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Abstract

Generating temporally coherent high fidelity video is an important milestone in
generative modeling research. We make progress towards this milestone by propos-
ing a diffusion model for video generation that shows very promising initial results.
Our model is a natural extension of the standard image diffusion architecture, and
it enables jointly training from image and video data, which we find to reduce the
variance of minibatch gradients and speed up optimization. To generate long and
higher resolution videos we introduce a new conditional sampling technique for
spatial and temporal video extension that performs better than previously proposed
methods. We present the first results on a large text-conditioned video generation
task, as well as state-of-the-art results on established benchmarks for video predic-
tion and unconditional video generation. Supplementary material is available at
https://video-diffusion.github.io/.

1 Introduction

Diffusion models have recently been producing high quality results in image generation and audio
generation [e.g. 28, 39, 40, 16, 23, 36, 48, 60, 42, 10, 29], and there is significant interest in validating
diffusion models in new data modalities. In this work, we present first results on video generation
using diffusion models, for both unconditional and conditional settings.

We show that high quality videos can be generated using essentially the standard formulation of
the Gaussian diffusion model [46], with little modification other than straightforward architectural
changes to accommodate video data within the memory constraints of deep learning accelerators.
We train models that generate a fixed number of video frames using a 3D U-Net diffusion model
architecture, and we enable generating longer videos by applying this model autoregressively using a
new method for conditional generation. We additionally show the benefits of joint training on video
and image modeling objectives. We test our methods on video prediction and unconditional video
generation, where we achieve state-of-the-art sample quality scores, and we also show promising first
results on text-conditioned video generation.

2 Background

A diffusion model [46, 47, 22] specified in continuous time [53, 48, 10, 28] is a generative model
with latents z = {zt | t ∈ [0, 1]} obeying a forward process q(z|x) starting at data x ∼ p(x). The
forward process is a Gaussian process that satisfies the Markovian structure:

q(zt|x) = N (zt;αtx, σ
2
t I), q(zt|zs) = N (zt; (αt/αs)zs, σ

2
t|sI) (1)

where 0 ≤ s < t ≤ 1, σ2
t|s = (1 − eλt−λs)σ2

t , and αt, σt specify a differentiable noise schedule
whose log signal-to-noise-ratio λt = log[α2

t /σ
2
t ] decreases with t until q(z1) ≈ N (0, I).
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Training Learning to reverse the forward process for generation can be reduced to learning to
denoise zt ∼ q(zt|x) into an estimate x̂θ(zt, λt) ≈ x for all t (we will drop the dependence on λt to
simplify notation). We train this denoising model x̂θ using a weighted mean squared error loss

Eε,t

[
w(λt)‖x̂θ(zt)− x‖22

]
(2)

over uniformly sampled times t ∈ [0, 1]. This reduction of generation to denoising can be justified
as optimizing a weighted variational lower bound on the data log likelihood under the diffusion
model, or as a form of denoising score matching [56, 47, 22, 28]. In practice, we use the ε-prediction
parameterization, defined as x̂θ(zt) = (zt − σtεθ(zt))/αt, and train εθ using a mean squared error
in ε space with t sampled according to a cosine schedule [37]. This corresponds to a particular
weighting w(λt) for learning a scaled score estimate εθ(zt) ≈ −σt∇zt log p(zt), where p(zt) is the
true density of zt under x ∼ p(x) [22, 28, 48]. We also train using the v-prediction parameterization
for certain models [42].

Sampling We use a variety of diffusion model samplers in this work. One is the discrete time
ancestral sampler [22] with sampling variances derived from lower and upper bounds on reverse
process entropy [46, 22, 37]. To define this sampler, first note that the forward process can be
described in reverse as q(zs|zt,x) = N (zs; µ̃s|t(zt,x), σ̃

2
s|tI) (noting s < t), where

µ̃s|t(zt,x) = eλt−λs(αs/αt)zt + (1− eλt−λs)αsx and σ̃2
s|t = (1− eλt−λs)σ2

s . (3)

Starting at z1 ∼ N (0, I), the ancestral sampler follows the rule

zs = µ̃s|t(zt, x̂θ(zt)) +
√

(σ̃2
s|t)

1−γ(σ2
t|s)

γε (4)

where ε is standard Gaussian noise, γ is a hyperparameter that controls the stochasticity of the
sampler [37], and s, t follow a uniformly spaced sequence from 1 to 0.

