Gaussian
mixture model. To see this, note that the posterior is
being approximated as a weighted sum of Dirac delta
functions (at the sample states), so (9) can be viewed
as a convolution of this sum of delta functions with the
Gaussian temporal dynamics. The result of the convo-
lution is a sum of Gaussians. There is one Gaussian
component for each samples(i )t−1 at timet − 1 and the
mixture probabilities are equal to the weights,w

(i )
t−1.

To draw a fair sample from a Gaussian mixture,
one first draws one of the components according to
the mixture probabilities (the weights), and then one
draws a sample from that Gaussian component. To
sample a component from the mixture, one can con-
struct a cumulative probability distribution using the
weightsw(i )t−1, and then draw a sample from it (Isard
and Blake, 1998a). Let the cumulative probabilities be

c(0)t−1 = 0

c(i )t−1 = c(i−1)
t−1 + w(i )t−1.

We sample this distribution by uniformly choosing a
value,r , between zero and one. We then find the small-
est c(i )t−1 such thatc(i )t−1 > r . The states(i )t−1 is then
selected for propagation. Givens(i )t−1, we then sample
from the dynamics,p(st | s(i )t−1), which, as explained
above, is a multivariate Gaussian. This is repeated for
every sample drawn from the temporal prior.

Thus far we have assumed that the motion model
type remains constant as we propagate states from one
time to the next. However, when a boundary passes
through a region and out the other side, it is natural to
switch model types from a motion boundary model to
a smooth motion model. Accordingly, given a motion
boundary state at timet − 1, we let the probability of
switching to a translational model at timet be given by
the probability that the temporal dynamics will place
the boundary outside the region of interest at timet .
This can be computed as the integral ofp(st | st−1)

over boundary locationsd that fall outside of the re-
gion. In practice, we accomplish this by sampling from
the temporal prior as described above. But whenever
we sample a motion boundary states(i )t for which the
edge is outside the circular neighborhood, we simply
change model types, sampling instead from a transla-
tional model whose velocity is consistent with whatever
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side of the motion boundary would have remained in
the region of interest.

5.3.2. Initialization Prior

Low-Level Motion Boundary Detection.To initialize
new states and provide a distribution over their param-
eters from which to sample, we use a method described
by Fleet et al. (2000) for detecting motion discontinu-
ities. This approach uses a robust, gradient-based op-
tical flow method with a linear parameterized motion
model. Motion edges are expressed as a weighted sum
of basis flow fields, the coefficients of which are esti-
mated using an area-based regression technique. Fleet
et al. then solve for the parameters of the motion edge
that are most consistent (in a least squares sense) with
the linear coefficients.

Figure 2 shows an example of applying this method
to an image sequence in which a Pepsi can translates
horizontally relative to the background. The method
provides a mean velocity estimate at each pixel (i.e.,
the average of the velocities on each side of the mo-
tion edge). This is simply the translational velocity
when no motion edge is present. As explained in Fleet
et al. (2000) a confidence measure,c(x) ∈ [0, 1] can

Figure 2. One frame of the Pepsi Sequence, with responses from the low-level motion edge detector, which feeds the initialization prior. The
image velocities and the velocity differences are primarily horizontal. In the orientation image, grey denotes vertical orientations, while white
and dark grey denote near horizontal orientations.

be used to determine where edges are most likely, and
is computed from the squared error in fitting a mo-
tion edge using the linear coefficients (Fig. 2, “Confi-
dence”). The bottom images in Fig. 2 show estimates
for the orientation of the edge as well as the horizontal
and vertical velocity differences across the edge at all
points wherec(x) > 0.5.

