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Abstract

Phase�based methods for extracting binocular dispar�
ity are discussed� including phase�di�erence methods
and phase�correlation� A third method is also described
that combines some of their properties� and appears
consistent with recent physiological data�

� Introduction

This paper outlines a method for extracting binocu�
lar disparity� It borrows from two existing approaches�
namely� phase�di�erence methods ���� �� �� ��	� and
phase�correlation methods �
� �� ��	� and was designed
to be consistent with recent physiological data ���	�
We begin with a review of phase�di�erence and

phase�correlation methods� They are both shown to
be instances of the same basic approach� di�ering
in the form of band�pass lters� stability constraints�
and the control strategy� where phase�correlation looks
more like a voting scheme than a coarse�to�ne ap�
proach� From this perspective� noting the advan�
tages and disadvantages of both methods� we outline
a new model that combines desirable properties of
both� namely� the robustness and reliability of wavelet�
based phase�di�erences� and the voting strategy of
phase�correlation� The approach is also computation�
ally simple� being composed primarily of linear opera�
tions throughout� with no explicit coarse�to�ne control
strategy�

� Phase�Di�erence Methods

Central to phase�based methods are the lters that
decompose the images into band�pass signals� Perhaps
the easiest way to extract phase is to use complex�
valued quadrature�pair lters� the real and imaginary
parts of which are ��� radians out of phase� with iden�
tical amplitude spectra� Often one assumes that the
real and imaginary parts of the kernel are even and
odd�symmetric� but this is not strictly necessary�

�This paper was presented at IEEE International Conference
on Systems� Man and Cybernetics� San Antonio� October �����
pp� �����

Let Kj�x� be the impulse response of the jth lter��

and let the complex�valued outputs of its convolution
with the left and right images� Il�x� and Ir�x�� be

Ol�x� � Re�Ol�x�	 � i Im�Ol�x�	

Or�x� � Re�Or�x�	 � i Im�Or�x�	

where Re�z	 and Im�z	 denote the real and imaginary
parts of z� Amplitude � and phase � constitute a polar
representation of the real and imaginary parts in the
complex plane�

Ol�x� � �l�x� e
i�l�x� � Or�x� � �r�x� e

i�r�x� ���

where amplitude is the magnitude of response� �l�x� �
jOl�x�j� and the phase denotes the argument of the com�
plex response� �l�x� � arg�Ol�x�	� Here� ��x� and ��x�
are often called instantaneous phase and amplitude to
emphasize their local nature� Also useful for phase�
di�erence methods is the concept of instantaneous fre�
quency� usually dened as the derivative of instanta�
neous phase with respect to spatial position ���	�

��l�x� �
d�l�x�

dx
� ��r�x� �

d�r�x�

dx
���

This provides the frequency of the band�pass signal at
each spatial position�
Phase�based matching methods dene disparity as

the shift necessary to align the phase values of band�
pass ltered versions of the two signals in ���� To un�
derstand the reasons for the use of phase it is helpful
to examine the typical behaviour of band�pass signals�
Fig� � shows the real part of the output of a one octave
Gabor lter applied to a sample of white noise� along
with its amplitude and phase components� Not surpris�
ingly� such outputs are well modelled in local regions by
a sinusoidal signal with a slowly varying amplitude and
a slowly varying frequency that remains close to the
lter�s tuning frequency ��	� Among other things� as
shown in Fig� �� this sinusoidal behaviour means that
phase is predominantly linear� With a purely sinusoidal
signal� phase will be perfectly linear�

�Although the mathematical development is presented in �d
assuming epipolar lines� the implementation below is in 	d�
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Figure �� Phase Linearity� �top� Response of cosine�
Gabor �lter convolved with white noise� �bottom� Am�
plitude and phase parts of response�

The importance of phase linearity follows from the
fact that displacements of a linear function are easy
to estimate� For instance� with sinusoidal inputs and
disparity d� the lter outputs would be

