

Entropy and decisions

This lecture

- Information theory.
 - Entropy.
 - Mutual information, etc.
- Decisions.
 - Classification.
 - Significance and hypothesis testing.

Can we quantify the statistical structure in a model of communication? Can we quantify the <u>meaningful</u> difference between statistical models?

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
 - You don't know what he'll say.
- You have a certain amount of uncertainty a lack of information.



Darth Vader is © Disney And the prequels and Rey/Finn Star Wars suck

- Imagine you then observe Darth Vader saying "no"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event x when you observe it?

"Choosing 1 out of 2" gives a bit of information

$$I(x) = 1$$
 bit for $P(x) = \frac{1}{2}$

- Imagine there is both Darth Vader and Varth Dader.
- Observing what both DV and VD say gives us 2 bits of information.
- There are 2² scenarios with equal possibilities:
 - Yes/Yes, Yes/No, No/Yes, No/No

Darth Vader

- So I(x)=2 bits is brought by $P(x) = \frac{1}{2^2}$
- I(x) doubles when $\frac{1}{P(x)}$ is squared.
- Let's describe I(x) with negative log likelihood:

 $I(x) = \log_2 \frac{1}{P(x)}$ For capturing the Logarithm relationship

 $I(x) = -\log_2 P(x);$ So here comes the negation

Going back to the "yes/no" example:

$$I(no) = \log_2 \frac{1}{P(no)} = \log_2 \frac{1}{\frac{1}{2}} = 1 \text{ bit}$$

Note 1: Negative log likelihood is also called surprisal.

Note 2: information contents computed with log base 2 has unit "bit". Log base e => unit "nat".

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more possibilities.
- You receive more information when you observe it.

$$\int_{3}^{5} \int_{2}^{6} I(x) = \log_2 \frac{1}{P(6)}$$
$$= \log_2 \frac{1}{\frac{1}{l_6}} \approx 2.58 \text{ bits}$$

Information can be additive

- One property of $I(x) = \log_2 \frac{1}{P(x)}$ is additivity.
- From kindependent events $x_1 \dots x_k$:
 - Does $I(x_1 \dots x_k) = I(x_1) + I(x_2) + \dots + I(x_k)$?
- The answer is yes!

$$I(x_1 \dots x_k) = \log_2 \frac{1}{P(x_1 \dots x_k)}$$

= $\log_2 \frac{1}{P(x_1) \dots P(x_k)} = \log_2 \frac{1}{P(x_1)} + \dots + \log_2 \frac{1}{P(x_k)}$
= $I(x_1) + I(x_2) + \dots + I(x_k)$

Aside: Information in computers

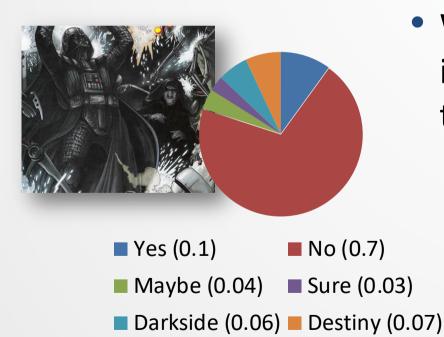
- The unit bit appears familiar to the units describing file sizes...
- And they are related!
- $1 GB = 2^{10}MB = 2^{20}KB = 2^{30}Bytes$, where:
 - 1 Byte = 8 bits.
 - Historically: 1 byte was used to store one character.
- File sizes in computers are **described** by **the amount of information**.
 - The file sizes also depend on the method of encoding (approx. "file format")

Events and random variables

- An event x is a sample from a random variable X.
- Example 1:
 - X: Darth Vader saying something (either yes or no)
 - x: What DV says (x = "no")
- Example 2:
 - X: Darth Vader rolling a die
 - x: The side facing upwards (e.g., x = 3)
- *x* is deterministic. *X* is random.
- x is the output emitted by the "source" X.

Information with unequal events

- The random variable X can take possible values:
 {v₁, v₂, ..., v_n}.
- Each value has its own probability $\{p_1, p_2, \dots, p_n\}$



- What is the <u>average</u> amount of information we get in **observing** the **output** of X?
 - You still have 6 events that are possible but you're fairly sure it will be 'No'.