While the method provides good approximate es-
timates of motion boundaries, it produces false pos-
itives and the parameter estimates are corrupted by
noise, with estimates of disocclusion being more re-
liable than those of occlusion. Also, the localization
of the boundary using the confidence measure is rela-
tively crude, and since the detector does not provide a
foreground assignment, it does not predict the veloc-
ity of the occluding edge. Despite these weaknesses,
it is a relatively straightforward, but sometimes error
prone, source of information about the presence of mo-
tion discontinuities. This information can be used to
significantly constrain the regions of the state space
that we need to sample with the particle filter.

Formulating the Initialization Prior. When initializ-
ing a new state we use the distribution of confidence
valuesc(x) within a neighborhood to first decide on
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the motion type (translation or motion boundary). If a
motion boundary is present, then we expect some frac-
tion of confidence values,c(x), within our region of
interest, to be high. We therefore rank order the confi-
dence values within the region and let the probability
of a motion boundary state be the 95th percentile confi-
dence value, denotedC95. Accordingly, the probability
of initializing a translation model is 1− C95.

When we wish to initialize (sample) a motion bound-
ary state, we assume that actual boundary locations are
distributed according to the confidence values in the re-
gion; i.e., the boundary is more likely to pass through
pixel locations with largec(x). Sampling from the
confidence values gives potential boundary locations.
Given a boundary position, the low-level detector pa-
rameters at that position provide estimates of the edge
orientation and the image velocity on each side, but
they do not specify which side is the foreground. Thus,
the probability distribution over the state space, con-
ditioned on the detector parameters and boundary lo-
cation, will have two distinct modes, one for each of
the two possible foreground assignments. We take this
distribution to be a mixture of two Gaussians which are
separable with covariance matrices 2.25σ 2

u I2 for the ve-
locity axes, and variances 16σ 2

θ for the orientation axis
and 4σ 2

d for the position axis. The variances are larger
than those used in the temporal dynamics described in
Section 3 because we expect greater noise from these
low-level estimates.

In generating a translational model, we first sam-
ple a spatial position according to the distribution of
1 − c(x). Locations within the region that are sam-
pled in this way are likely to correspond to translation
rather than a motion boundary model. The distribution
over translational velocities, given the detector esti-
mate at the sampled spatial position, is then taken to be
a Gaussian distribution centered at the mean velocity
estimate of the detector at that location. The Gaussian
distribution has a covariance matrix of 2.25σ 2

u I2.

5.4. Algorithm Summary and Model Comparison

Initially, at time 0, a set ofS samples is drawn from
the initialization prior. Their likelihoods are then com-
puted and normalized to give the weightsw(i )0 . At each
subsequent time, as shown in Fig. 3, the algorithm re-
peats the process of sampling from the combined prior,
computing the likelihoods, and normalizing.

From the non-parametric, sampled approximation to
the posterior distribution,p(st | EZt ), we can compute

Figure 3. Particle filtering algorithm. State samples are drawn from
a mixture of the temporal prior and the initialization prior. The tem-
poral prior combines information from the posterior probability dis-
tribution at the previous time instant with the temporal dynamics
of the motion models. The initialization prior is derived from the
responses of low-level motion boundary detectors within an image
region. The parameters of a state determine the image motion within
a neighborhood as specified by the generative models for each type
of motion. These generative models assume brightness constancy
and hence specify how to compute the likelihood of a particular state
in terms of the pixel intensity differences between the image region
at one time instant and a warped version of the image at the next
time instant. Normalizing the likelihood values forS states gives
an approximate, discretely sampled, representation of the posterior
probability distribution at the next time instant. In this way the poste-
rior distribution is predicted and updated over time, integrating new
information within the Bayesian framework.

moments and marginalize over various parameters of
interest. In particular we can compute the expected
value for some state parameter,f (st ), as

E[ f (st ) | EZt ] =
S∑

n=1

f
(
s(n)t

)
w
(n)
t .

However, in doing so, care needs to be taken be-
cause the posterior will often be multimodal, in which
case such expectations are often not very useful. With
the motion models used here, it is common to find three
distinct modes in the posterior distribution. One mode
is often associated with the best fitting smooth motion
model. The other two modes are associated with the
motion boundary model. These two boundary models
typically differ in orientation byπ , reflecting two oppo-
site foreground assignments. Accordingly, for model
comparison and for displaying the results, we first iso-
late these three modes.