Another sampler, which we found especially effective with our new method for conditional gener-
ation (Section 3.1), is the predictor-corrector sampler [48]. Our version of this sampler alternates
between the ancestral sampler step (4) and a Langevin correction step of the form

zs ← zs −
1

2
δσsεθ(zs) +

√
δσsε

′ (5)

where δ is a step size which we fix to 0.1 here, and ε′ is another independent sample of standard
Gaussian noise. The purpose of the Langevin step is to help the marginal distribution of each zs
generated by the sampler to match the true marginal under the forward process starting at x ∼ p(x).
In the conditional generation setting, the data x is equipped with a conditioning signal c, which
may represent a class label, text caption, or other type of conditioning. To train a diffusion model
to fit p(x|c), the only modification that needs to be made is to provide c to the model as x̂θ(zt, c).
Improvements to sample quality can be obtained in this setting by using classifier-free guidance [20].
This method samples using adjusted model predictions ε̃θ, constructed via

ε̃θ(zt, c) = (1 + w)εθ(zt, c)− wεθ(zt), (6)

where w is the guidance strength, εθ(zt, c) = 1
σt
(zt − x̂θ(zt, c)) is the regular conditional model

prediction, and εθ(zt) is a prediction from an unconditional model jointly trained with the conditional
model (if c consists of embedding vectors, unconditional modeling can be represented as c = 0). For
w > 0 this adjustment has the effect of over-emphasizing the effect of conditioning on the signal c,
which tends to produce samples of lower diversity but higher quality compared to sampling from
the regular conditional model [20]. The method can be interpreted as a way to guide the samples
towards areas where an implicit classifier p(c|zt) has high likelihood, and is an adaptation of the
explicit classifier guidance method proposed by [16].

3 Video diffusion models

Our approach to video generation using diffusion models is to use the standard diffusion model
formalism described in Section 2 with a neural network architecture suitable for video data. Each
of our models is trained to jointly model a fixed number of frames at a fixed spatial resolution. To
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extend sampling to longer sequences of frames or higher spatial resolutions, we will repurpose our
models with a conditioning technique described later in Section 3.1.

In prior work on image modeling, the standard architecture for x̂θ in an image diffusion model is a
U-Net [38, 44], which is a neural network architecture constructed as a spatial downsampling pass
followed by a spatial upsampling pass with skip connections to the downsampling pass activations.
The network is built from layers of 2D convolutional residual blocks, for example in the style
of the Wide ResNet [65], and each such convolutional block is followed by a spatial attention
block [55, 58, 11]. Conditioning information, such as c and λt, is provided to the network in the
form of an embedding vector added into each residual block (we find it helpful for our models to
process these embedding vectors using several MLP layers before adding).

We propose to extend this image diffusion model architecture to video data, given by a block of
a fixed number of frames, using a particular type of 3D U-Net [13] that is factorized over space
and time. First, we modify the image model architecture by changing each 2D convolution into a
space-only 3D convolution, for instance, we change each 3x3 convolution into a 1x3x3 convolution
(the first axis indexes video frames, the second and third index the spatial height and width). The
attention in each spatial attention block remains as attention over space; i.e., the first axis is treated
as a batch axis. Second, after each spatial attention block, we insert a temporal attention block that
performs attention over the first axis and treats the spatial axes as batch axes. We use relative position
embeddings [45] in each temporal attention block so that the network can distinguish ordering of
frames in a way that does not require an absolute notion of video time. We visualize the model
architecture in Fig. 1.

(zt, c, λt) N2, M1
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2
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K
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K
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K
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(N
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Figure 1: The 3D U-Net architecture for x̂θ in the diffusion model. Each block represents a 4D
tensor with axes labeled as frames× height×width× channels, processed in a space-time factorized
manner as described in Section 3. The input is a noisy video zt, conditioning c, and the log SNR λt.
The downsampling/upsampling blocks adjust the spatial input resolution height× width by a factor
of 2 through each of the K blocks. The channel counts are specified using channel multipliers M1,
M2, ..., MK , and the upsampling pass has concatenation skip connections to the downsampling pass.