Entropy

• Entropy: *n*. the expected information gaining from observing the events of the random variable *X*.

$$H(X) = E_{x}[I(x)] = \sum_{x} p(x) \log \frac{1}{p(x)}$$

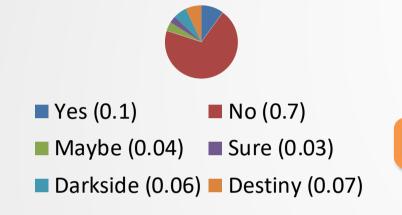
ENTROPY

Notes:

- 1. Entropy is defined towards a random variable.
- 2. Entropy is the average uncertainty inherent in a random variable.

CSC401/2511 - Spring 2022

Entropy – examples



$$H(X) = \sum_{i} p_i \log_2 \frac{1}{p_i}$$

= 0.7 log₂(1/0.7) + 0.1 log₂(1/0.1) + ...
= 1.542 bits

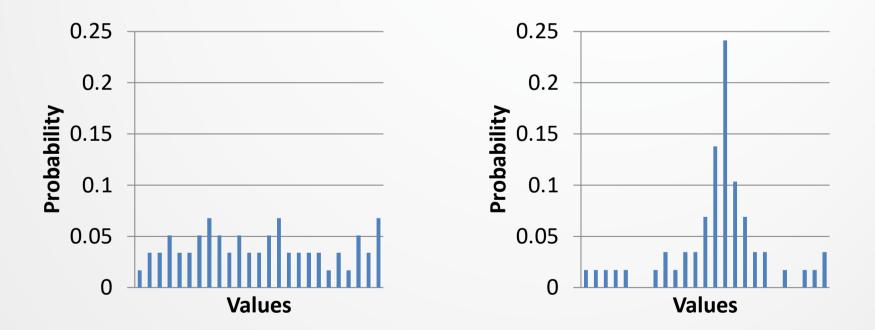
There is **less** average uncertainty when the probabilities are 'skewed'.

$$H(X) = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} = 6 \left(\frac{1}{6} \log_{2} \frac{1}{1/6} \right)$$

= 2.585 bits

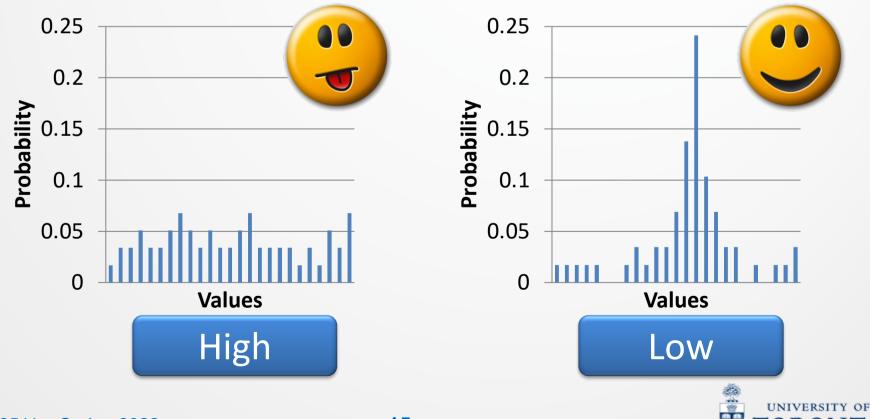
Entropy characterizes the distribution

- **'Flatter'** distributions have a **higher** entropy because the choices are **more equivalent**, on average.
 - So which of these distributions has a **lower** entropy?



Low entropy makes decisions easier

- When predicting the next event, we'd like a distribution with **lower** entropy.
 - Low entropy ≡ less uncertainty

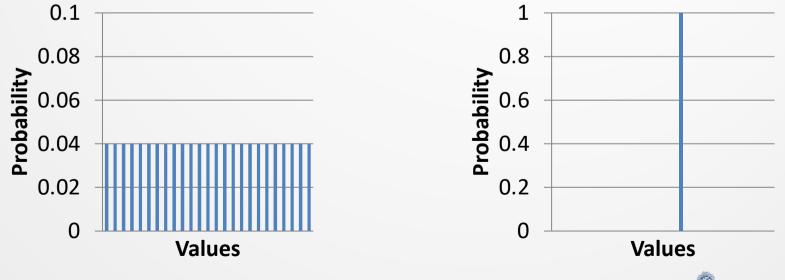


Bounds on entropy

• Maximum: uniform distribution X_1 . Given M choices,

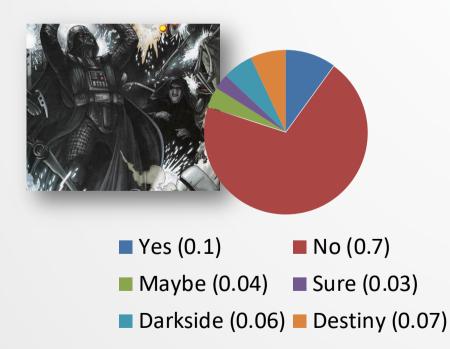
$$H(X_1) = \sum_{i} p_i \log_2 \frac{1}{p_i} = \sum_{i} \frac{1}{M} \log_2 \frac{1}{1/M} = \log_2 M$$