For displaying results, we compute the mean state for
each principal mode by computing the expected value
of the parameters for the mode divided by the sum of
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all normalized likelihoods for that mode. These mean
states can be overlaid on the image, as shown below.
Deciding which model type is most likely within a re-
gion can be performed by comparing the sum of the
likelihoods for each model type. Given the way the
particle filter allocates samples, this is not necessar-
ily the most reliable measure of how well each model
fits the data. If the likelihood of a model drops rapidly
between two frames, the distribution may temporar-
ily have many low likelihood states allocated to that
portion of the state space. The combined likelihood of
these states may easily be greater than the likelihood
of a new model that does a much better job of fitting
the data. Instead, we therefore compute and compare
the likelihoods of the mean models to determine which
model type is most likely.

6. Experimental Results

We illustrate the method with experiments on 8-bit nat-
ural image sequences. For these experiments, the stan-
dard deviation of the image noise wasσn = 7.0. The
standard deviations for the temporal dynamics were
empirically determined and remained the same in all
experiments. We used circular image regions with a 16
pixel radius and used 3500 state samples to represent
the posterior probability distribution in each region. A
few regions were chosen to illustrate the performance
of the method and its failure modes.

Because the particle filter provides us with an ap-
proximation to the posterior distribution over models
and model parameters, rather than a single best state,
it can be difficult to visualize the results. Here, we
rely on marginalized distributions to show how proba-
bility distributions over specific state parameters vary
through time. In addition, as shown in Fig. 4, on each
image frame we display the mean state of the most
likely motion models. The smooth motion (transla-
tion) models are shown as empty circles (e.g., Fig. 4,
region B). For motion boundary models we sample
pixel locations from the generative model of the mean
state; pixels that lie on the foreground are white and
background pixels are black. The position and orienta-
tion of the edge are depicted by the boundary between
the white and black sides of the region. The occluded
pixels are not color-coded (e.g., Fig. 4, region D).

These experiments are designed to show the general
behavior of the method. More work must be done to
integrate these techniques into a complete system for
motion estimation and analysis.

Figure 4. Flower Garden results at frame 2. Most likely mean
models are overlaid on the image. Translational models are shown as
empty circles (as in region B). Motion boundary models are shown as
filled disks (as in region D). In this case, the position and orientation
of the boundaries are depicted by the edges between the white and
black sides. The white and black sides denote the foreground and
background sides of the model respectively.

Figure 5. Low level detector responses for one pair of frames in
the Flower Garden sequence.

6.1. Flower Garden Sequence

The Flower Garden Sequence shown in Fig. 4 contains
a fast moving tree in front of a slower moving, complex,
background. The low-level detector responses for the
initialization prior are shown in Fig. 5. The detectors
find the occluding and disoccluding sides of the tree and
provide reasonable estimates of the edge orientation
and the velocities on either side of the boundary. One
can see from the confidence map in Fig. 5, however,
that their localization is not precise.

Results of the particle filter from frames 2 through 7
are shown in Fig. 6. Regions C, D, E, and F correctly
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Figure 6. Flower Garden results (frames 2–7). Most likely models are drawn on images and low-level confidence maps. Marginal distributions
over foreground velocity in region D also shown.
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model the tree boundary (both occlusion and disoc-
clusion) and, after the first three frames, correctly as-
sign the tree trunk as the foreground side. Initially, in
frame 2, regions C and D detect a motion boundary,
but region D has incorrectly assigned the foreground
to the flower garden rather than the tree. As discussed
above, this is not surprising because we expect the cor-
rect foreground assignment to require more than two
frames. By the third frame, the most likely mode of the
posterior corresponds to the correct assignment of the
foreground. Regions E and F are initially labeled with
the smooth motion model since the tree boundary is
just touching the right-most edge of the regions. These
regions switch to boundary models in the next frame
as the tree edge enters the regions. Motion boundary
models then remain in all four regions along the tree
trunk boundary until the last frame when the edge of
the tree leaves the regions.