The use of factorized space-time attention is known to be a good choice in video transformers for its
computational efficiency [2, 5, 21]. An advantage of our factorized space-time architecture, which is
unique to our video generation setting, is that it is particularly straightforward to mask the model to
run on independent images rather than a video, simply by removing the attention operation inside
each time attention block and fixing the attention matrix to exactly match each key and query vector
at each video timestep. The utility of doing so is that it allows us to jointly train the model on both
video and image generation. We find in our experiments that this joint training is important for sample
quality (Section 4).

3.1 Reconstruction-guided sampling for improved conditional generation

The videos we consider modeling typically consist of hundreds to thousands of frames, at a frame rate
of at least 24 frames per second. To manage the computational requirements of training our models,
we only train on a small subset of say 16 frames at a time. However, at test time we can generate
longer videos by extending our samples. For example, we could first generate a video xa ∼ pθ(x)
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consisting of 16 frames, and then extend it with a second sample xb ∼ pθ(xb|xa). If xb consists of
frames following xa, this allows us to autoregressively extend our sampled videos to arbitrary lengths,
which we demonstrate in Section 4.3.3. Alternatively, we could choose xa to represent a video of
lower frame rate, and then define xb to be those frames in between the frames of xa. This allows one
to then to upsample a video temporally, similar to how [34] generate high resolution images through
spatial upsampling.

Both approaches require one to sample from a conditional model, pθ(xb|xa). This conditional model
could be trained explicitly, but it can also be derived approximately from our unconditional model
pθ(x) by imputation, which has the advantage of not requiring a separately trained model. For
example, [48] present a general method for conditional sampling from a jointly trained diffusion
model pθ(x = [xa,xb]): In their approach to sampling from pθ(x

b|xa), the sampling procedure for
updating zb

s is unchanged from the standard method for sampling from pθ(zs|zt), with zs = [za
s, z

b
s],

but the samples for za
s are replaced by exact samples from the forward process, q(za

s|xa), at each
iteration. The samples za

s then have the correct marginal distribution by construction, and the samples
zb
s will conform with za

s through their effect on the denoising model x̂θ([za
t, z

b
t ]). Similarly, we could

sample za
s from q(za

s|xa, za
t), which follows the correct conditional distribution in addition to the

correct marginal. We will refer to both of these approaches as the replacement method for conditional
sampling from diffusion models.

When we tried the replacement method to conditional sampling, we found it to not work well for
our video models: Although samples xb looked good in isolation, they were often not coherent
with xa. This is caused by a fundamental problem with this replacement sampling method. That
is, the latents zb

s are updated in the direction provided by x̂b
θ(zt) ≈ Eq[xb|zt], while what is

needed instead is Eq[xb|zt,xa]. Writing this in terms of the score of the data distribution, we get
Eq[xb|zt,xa] = Eq[xb|zt] + (σ2

t /αt)∇zb
t
log q(xa|zt), where the second term is missing in the

replacement method. Assuming a perfect denoising model, plugging in this missing term would
make conditional sampling exact. Since q(xa|zt) is not available in closed form, however, we instead
propose to approximate it using a Gaussian of the form q(xa|zt) ≈ N [x̂a

θ(zt), (σ
2
t /α

2
t )I], where

x̂a
θ(zt) is a reconstruction of the conditioning data xa provided by our denoising model. Assuming a

perfect model, this approximation becomes exact as t→ 0, and empirically we find it to be good for
larger t also. Plugging in the approximation, and adding a weighting factor wr, our proposed method
to conditional sampling is a variant of the replacement method with an adjusted denoising model, x̃bθ,
defined by

x̃bθ(zt) = x̂bθ(zt)−
wrαt
2
∇zb

t
‖xa − x̂aθ(zt)‖22 . (7)

The additional gradient term in this expression can be interpreted as a form of guidance [16, 20]
based on the model’s reconstruction of the conditioning data, and we therefore refer to this method
as reconstruction-guided sampling, or simply reconstruction guidance. Like with other forms
of guidance, we find that choosing a larger weighting factor, wr > 1, tends to improve sample
quality. We empirically investigate reconstruction guidance in Section 4.3.3, where we find it to
work surprisingly well, especially when combined with predictor-corrector samplers using Langevin
diffusion [48].