Ol�x� � �ei��x � Or�x� � �ei���x�d� � ���

The left and right phase functions are then �l�x� � ��x
and �r�x� � ���x� d�� so disparity is given by

d �
�l�x�� �r�x�

��
���

Of course� phase is only uniquely dened in the interval
���� �	� It is expected to wrap around from � to ��
every wavelength� and therefore we can only measure
disparities to half a wavelength�
With general inputs we still expect phase to be pre�

dominantly linear ��	� and hence reliable approxima�
tions to disparity are available from phase di�erences
and the instantaneous frequency of the signal� The cor�
responding disparity estimator may take the form ��	

d �
��l�x�� �r�x�	��
������l�x� � ��r�x��

���

where ��	�� denotes the principal part of � that lies
between �� and �� The size of the neighbourhood
within which phase is monotonic determines the range
of disparities that can be measured uniquely by the es�
timator� Filter outputs containing short wavelengths

can measure only small disparities while those with
longer wavelengths can handle larger disparities�� This
typically leads to some form of coarse�to�ne strat�
egy� in which an initial guess is provided from coarser
scales with which the images at the current scale are
preshifted �warped� to bring them into registration
within the appropriate domain of convergence �e�g�
���� �� �	�� The wavelength at the coarsest scale should
be more than twice the largest expected disparities�
There are several ways to measure phase di�erences�

One can compute them explicitly� or one can take the
complex�valued product of left output and the complex
conjugate of the right ��	�

C�x� � Ol�x�O
�

r�x�

� �l�x��r�x� �cos���x� � i sin���x�	 ���

where ���x� � �l�x�� �r�x�� The real and imaginary
parts of C�x� can be computed directly from the real�
valued lter outputs as follows�

�l�r cos�� � Re�Ol	 Re�Or	 � Im�Ol	 Im�Or	 ��a�

�l�r sin�� � Im�Ol	Re�Or	 � Re�Ol	 Im�Or	 ��b�

Interestingly� physiological data suggest that the terms
on the right side of ��� may model the basic binocular
interaction of simple cells� while their sums in ��a� and
��b� model complex�cell responses ���	�
A second major reason for the success of phase�based

methods is the stability of phase with respect to ge�
ometric deformations and contrast variations between
left and right views ��	� Although most methods for
estimating disparity are derived from a model of image
translation� the importance of robustness with respect
to a�ne deformations� like those that occur regularly
with �d surfaces� should not be overlooked�
Although usually stable� it can also be shown that

phase exhibits a common form of instability where it is
very sensitive to changes in spatial position and scale
between the left and right signals� This instability oc�
curs in the neighbourhoods of phase singularities� where
the amplitude of the signal goes through the origin
in the complex plane� and may be detected with con�
straints on the instantaneous frequency and the ampli�
tude derivative of the lter output ��	� The detection
and removal of measurements that occur in regions of
phase instability is an important ingredient of current
phase�di�erence methods ��� �	�

�Note that gradient�methods applied to the real�valued 
lter
output directly �e�ectively linearizing the outputs have an even
narrower disparity range since the 
lter outputs are linear only
in narrow regions about the zero�crossings�



� Phase�Correlation

Phase�correlation methods use Fourier phase for sig�
nal registration �
� �� ��	� The method is often derived
assuming pure translation between two images�

Ir�x� � Il�x� d� � �
�

The Fourier shift theorem tells us that their Fourier
transforms satisfy �Ir��� � �Il���e

�id� � Their amplitude
spectra are identical� Al��� � Ar���� and their phase
spectra di�er by d�� i�e�� �r��� � �l��� � d��
Taking the product of the left Fourier spectra and

the complex conjugate of the right� and then dividing
by the product of their amplitude spectra� we obtain

�Il��� �I�r ���

Al���Ar���
�

Al���Ar���ei��l�����r����

Al���Ar ���
� ei�d ���

Here� ei�d is a sinusoidal function in the frequency do�
main� and therefore its inverse Fourier transform is an
impulse� located at the disparity d� that is� ��x � d��
Thus� in short� phase�correlation methods measure dis�
parity by nding peaks in

F��

�
�Il��� �I�r ���

Al���Ar���

�
����

In practice� it is desirable to measure disparity lo�
cally� Accordingly� it is common to use windowed re�
gions of the left and right images rather than the orig�
inal images� The windows must be considerably larger
than the expected displacements if no initial registra�
tion information is available� The large windows ensure
that there is su�cient information in common in the
two windows that can then be used for matching�
The reason for reviewing phase�correlation here is to

rst show its relationship to phase�di�erence methods�
and to borrow some of its properties in designing a new
approach� In comparing phase correlation to phase�
di�erence methods� note rst that a windowed Fourier
transform is in fact a set of linear band�pass lters� To
see this� consider the windowed Fourier transform of a
signal I�x�� with the window centred at x��

F �W �x� x��I�x�	 �

Z
W �x� x��I�x�e

�i�xdx

� e�i�x�R�x�� ����

where R�x� � H�x�� I�x� is the convolution of the in�
put with a lter H�x� � W ��x�ei�x� The Fourier coef�
cient� at frequency �� of the windowed Fourier trans�
form is equal to the output of the lter H�x� tuned to
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Figure �� Wavelets and Windowed FT� �top� Typi�
cal kernels from a wavelet transform� �bottom� Typical
kernels from a windowed Fourier transform�

the same frequency �� at the location of the window�
The lter is a sinusoidally modulated window �like a
Gabor function�� However� in contrast to the wavelet
lters typically used in phase�di�erence methods� with
constant octave bandwidths� the spatial extent of the
implicit lters here does not depend on the frequency
of the modulation as illustrated in Fig� �� and thus they
have a constant linear bandwidth ��	�

By viewing the windowed Fourier transform as a set
of lters� one can then see that the phase di�erences im�
plicit in ���� are analogous to those provided in phase�
di�erence methods in ���� But the product in ���� is
a function of frequency� in e�ect� it represents a set of
phase di�erences� one for each lter� If one were to ex�
tract these phase di�erences explicitly from the product
in ����� divide by frequency� and obtain disparity esti�
mates� then this would be a phase�di�erence method�
but with a particular set of lters�

However� phase�correlation does not involve explicit
phase di�erences� instantaneous frequencies� explicit
disparity estimates� nor does it appear to involve a
coarse�to�ne strategy which is common to many dis�
parity techniques� Instead� phase�correlation uses a
voting scheme to nd the disparity� If one views the
Fourier transform as a decomposition of a function
into a sum of sinusoids� then the inverse Fourier trans�
form amounts to the reconstruction of the function as
a weighted sum of sinusoids� Here� the inverse Fourier
transform is a sum of phase�shifted sinusoidal functions�
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Figure �� Voting Scheme� Phase�shifted sinusoids in
the inverse Fourier transform act as voting functions
�top�� where the peaks coincide in the sum to form a
single peak �bottom��

each of which has unit magnitude owing to the normal�
ization in �����

F��
h
ei�����

i
�

Z
ei����� ei�x d�

�

Z
�cos��x������� �

i sin��x�������	 d� ����

One can view this as a voting scheme in which each
band�pass channel votes in a sinusoidal manner� where
the locations of the peaks are determined by the inte�
rocular phase di�erences� Ideally� as in Fig� �� there
will be a single disparity at which peaks coincide across
a wide range of frequencies to form a distinct peak�
Finally� it may be interesting to note that phase�

correlation also resembles a correlation technique in
which the magnitude of the cross�correlation at each
frequency is normalized to unity ���	� In other words�
the product of the Fourier spectra in ���� is equiva�
lent to the cross�correlation of the two inputs� but here
they have been prewhitened by normalizing the ampli�
tude spectra� This e�ectively enhances the in�uence of
the higher frequencies in the cross�correlation� yielding
a sharper peak in ideal cases�

� Discussion

Phase�di�erence approaches have a variety of appeal�
ing properties� many of which are the result of research
in recent years� Some of the main advantages result
from the use of local wavelet lters and the stability
constraints that signicantly improve the robustness of
the measurements� The coarse�to�ne control strategy�
although common� is often thought to be somewhat un�

satisfactory� If the coarsest scale yields a poor estimate�
or if phase at intermediate scales is unstable� then ner
channels may receive a poor initial guess� in which case
the rest of the process may converge to an incorrect dis�
parity� In addition� the warping required at each level
is not always convenient for parallel computation�

As a biological model there are further di�culties
with phase�di�erence methods� Although the Ohzawa�
DeAngelis�Freeman model ���	 appears to compute the
terms of the complex�valued product in ��� according
to the receptive eld combinations in ��a� and ��b��
there is little or no physiological evidence for explicit
representations of phase di�erences� instantaneous fre�
quency� or disparity for that matter� In addition� there
is growing evidence against coarse�to�ne control strate�
gies in the psychophysical literature �eg� ���	��

Phase�correlation� by comparison� o�ers an interest�
ing alternative� In particular� the voting scheme de�
termines disparity based on the consistency of informa�
tion at di�erent scales and orientations� This does away
with the coarse�to�ne strategy� and allows matches in
which all band�pass channels are shifted by more than
��� radians� Thus� this approach could in principle
succeed where a coarse�to�ne approach might fail�

On the other hand� there are a variety of unappeal�
ing properties of phase�correlation� One problem arises
from the windowed Fourier transform as the initial set
of lters� Because the window size of the e�ective lters
is xed� the higher frequencies will have very narrow
bandwidths compared to lower frequencies� From the
results in ��	 this implies that higher frequency chan�
nels will be very sensitive to even small scale changes
between left and right images� Another concern with
such lters is that the spatial resolution does not im�
prove with high frequencies as it would with wavelet
lters� Because the window sizes in phase�correlation
methods are kept large to ensure enough structure for
reliable matching� the spatial resolution of the disparity
map will be coarse�

Two further problems with phase�correlation concern
the voting strategy� First� all frequencies are weighted
equally in ����� even though higher frequency channels
are likely to be more sensitive to geometric deforma�
tions between views and to signal�to�noise problems�
Unfortunately� phase�correlation methods do not ex�
ploit phase stability constraints like those used �at all
scales� in phase�di�erence methods� A second concern
with ���� is that the frequencies of the sinusoidal vot�
ing functions are determined by the tuning frequencies
of the implicit lters rather than the instantaneous fre�
quency of their responses� This implies signicant er�



rors for larger disparities� and may cause the greatest
problems at low frequencies� where the bandwidths are
large� so that instantaneous frequency can di�er signif�
icantly from the lter�s tuning frequency�

� Local Weighted Phase�Correlation

In what follows we outline a local version of phase
correlation that combines the basic robustness of phase�
di�erence methods with the voting strategy of phase�
correlation� The initial Fourier transforms are replaced
with a family of quadrature�pair lters tuned in both
orientation and scale with a constant octave bandwidth�
The product of left and right lter outputs is used to ob�
tain the phase di�erences as in phase�correlation meth�
ods� However� instead of assuming purely sinusoidal
voting functions� we construct sampled versions of them
using a series of preshifts of one of the two images� The
voting functions are then summed across the di�erent
lters� from which the disparity measurements are ex�
tracted� The following paragraphs describe these ideas
in more detail�
The initial quadrature�pair lters are currently im�

plemented with a Gaussian pyramid� each scale of which
is then decomposed using oriented quadrature�pair l�
ters� We then have access to several oriented band�pass
lter responses at each scale of the pyramid�
Instead of taking the normalized product of left and

right outputs directly as in ���� or ���� here we intro�
duce a small amount of smoothing ��	� yielding

Cj�x� 	 � �
W �x�� �Ol�x�O

�

r�x�	 �	p
W �x� � jOl�x�j�

p
W �x�� jOr�x�	 �j�

����

where W �x� is a small� localized window� 	 acts as a
preshift of the right lter output� and the subscript j
refers to the jth lter� whose output is used to com�
pute Cj�x� 	 �� Peaks in the real part of Cj�x� 	 � act as
votes for candidate disparities 	 between left and right
lter outputs at location x� Rather than assume per�
fectly sinusoidal voting functions as in ���� and Fig� ��
preshifts 	 of the right signal are introduced so that
the e�ective voting function is sampled explicitly� Be�
fore considering the integration of functions Cj�x� 	 �
and the extraction of disparity� we rst outline some of
their properties�
The rst important property of Cj�x� 	 � is that its

phase� like the phase of C�x� in ���� is a phase di�erence
that encodes the shift required to match the phases of
the left and right band�pass signals� More precisely�
one can show that the phase of Cj�x� 	 � at location x�
and preshift 	�� corresponds to the phase of the com�
plex scalar z needed to minimize the squared di�erence

between the left signal and a phase�shifted version of
the right signal�Z

W �x� x�� jOl�x�� z Or�x� 	��j
� dx ����

It is interesting to contrast this with the more tradi�
tional approach that minimizes the squared di�erence
between the left signal and a translated version of the
right� Z

W �x� x�� jOl�x� �Or�x� s�j� dx ����

the minimum of which occurs at the shift s that maxi�
mizes the normalized cross�correlation of Ol and Or�
The second important property of Cj�x� 	 � is that

its magnitude �bounded between � and �� provides a
condence measure for the goodness of t between the
phase�shifted left and right signals ��	� To see this�
rewrite the convolution in ���� at some location as a
local spatial average of vectors in the complex plane
�ignoring the window weights for convenience��

Cj�x�� 	�� �

P
�l�re

i��pP
��l
pP

��r
����

where each vector has magnitude �l�r and orientation
��� This vector sum will be large in magnitude when
there is little or no orientation variation among the vec�
tors� It will be small when the orientations vary signif�
icantly� and therefore cancel one another when the vec�
tors are summed� In this way the magnitude of Cj�x� 	 �
depends on the local consistency of the phase di�er�
ences within the window� and replaces the more explicit
stability constraints used in phase�di�erence methods�
When phase in one or both views varies rapidly as a
function of spatial position� so will the phase di�erence�
thereby causing the magnitude of Cj�x� 	 � to decrease�
Furthermore� notice that when all phase di�erences

are the same� the magnitude of ���� equals the cross�
correlation coe�cient between the two local amplitude
components of the lter output� Thus the magnitude
of Cj�x� 	 � depends on the cross�correlation of the am�
plitude components of the left and right lter outputs�
and on the local stability �consistency� of the phase dif�
ference� This means that the voting functions will not
all have unit magnitude�
A further point of interest is that Cj�x� 	 � is expected

to be band�pass in 	 and low�pass in x� As a conse�
quence it can be subsampled along both dimensions at
a rate that depends on their linear bandwidths� which
are expected to be similar� Coarse scales can be sam�
pled sparsely in 	 and in x� However� in order to inte�
grate information across di�erent lter outputs it will
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Figure �� Behaviour of S�x� 	 � �with random�dot�
stereograms�� Real �top� and imaginary �bottom�
parts of S�x� 	 �� as functions of 	 � at � spatial positions�
with disparities of � pixel �left�� and 	 pixels �right��

be convenient to interpolate the Cj�x� 	 � at a common
set of positions x and disparities 	 � Because Cj�x� 	 �
is band�pass in 	 with frequencies close to the lter�s
tuning frequency� it is easiest to demodulate the signal�
then interpolate the corresponding low�pass signal� fol�
lowed by modulation to undo the initial demodulation�

Finally� as mentioned above� the �d functions
Cj�x� 	 � give us one voting function from each lter out�
put� Although there are several interesting ways to use
such functions to measure interocular disparity� here
we consider the simplest approach� which� like phase�
correlation methods� involves a simple summation�

S�x� 	 � �
X
j

Cj�x� 	 � ����

Near the true disparity we expect to nd a zero in the
imaginary part of S�x� 	 � and a peak in its real part�
Away from the true disparity� we expect the magnitude
of the functions Cj�x� 	 � to decrease� and we expect the
phase di�erences to vary across the di�erent scales and
orientations of the lters� so that the net result of the
sum should be relatively small� Examples of S�x� 	 �
from our implementation� as a function 	 at two po�
sitions in a random�dot�stereogram are shown in Fig�
��

� Implementation Results

The results of a simple implementation are given be�
low� At present we use � scales of a Gaussian pyramid�
subsampled by a factor of � horizontally and vertically
at each level� Three quadrature�pair lters are then ap�
plied at each level� tuned to orientations ��� ���� and
����� where � is vertical� The lters have an octave
bandwidth of about ��� octaves� and are sampled with
� samples per wavelength of centre frequency�

The voting functions Cj�x� 	 � are computed using a
Gaussian window W �x� with a standard deviation of
one half a wavelength of the lter�s tuning frequency�
Preshifts are computed at one pixel intervals on the
subsampled lattice at each scale� which also means a
sampling rate of about � samples per wavelength of the
expected modulation in 	 � Remember that Cj�x� 	 �
will be low�pass in space and band�pass in disparity�
with similar linear bandwidths in each dimension�

To compute S�x� 	 �� the voting functions Cj�x� 	 �
are interpolated back to the resolution of the original
image� The spatial interpolation is done by constant
interpolation �replicating pixel values�� while interpola�
tion in 	 is done using demodulation� linear interpola�
tion of the low�pass signal� followed by modulation�

Given S�x� 	 �� maxima �peaks� in its real part serve
as crude estimates of disparity �to pixel accuracy�� Sub�
pixel accuracy is obtained using linear interpolation of
the zero�crossing in the imaginary part of S�x� 	 � that
is nearest to the maxima in the real part�

Disparity estimates from two binocular pairs are
shown in Fig� � and �� Fig� � is a random�dot stere�
ogram with � levels of disparity� namely� �� �� and �
pixels� Fig� � shows one frame from the SRI Tree se�
quence �courtesy of SRI�� and the disparities computed
using frames � and � from the sequence� involving dis�
placements up to � or � pixels�

� Summary

We outline a new method for extracting binocular
disparity that combines the robustness of wavelet�based
phase�di�erence methods ���� �� �� ��	� and the basic
control strategy of phase�correlation methods �
� �� ��	�
It is computationally simple� being composed primarily
of linear operations throughout� with no explicit coarse�
to�ne control strategy�

Acknowledgements	 Comments and sugges�
tions from L� Haglund� D� Heeger� A� Jepson� and H�
Wagner have helped shape these ideas� This research
has been supported by grants from Queen�s University�
NSERC Canada� and ITRC�



Figure �� Random�Dot Stereogram� �left� Input�
�right� Disparity estimates�
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