Beneath each of the images in Fig. 6 are plots that
show the marginal posterior distributions for the hor-
izontal component of the foreground velocity for re-
gion D. Initially, at frame 2, there are two clear modes
in the distribution. One mode corresponds to a fast
speed, approximately equal to the image speed of the
tree trunk. The other mode corresponds to the slower
speed of the flower garden. These two modes reflect
the foreground ambiguity, where there is evidence for
assigning the foreground to both sides. In frame 2 it is
the case that the probability of assigning the foreground
to the flower garden is higher. However, with the ac-
cumulation of evidence through time, and because this
foreground assignment is not consistent with the mo-
tion of the boundary, the probability of assigning the
foreground to the flower garden decreases, while the
probability of assigning the foreground to the tree trunk
increases. In frame 3 the probability of assigning the
foreground to the tree trunk is slightly larger, and hence
the foreground assignment in region D switches be-
tween frame 2 to frame 3. As time continues the prob-
ability associated with this correct foreground assign-
ment increases to become the dominant interpretation.

Region B corresponds to translation and is correctly
modeled as such. While translation can be equally well
accounted for by the motion boundary model, the low-
level detectors do not respond in this region and hence
the distribution is initialized with more samples corre-
sponding to the translational model. Region A is more
interesting; if the sky were completely uniform, this
region would also be modeled as translation. Note,
however, that there are significant low-level detector

Figure 7. Pepsi Sequence. Discontinuity (filled) and transla-
tional (empty) models shown superimposed on frame 1 with labeled
regions.

responses in this area (Fig. 5) due to the fact that the
sky is not uniform. The probabilities of the translation
and motion boundary models are roughly equal here
and the displayed model flips back and forth between
them. For the motion boundary model, the orientation
corresponds to the orientation of the tree branches in
the region.

6.2. Pepsi Sequence

Figure 7 shows the results of applying the particle fil-
ter to the Pepsi can sequence over two frames. The
regions in the figure highlight various issues raised by
the approach. Note that each region has the correct
model assignment (translation or boundary) and that
the boundary models have the correct foreground as-
signment (the surface of the can). Also note that after
only two frames the estimate of boundary position in
Region A is not very accurate and that the boundary
orientations in Regions E and D are incorrect.

To understand the complexity of the posterior distri-
bution in this case it is useful to examine some of the
marginal distributions. Figure 8 shows the marginal
probability distribution for the horizontal component
of the foreground velocity in region A. The top-left
plot shows the marginal distribution at frame 1, which
is, in fact, composed of two significant modes, associ-
ated with different foreground assignments. The num-
bered graphs show the marginal distributions of the
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Figure 8. Pepsi Sequence. The marginal distribution of the hori-
zontal component of the foreground velocity in region A is a mixture
of two distributions. Its evolution over time is shown every other
frame (1–9).

Figure 9. Pepsi Sequence. Marginal posterior probability distribu-
tions for specific state parameters in the regions labeled according to
Fig. 7.

Figure 10. Pepsi Sequence. (top) Mean states for most likely models at frames 2, 4, 6, and 8. (bottom) Enlarged image of region A.

individual modes at several different times. Note that
the two models are approximately centered at speeds
of −1.7 and−0.8 pixels per frame, which correspond
to the image velocities of the can and of the surface be-
hind the can. The closeness of the two solutions helps
to show how individual modes that correspond to the
different interpretations can be difficult to resolve in
the marginal distribution. It is also interesting to note
that, as time evolves, the difference between the two
modes becomes more pronounced as the distribution
becomes dominated by the true interpretation that the
foreground corresponds to the Pepsi can surface.