Reconstruction guidance also extends to the case of spatial interpolation (or super-resolution), in
which the mean squared error loss is imposed on a downsampled version of the model prediction,
and backpropagation is performed through this downsampling. In this setting, we have low resolution
ground truth videos xa (e.g. at the 64x64 spatial resolution), which may be generated from a low
resolution model, and we wish to upsample them into high resolution videos (e.g. at the 128x128
spatial resolution) using an unconditional high resolution diffusion model x̂θ. To accomplish this, we
adjust the high resolution model as follows:

x̃θ(zt) = x̂θ(zt)−
wrαt
2
∇zt
‖xa − x̂aθ(zt)‖22 (8)

where x̂aθ(zt) is our model’s reconstruction of the low-resolution video from zt, which is obtained
by downsampling the high resolution output of the model using a differentiable downsampling
algorithm such as bilinear interpolation. Note that it is also possible to simultaneously condition on
low resolution videos while autoregressively extending samples at the high resolution using the same
reconstruction guidance method. In Fig. 2, we show samples of this approach for extending 16x64x64
low resolution samples at frameskip 4 to 64x128x128 samples at frameskip 1 using a 9x128x128
diffusion model.
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4 Experiments

We report our results on video diffusion models for unconditional video generation (Section 4.1),
conditional video generation (video prediction) (Section 4.2), and text-conditioned video genera-
tion (Section 4.3). We evaluate our models using standard metrics such as FVD [54], FID [19], and
IS [43]; details on evaluation are provided below alongside each benchmark. Samples and additional
results are provided at https://video-diffusion.github.io/. Architecture hyperparameters,
training details, and compute resources are listed in Appendix A.

4.1 Unconditional video modeling

To demonstrate our approach on unconditional generation, we use a popular benchmark of Soomro
et al. [49] for unconditional modeling of video. The benchmark consists of short clips of people
performing one of 101 activities, and was originally collected for the purpose of training action
recognition models. We model short segments of 16 frames from this dataset, downsampled to a
spatial resolution of 64x64. In Table 1 we present perceptual quality scores for videos generated by
our model, and we compare against methods from the literature, finding that our method strongly
improves upon the previous state-of-the-art.

We use the data loader provided by TensorFlow Datasets [1] without further processing, and we train
on all 13,320 videos. Similar to previous methods, we use the C3D network [51]2 for calculating
FID and IS, using 10,000 samples generated from our model. C3D internally resizes input data to
the 112x112 spatial resolution, so perceptual scores are approximately comparable even when the
data is sampled at a different resolution originally. As discussed by [64], methods in the literature
are unfortunately not always consistent in the data preprocessing that is used, which may lead to
small differences in reported scores between papers. The Inception Score we calculate for real data
(≈ 60) is consistent with that reported by [26], who also report a higher real data Inception score of
≈ 90 for data sampled at the 128x128 resolution, which indicates that our 64x64 model might be at a
disadvantage compared to works that generate at a higher resolution. Nevertheless, our model obtains
the best perceptual quality metrics that we could find in the literature.

Method Resolution FID↓ IS↑
MoCoGAN [52] 16x64x64 26998 ± 33 12.42
TGAN-F [26] 16x64x64 8942.63 ± 3.72 13.62
TGAN-ODE [18] 16x64x64 26512 ± 27 15.2
TGAN-F [26] 16x128x128 7817 ± 10 22.91 ± .19
VideoGPT [62] 16x128x128 24.69 ± 0.30
TGAN-v2 [41] 16x64x64 3431 ± 19 26.60 ± 0.47
TGAN-v2 [41] 16x128x128 3497 ± 26 28.87 ± 0.47
DVD-GAN [14] 16x128x128 32.97 ± 1.7

Video Diffusion (ours) 16x64x64 295 ± 3 57 ± 0.62

real data 16x64x64 60.2

Table 1: Unconditional video modeling results on UCF101.