• Minimum: only one choice, $H(X_2) = p_i \log_2 \frac{1}{p_i} = 1 \log_2 \frac{1}{p_i} = 1 \log_2 \frac{1}{p_i} = 0$



Understanding entropy in coding

- We can **encode** a random variable *X* :
 - For a **lossless** encoding, *X* can be recovered.
- There are many possible codes to encode a random variable.
 - They may involve different codelengths (num. bits)



Word (sorted)	Linear Code
No	000
Yes	001
Destiny	010
Darkside	011
Maybe	100
Sure	101

Average codelength = 3 bits

Coding with fewer bits is better

- If we want to transmit Vader's words efficiently, we can encode them so that more probable words require fewer bits.
 - On average, fewer bits will need to be transmitted.

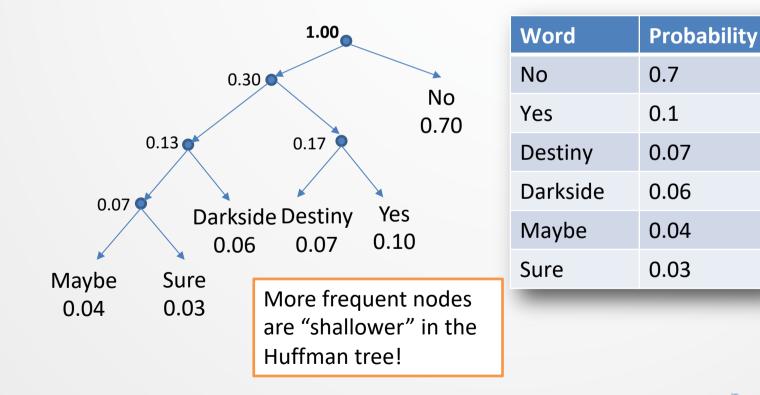


Word (sorted)	Linear Code	Probabil ity	Huffman Code
No	000	0.7	0
Yes	001	0.1	100
Destiny	010	0.07	101
Darkside	011	0.06	110
Maybe	100	0.04	1110
Sure	101	0.03	1111

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+ 4*(.04+.03) = 1.67 bits

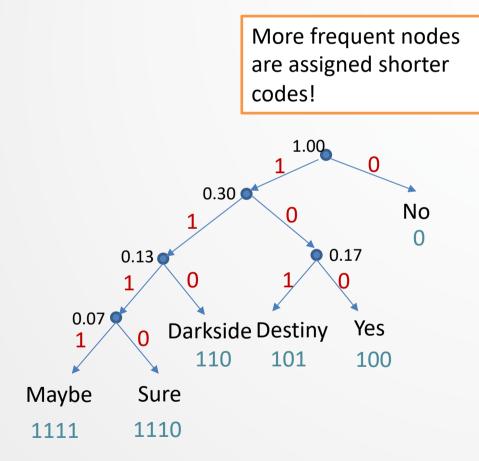
Huffman codes: build tree

- Start with the words: each word is a leaf node.
- Merge the two least possible nodes into one.
- Repeat until the **Huffman tree** is constructed.



Huffman codes: assign codes

• Then assign code values based on the tree branching.

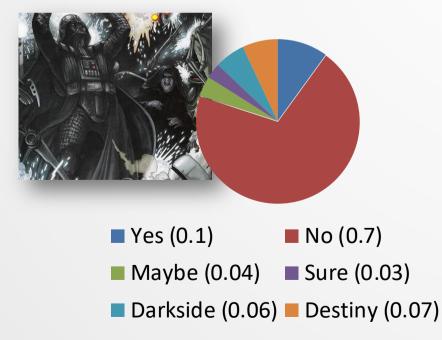


Word	Probabil ity	Huffman Code
No	0.7	0
Yes	0.1	100
Destiny	0.07	101
Darkside	0.06	110
Maybe	0.04	1110
Sure	0.03	1111

Coding symbols efficiently

- What is the minimal possible average codelength needed to losslessly encode a random variable X?
- Answer: entropy!