Other marginal distributions are shown in Fig. 9.
The foreground/background ambiguity is pronounced
in region B. The image motion is parallel to the mo-
tion boundary and hence we cannot disambiguate the
foreground and background locally. The result is a
bi-modal marginal distribution for the edge orienta-
tion. In region C the particle filter detects the smooth
motion model and there no ambiguity evident in this
marginal distribution over the horizontal component of
the translation. The right-most plot in Fig. 9 shows the
marginal probability distribution for edge location,d,
in region D. In this case, the distribution is also non-
Gaussian and is skewed to one side of the boundary.

Figure 10 shows the tracking behavior of the method.
Note that in region A, the edge is tracked correctly
and, in the detail, we see that the accuracy of the edge
boundary location improves over time. Similarly in
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region D, the correct foreground assignment is made to
the soda-can surface and the edge is accurately tracked.
Region C is correctly classifed as translational motion
throughout the sequence.

Note that the foreground/background ambiguity re-
mains for region B even over many frames. In frame 6
we see the most likely mode switch to the incorrect
foreground assignment and then switch back to the cor-
rect assignment in frame 8. As was illustrated in Fig. 9
the distribution has two modes of similar probability
corresponding to the two interpretations. In general,
propagation of information from neighboring distribu-
tions would be needed to resolve such ambiguities.

Finally, it is important to note that the particle filter
does not detect and track motion boundaries in all cases
as desired. For example, consider region E in Fig. 10.
A motion boundary is detected in this region, but in
the first frame, the most likely mode does not place
the edge in the correct location at the correct orienta-
tion. Over time, the estimate of the edge orientation
improves but the region switches to the incorrect fore-
ground assignment. This behavior may be the result
of low image contrast in this region and the similar-
ity of the image velocities of the two surfaces. In any
case, improving these results by incorporating addi-
tional sources of information in the likelihood compu-
tation, or by introducing some degree of spatial prop-
agation between neighboring regions, remains a topic
for future research.

7. Conclusions

Research on image motion estimation has typically ex-
ploited limited models of spatial smoothness. Our goal
is to move towards a richer description of image motion
using a vocabulary of motion primitives. Here we de-
scribe a step in that direction with the introduction of an
explicit non-linear model of motion boundaries and a
Bayesian framework for representing a posterior prob-
ability distribution over models and model parameters.
Unlike previous work that attempts to find a maximum-
likelihood estimate of image motion, we represent the
probability distribution over the parameter space using
discrete samples. This facilitates the correct Bayesian
propagation of information over time when ambiguities
make the distribution non-Gaussian.

The applicability of discrete sampling methods to
high dimensional spaces, as explored here, remains an
open issue. We find that an appropriate initialization
prior is needed to direct samples to the portions of

the state space where the solution is likely. We have
proposed and demonstrated such a prior here but the
more general problem of formulating such priors and
incorporating them into a Bayesian framework remains
open.

This work represents an early effort in what we hope
will be a rich area of inquiry. In particular, we can now
begin to think about the spatial interaction of these local
motion models. For this we might formulate a proba-
bilistic spatial “grammar” of motion features and how
they relate to their neighbors in space and time. This
requires incorporating the spatial propagation of proba-
bilities in our Bayesian framework. This also raises the
question of what is the right vocabulary for describing
image motion and what role learning may play in for-
mulating local models and in determining spatial inter-
actions between them (see Freeman and Pasztor, 1999).
In summary, the techniques described here (generative
models, Bayesian propagation, and sampling methods)
permit us to explore problems within motion estimation
that were previously inaccessible.
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Note

1. Physical situations that violate this assumption include rotating
objects, such as a baseball where the edge of the ball moves in one
direction, but, due to the spin on the ball, the surface texture of
the ball moves in another direction. However, assuming that the
edge moves with the foreground velocity, as we do in this paper,
allows one to handle most cases of interest.
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