4.2 Video prediction

A common benchmark task for evaluating generative models of video is video prediction, where the
model is given the first frame(s) of a video and is asked to generate the remainder. Models that do
well on this conditional generation task are usually trained explicitly for this conditional setting,
for example by being autoregressive across frames. Although our models are instead only trained
unconditionally, we can adapt them to the video prediction setting by using the guidance method
proposed in section 3.1. Here we evaluate this method on two popular video prediction benchmarks,
obtaining state-of-the-art results.

BAIR Robot Pushing We evaluate video prediction performance on BAIR Robot Pushing [17], a
standard benchmark in the video literature consisting of approximately 44000 videos of robot pushing

2We use the C3D model as implemented at github.com/pfnet-research/tgan2 [41].
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motions at the 64x64 spatial resolution. Methods for this benchmark are conditioned on 1 frame
and generate the next 15. Results are listed in Table 2. Following the evaluation protocol of [4] and
others, we calculate FVD [54] using the I3D network [8] by comparing 100× 256 model samples
against the 256 examples in the evaluation set.

Kinetics-600 We additionally evaluate video prediction performance on the Kinetics-600 bench-
mark [27, 9]. Kinetics-600 contains approximately 400 thousand training videos depicting 600
different activities. We train unconditional models on this dataset at the 64× 64 resolution and evalu-
ate on 50 thousand randomly sampled videos from the test set, where we condition on a randomly
sampled subsequence of 5 frames and generate the next 11 frames. Like previous works, we calculate
FVD and Inception Score using the I3D network [8]. See Table 3 for results. In our reported results
we sample test videos without replacement, and we use the same randomly selected subsequences
for generating model samples and for defining the ground truth, since this results in the lowest bias
and variance in the reported FVD metric. However, from personal communication we learned that
[33, 14] instead sampled with replacement, and used a different random seed when sampling the
ground truth data. We find that this way of evaluating raises the FVD obtained by our model slightly,
from 16.2 to 16.9. Inception Score is unaffected.

Table 2: Video prediction on BAIR Robot Pushing.
Method FVD↓
DVD-GAN [14] 109.8
VideoGPT [62] 103.3
TrIVD-GAN-FP [33] 103.3
Transframer [35] 100
CCVS [31] 99
VideoTransformer [59] 94
FitVid [4] 93.6
NUWA [61] 86.9

Video Diffusion (ours)
ancestral sampler, 512 steps 68.19
Langevin sampler, 256 steps 66.92

Table 3: Video prediction on Kinetics-600.
Method FVD↓ IS↑
Video Transformer [59] 170 ± 5
DVD-GAN-FP [14] 69.1 ± 0.78
Video VQ-VAE [57] 64.3 ± 2.04
CCVS [31] 55 ± 1
TrIVD-GAN-FP [33] 25.74 ± 0.66 12.54
Transframer [35] 25.4

Video Diffusion (ours)
ancestral, 256 steps 18.6 15.39
Langevin, 128 steps 16.2 ± 0.34 15.64

4.3 Text-conditioned video generation

The remaining experiments reported are on text-conditioned video generation. In this text-conditioned
video generation setting, we employ a dataset of 10 million captioned videos, and we condition the
diffusion model on captions in the form of BERT-large embeddings [15] processed using attention
pooling. We consider two model sizes: a small model for the joint training ablation, and a large model
for generating the remaining results (both architectures are described in detail in Appendix A), and
we explore the effects of joint video-image training, classifier-free guidance, and our newly proposed
reconstruction guidance method for autoregressive extension and simultaneous spatial and temporal
super-resolution. We report the following metrics in this section on 4096 samples: the video metric
FVD, and the Inception-based image metrics FID and IS measured by averaging activations across
frames (FID/IS-avg) and by measuring the first frame only (FID/IS-first). For FID and FVD, we
report two numbers which are measured against the training and validation sets, respectively. For IS,
we report two numbers which are averaged scores across 1 split and 10 splits of samples, respectively.