•
$$H(X) = \sum_{x} \log_2 \frac{1}{P(x)} = 1.542$$
 bits



Remark: This is Shannon's Source Coding Theorem

CSC401/2511 – Spring 2022

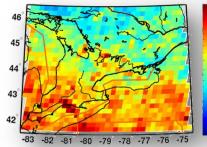
Alternative notions of entropy

- Entropy is **equivalently**:
 - The **average** amount of **information provided** by an observation of a random variable,
 - The average amount of uncertainty you have before an observation of a random variable,
 - The average amount of 'surprise' you receive during the observation,
 - The number of bits needed to communicate that random variable
 - Aside: Shannon showed that you cannot have a coding scheme that can communicate it more efficiently than H(S)

Some information-theoretic terms

- Joint entropy
- Conditional entropy
- Mutual information

Entropy of several variables



- Consider the vocabulary of a meteorologist describing <u>*T*emperature and <u>*W*</u>etness.</u>
 - <u>**T</u>emperature = {***hot, mild, cold***}</u>**
 - Wetness = {dry, wet}

$$P(W = dry) = 0.6,$$

 $P(W = wet) = 0.4$
 $H(W) = 0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4} = 0.970951$ bits

$$P(T = hot) = 0.3,$$

 $P(T = mild) = 0.5,$
 $P(T = cold) = 0.2$

$$H(T) = 0.3 \log_2 \frac{1}{0.3} + 0.5 \log_2 \frac{1}{0.5} + 0.2 \log_2 \frac{1}{0.2} = 1.48548 \text{ bits}$$

But W and T are not independent,

Example from Roni Rosenfeld

 $\neq P(VV)P$

CSC401/2511 – Spring 2022

Joint entropy

• Joint Entropy: *n.* the average amount of information needed to specify multiple variables simultaneously.

$$H(X,Y) = \sum_{x} \sum_{y} p(x,y) \log_2 \frac{1}{p(x,y)}$$

 Hint: this is very similar to univariate entropy – we just replace univariate probabilities with joint probabilities and sum over everything.

Entropy of several variables

• Consider joint probability, P(W, T)

	cold	mild	hot	
dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

 Joint entropy, H(W,T), computed as a sum over the space of joint events (W = w,T = t)

 $H(W,T) = 0.1 \log_2 \frac{1}{_{0.1}} + 0.4 \log_2 \frac{1}{_{0.4}} + 0.1 \log_2 \frac{1}{_{0.1}} + 0.2 \log_2 \frac{1}{_{0.2}} + 0.1 \log_2 \frac{1}{_{0.1}} + 0.1 \log_2 \frac{1}{_{0.1}} = 2.32193 \text{ bits}$

Notice $H(W, T) \approx 2.32 < 2.46 \approx H(W) + H(T)$

Entropy given knowledge

- In our example, joint entropy of two variables together is lower than the sum of their individual entropies
 - $H(W,T) \approx 2.32 < 2.46 \approx H(W) + H(T)$
- Why?
- Information is **shared** among variables
 - There are dependencies, e.g., between temperature and wetness.
 - E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ... ?

Conditional entropy

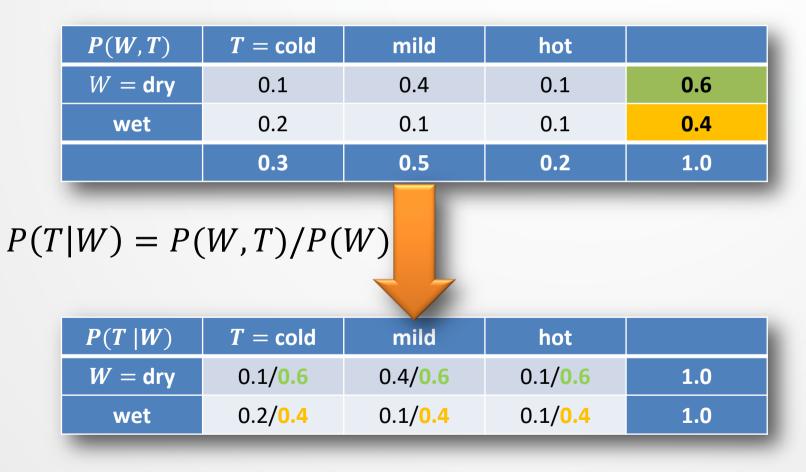
- Conditional entropy:
 - *n.* the **average** amount of information needed to specify one variable given that you know another.
 - A.k.a 'equivocation'

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

• **Hint**: this is *very* similar to how we compute expected values in general distributions.