4.3.1 Joint training on video and image modeling

As described in Section 3, one of the main advantages of our video architecture is that it allows us
to easily train the model jointly on video and image generative modeling objectives. To implement
this joint training, we concatenate random independent image frames to the end of each video
sampled from the dataset, and we mask the attention in the temporal attention blocks to prevent
mixing information across video frames and each individual image frame. We choose these random
independent images from random videos within the same dataset; in future work we plan to explore
the effect of choosing images from other larger image-only datasets.
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Figure 2: Text-conditioned video samples from a cascade of two models. First samples are generated
from a 16x64x64 frameskip 4 model. Then those samples are treated as ground truth for simultaneous
super-resolution and autoregressive extension to 64x128x128 using a 9x128x128 frameskip 1 model.
Both models are conditioned on the text prompt. In this figure, the text prompt, low resolution frames,
and high resolution frames are visualized in sequence. See Fig. 5 for more samples.

Table 4 reports results for an experiment on text-conditioned 16x64x64 videos, where we consider
training on an additional 0, 4, or 8 independent image frames per video. One can see clear improve-
ments in video and image sample quality metrics as more independent image frames are added.
Adding independent image frames has the effect of reducing variance of the gradient at the expense
of some bias for the video modeling objective, and thus it can be seen as a memory optimization to fit
more independent examples in a batch.

Table 4: Improved sample quality due to image-video joint training on text-to-video generation.
Image frames FVD↓ FID-avg↓ IS-avg↑ FID-first↓ IS-first↑

0 202.28/205.42 37.52/37.40 7.91/7.58 41.14/40.87 9.23/8.74
4 68.11/70.74 18.62/18.42 9.02/8.53 22.54/22.19 10.58/9.91
8 57.84/60.72 15.57/15.44 9.32/8.82 19.25/18.98 10.81/10.12

4.3.2 Effect of classifier-free guidance

Table 5 reports results that verify the effectiveness of classifier-free guidance [20] on text-to-video
generation. As expected, there is clear improvement in the Inception Score-like metrics with higher
guidance weight, while the FID-like metrics improve and then degrade with increasing guidance
weight. Similar findings have been reported on text-to-image generation [36].

Figure 3 shows the effect of classifier-free guidance [20] on a text-conditioned video model. Similar
to what was observed in other work that used classifier-free guidance on text-conditioned image
generation [36] and class-conditioned image generation [20, 16], adding guidance increases the
sample fidelity of each individual image and emphases the effect of the conditioning signal.
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Figure 3: Example frames from a random selection of videos generated by our 16x64x64 text-
conditioned model. Left: unguided samples, right: guided samples using classifier-free guidance.

Table 5: Effect of classifier-free guidance on text-to-video generation (large models). Sample quality
is reported for 16x64x64 models trained on frameskip 1 and 4 data. The model was jointly trained on
8 independent image frames per 16-frame video.

Frameskip Guidance weight FVD↓ FID-avg↓ IS-avg↑ FID-first↓ IS-first↑
1 1.0 41.65/43.70 12.49/12.39 10.80/10.07 16.42/16.19 12.17/11.22

2.0 50.19/48.79 10.53/10.47 13.22/12.10 13.91/13.75 14.81/13.46
5.0 163.74/160.21 13.54/13.52 14.80/13.46 17.07/16.95 16.40/14.75

4 1.0 56.71/60.30 11.03/10.93 9.40/8.90 16.21/15.96 11.39/10.61
2.0 54.28/51.95 9.39/9.36 11.53/10.75 14.21/14.04 13.81/12.63
5.0 185.89/176.82 11.82/11.78 13.73/12.59 16.59/16.44 16.24/14.62

4.3.3 Autoregressive video extension for longer sequences

In Section 3.1 we proposed the reconstruction guidance method for conditional sampling from
diffusion models, an improvement over the replacement method of [48]. In Table 6 we present
results on generating longer videos using both techniques, and find that our proposed method indeed
improves over the replacement method in terms of perceptual quality scores.