Entropy given knowledge

• Consider conditional probability, P(T|W)



Entropy given knowledge

• Consider conditional probability, P(T|W)

P(T W)	T = cold	mild	hot	
W = dry	1/6	2/3	1/6	1.0
wet	1/2	1/4	1/4	1.0

- $H(T|W = dry) = H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right) = 1.25163$ bits
- $H(T|W = wet) = H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right) = 1.5$ bits
- Conditional entropy combines these:
 H(T|W)
 0.6
 [p(W = dry)H(T|W = dry)] + [p(W = wet)H(T|W = wet)]
 = 1.350978 bits

Equivocation removes uncertainty

- Remember H(T) = 1.48548 bits •
- H(W,T) = 2.32193 bits
- H(T|W) = 1.350978 bits

Entropy (i.e., confusion) about
temperature is reduced if we know how wet it is outside.

- How much does W tell us about T?
 - $H(T) H(T|W) = 1.48548 1.350978 \approx 0.1345$ bits
 - Well, a little bit!

Perhaps *T* **is more informative?**

• Consider **another** conditional probability, P(W|T)

P(W T)	T = cold	mild	hot
W = dry	0.1/0.3	0.4/0.5	0.1/0.2
wet	0.2/ <mark>0.3</mark>	0.1/ <mark>0.5</mark>	0.1/0.2
	1.0	1.0	1.0

- $H(W|T = cold) = H\left(\left\{\frac{1}{3}, \frac{2}{3}\right\}\right) = 0.918295$ bits
- $H(W|T = mild) = H\left(\left\{\frac{4}{5}, \frac{1}{5}\right\}\right) = 0.721928$ bits
- $H(W|T = hot) = H\left(\left\{\frac{1}{2}, \frac{1}{2}\right\}\right) = 1$ bit
- H(W|T) = 0.8364528 bits

Equivocation removes uncertainty

- H(T) = 1.48548 bits
- H(W) = 0.970951 bits
- H(W,T) = 2.32193 bits
- H(T|W) = 1.350978 hits
- $H(T) H(T|W) \approx 0.1345$ bits

Previously computed

- How much does T tell us about W on average?
 - H(W) H(W|T) = 0.970951 0.8364528 $\approx 0.1345 \text{ bits}$
 - Interesting ... is that a coincidence?

Mutual information

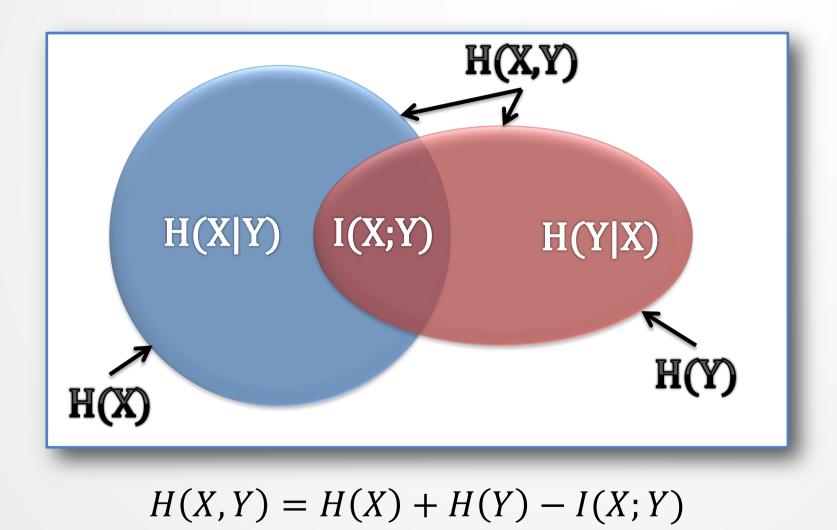
 Mutual information: n. the average amount of information shared between variables.

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

= $\sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$

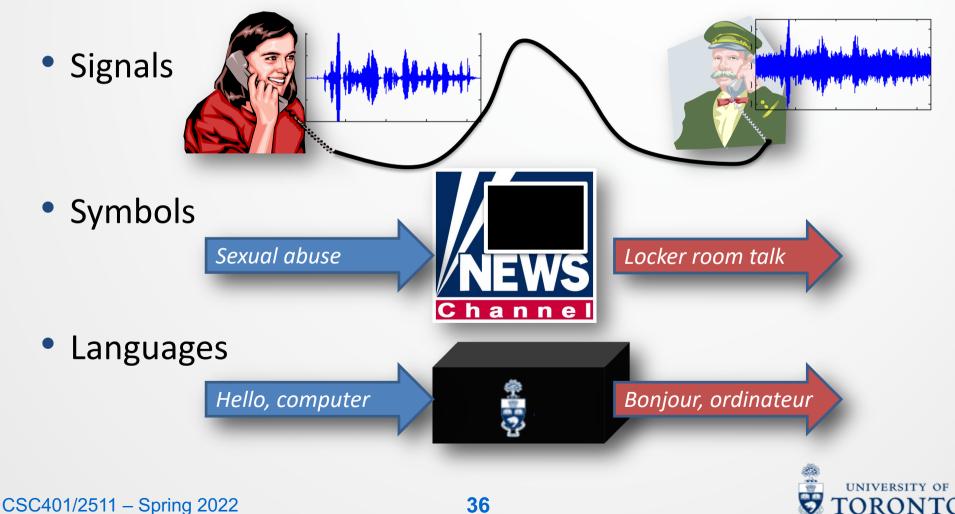
- **Hint**: The amount of uncertainty **removed** in variable *X* if you know *Y*.
- Hint2: If X and Y are independent, p(x, y) = p(x)p(y), then $\log_2 \frac{p(x,y)}{p(x)p(y)} = \log_2 1 = 0 \forall x, y - \text{there is no mutual information}!$

Relations between entropies



Reminder – the noisy channel

Messages can get distorted when passed through a noisy conduit – <u>how much information is lost/retained</u>?

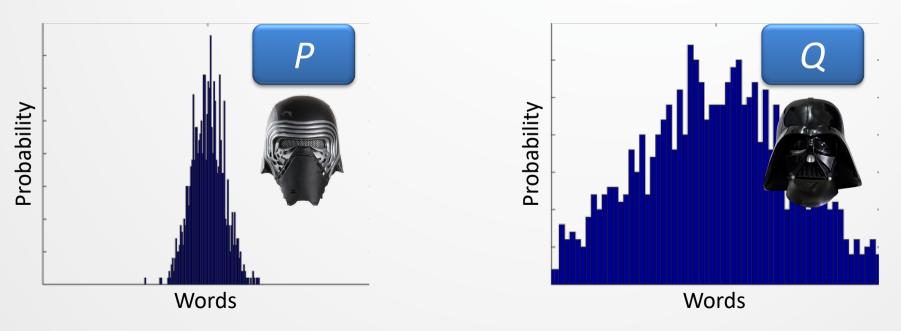


Relating corpora

CSC401/2511 - Spring 2022

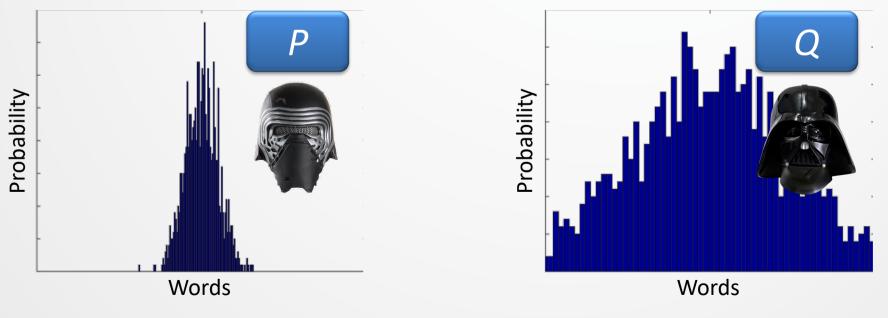
Relatedness of two distributions

- How **similar** are two probability distributions?
 - e.g., Distribution *P* learned from *Kylo Ren* Distribution *Q* learned from *Darth Vader*