Figure 4 shows the samples of our reconstruction guidance method for conditional sampling compared
to the replacement method (Section 3.1) for the purposes of generating long samples in a block-
autoregressive manner (Section 4.3.3). The samples from the replacement method clearly show a
lack of temporal coherence, since frames from different blocks throughout the generated videos
appear to be uncorrelated samples (conditioned on c). The samples from the reconstruction guidance
method, by contrast, are clearly temporally coherent over the course of the entire autoregressive
generation process. Figure 2 additionally shows samples of using the reconstruction guidance method
to simultaneously condition on low frequency, low resolution videos while autoregressively extending
temporally at a high resolution.

Table 6: Generating 64x64x64 videos using autoregressive extension of 16x64x64 models.
Guidance weight Conditioning method FVD↓ FID-avg↓ IS-avg↑ FID-first↓ IS-first↑

2.0 reconstruction guidance 136.22/134.55 13.77/13.62 10.30/9.66 16.34/16.46 14.67/13.37
replacement 451.45/436.16 25.95/25.52 7.00/6.75 16.33/16.46 14.67/13.34

5.0 reconstruction guidance 133.92/133.04 13.59/13.58 10.31/9.65 16.28/16.53 15.09/13.72
replacement 456.24/441.93 26.05/25.69 7.04/6.78 16.30/16.54 15.11/13.69
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Figure 4: Comparing the replacement method (left) vs the reconstruction guidance method (right) for
conditioning for block-autoregressive generation of 64 frames from a 16 frame model. Video frames
are displayed over time from left to right; each row is an independent sample. The replacement
method suffers from a lack of temporal coherence, unlike the reconstruction guidance method.

5 Related work

Prior work on video generation has usually employed other types of generative models, notably,
autoregressive models, VAEs, GANs, and normalizing flows [e.g. 3, 4, 32, 30, 14, 59, 62, 57].
Related work on model classes similar to diffusion models includes [25, 24]. Concurrent work
[63] proposes a diffusion-based approach to video generation that uses an image diffusion model to
predict each individual frame within a RNN temporal autoregressive model. Our video diffusion
model, by contrast, jointly models entire videos (blocks of frames) using a 3D video architecture
with interleaved spatial and temporal attention, and we extend to long sequence lengths by filling in
frames or autoregressive temporal extension.

6 Conclusion

We have introduced diffusion models for video modeling, thus bringing recent advances in generative
modeling using diffusion models to the video domain. We have shown that with straightforward
extensions of conventional U-Net architectures for 2D image modeling to 3D space-time, with
factorized space-time attention blocks, one can learn effective generative models for video data using
the standard formulation of the diffusion model. This includes unconditional models, text-conditioned
models, and video prediction models.

We have additionally demonstrated the benefits of joint image-video training and classifier-free
guidance for video diffusion models on both video and image sample quality metrics, and we also
introduced a new reconstruction-guided conditional sampling method that outperforms existing
replacement or imputation methods for conditional sampling from unconditionally trained models.
Our reconstruction guidance method can generate long sequences using either frame interpolation (or
temporal super-resolution) or extrapolation in an auto-regressive fashion, and also can perform spatial
super-resolution. We look forward to investigating this method in a wider variety of conditioning
settings.

Our goal with this work is to advance research on methods in generative modeling, and our methods
have the potential to positively impact creative downstream applications. As with prior work in
generative modeling, however, our methods have the potential for causing harmful impact and
could enhance malicious or unethical uses of generative models, such as fake content generation,
harassment, and misinformation spread, and thus we have decided not to release our models. Like
all generative models, our models reflect the biases of their training datasets and thus may require
curation to ensure fair results from sampling. In particular, our text-to-video models inherit the
challenges faced by prior work on text-to-image models, and our future work will involve auditing for
forms of social bias, similar to [6, 7, 50, 12] for image-to-text and image labeling models. We see our
work as only a starting point for further investigation on video diffusion models and investigation into
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their societal implications, and we will aim to explore benchmark evaluations for social and cultural
bias in the video generation setting and make the necessary research advances to address them.
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A Details and hyperparameters

Figure 5: More samples accompanying Fig. 2.

Here, we list the hyperparameters, training details, and compute resources used for each model.

A.1 UCF101

Base channels: 256 Optimizer: Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers: 1, 2, 4, 8 Learning rate: 0.0003
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 8, 16, 32 EMA: 0.9999
Attention head dimension: 64 Dropout: 0.1
Conditioning embedding dimension: 1024 Training hardware: 128 TPU-v4 chips
Conditioning embedding MLP layers: 4 Training steps: 60000
Diffusion noise schedule: cosine Joint training independent images per video: 8
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 256
Video resolution: 16x64x64 frameskip 1 Sampling log-variance interpolation: γ = 0.1
Weight decay: 0.0 Prediction target: ε

A.2 BAIR Robot Pushing

Base channels: 128 Optimizer: Adam (β1 = 0.9, β2 = 0.999)
Channel multipliers: 1, 2, 3, 4 Learning rate: 0.0002
Blocks per resolution: 3 Batch size: 128
Attention resolutions: 8, 16, 32 EMA: 0.999
Attention head dimension: 64 Dropout: 0.1
Conditioning embedding dimension: 1024 Training hardware: 128 TPU-v4 chips
Conditioning embedding MLP layers: 2 Training steps: 660000
Diffusion noise schedule: cosine Joint training independent images per video: 8
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 256 (+256 Langevin cor.)
Video resolution: 16x64x64 frameskip 1 Sampling log-variance interpolation: γ = 0.0
Weight decay: 0.01 Prediction target: v
Reconstruction guidance weight: 50 Data augmentation: left-right flips

14



A.3 Kinetics

Base channels: 256 Optimizer: Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers: 1, 2, 4, 8 Learning rate: 0.0002
Blocks per resolution: 2 Batch size: 256
Attention resolutions: 8, 16, 32 EMA: 0.9999
Attention head dimension: 64 Dropout: 0.1
Conditioning embedding dimension: 1024 Training hardware: 256 TPU-v4 chips
Conditioning embedding MLP layers: 2 Training steps: 220,000
Diffusion noise schedule: cosine Joint training independent images per video: 8
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 128 (+128 Langevin cor.)
Video resolution: 16x64x64 frameskip 1 Sampling log-variance interpolation: γ = 0.0
Weight decay: 0.0 Prediction target: v
Reconstruction guidance weight: 9

A.4 Text-to-video

Small 16x64x64 model

Base channels: 128 Optimizer: Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers: 1, 2, 4, 8 Learning rate: 0.0003
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 8, 16, 32 EMA: 0.9999
Attention head dimension: 64 Dropout: 0.0
Conditioning embedding dimension: 1024 Training hardware: 64 TPU-v4 chips
Conditioning embedding MLP layers: 4 Training steps: 200000
Diffusion noise schedule: cosine Joint training independent images per video: 0, 4, 8
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 256
Video resolution: 16x64x64 frameskip 1 Sampling log-variance interpolation: γ = 0.3
Weight decay: 0.0 Prediction target: ε

Large 16x64x64 model

Base channels: 256 Optimizer: Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers: 1, 2, 4, 8 Learning rate: 0.0003
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 8, 16, 32 EMA: 0.9999
Attention head dimension: 64 Dropout: 0.0
Conditioning embedding dimension: 1024 Training hardware: 128 TPU-v4 chips
Conditioning embedding MLP layers: 4 Training steps: 700000
Diffusion noise schedule: cosine Joint training independent images per video: 8
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 256
Video resolution: 16x64x64 frameskip 1,4 Sampling log-variance interpolation: γ = 0.3
Weight decay: 0.0 Prediction target: ε

Large 9x128x128 model

Base channels: 128 Optimizer: Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers: 1, 2, 4, 8, 16 Learning rate: 0.0002
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 8, 16, 32 EMA: 0.9999
Attention head dimension: 128 Dropout: 0.0
Conditioning embedding dimension: 1024 Training hardware: 128 TPU-v4 chips
Conditioning embedding MLP layers: 4 Training steps: 800000
Diffusion noise schedule: cosine Joint training independent images per video: 7
Noise schedule log SNR range: [−20, 20] Sampling timesteps: 256
Video resolution: 9x128x128 frameskip 1 Sampling log-variance interpolation: γ = 0.3
Weight decay: 0.0 Prediction target: ε
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