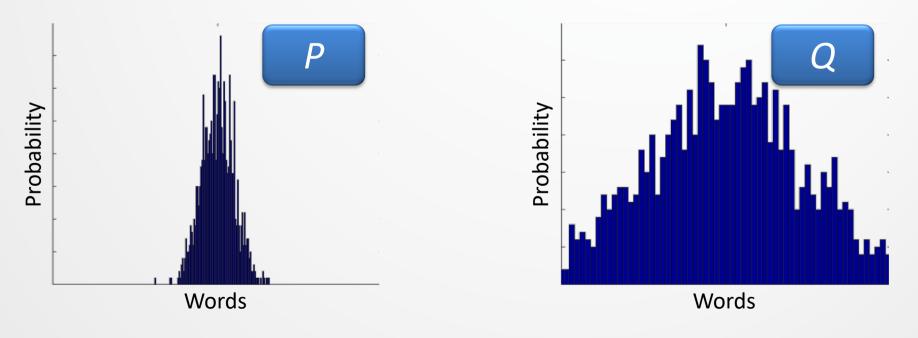
Relatedness of two distributions

- A Huffman code based on Vader (*Q*) instead of Kylo (*P*) will be less *efficient* at coding symbols that Kylo will say.
- What is the **average number of extra bits** required to code symbols from P when using a code based on Q?



• **KL divergence**: *n.* the **average log difference** between the distributions *P* and *Q*, relative to *Q*. a.k.a. **relative entropy**.

caveat: we assume $0 \log 0 = 0$



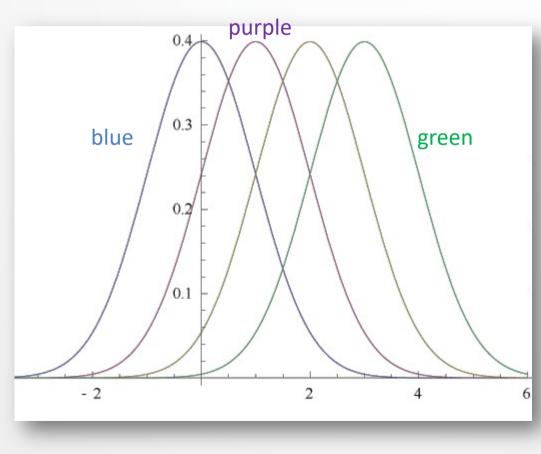
$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

- Why $\log \frac{P(i)}{Q(i)}$?
- $\log \frac{P(i)}{Q(i)} = \log P(i) \log Q(i) = \log \left(\frac{1}{Q(i)}\right) \log \left(\frac{1}{P(i)}\right)$
- If word w_i is less probable in Q than P (i.e., it carries more information), it will be Huffman encoded in more bits, so when we see w_i from P, we need $\log \frac{P(i)}{O(i)}$ more bits.

- KL divergence:
 - is *somewhat* like a '**distance'** :
 - $D_{KL}(P||Q) \ge 0 \quad \forall P, Q$
 - $D_{KL}(P||Q) = 0$ iff P and Q are identical.
 - is not symmetric, $D_{KL}(P||Q) \neq D_{KL}(Q||P)$
- Aside 1: Jensen-Shannon divergence is symmetric.
- Aside 2:

 $I(P;Q) = D_{KL}(P(X,Y)||P(X)P(Y))$

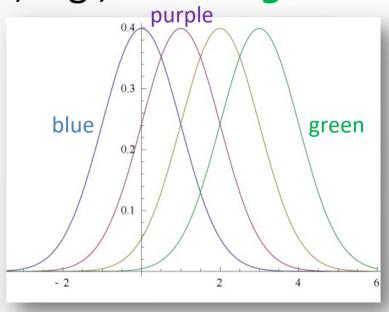
- KL divergence generalizes to **continuous** distributions.
- Below, $D_{KL}(blue||green) > D_{KL}(blue||purple)$



CSC401/2511 - Spring 2022

Applications of KL divergence

- Often used towards some other purpose, e.g.,
 - In evaluation to say that *purple* is a better model than green of the true distribution blue.
 - In machine learning to adjust the parameters of purple to be, e.g., less like green and more like blue.



CSC401/2511 – Spring 2022

Entropy as intrinsic LM evaluation

- Cross-entropy measures how difficult it is to encode an event drawn from a *true* probability *p* given a model based on a distribution *q*.
- What if we don't know the *true* probability p?
 - We'd have to estimate the CE using a test corpus C:

$$H(p,q) \approx -\frac{\log_2 P_q(C)}{\|C\|}$$

• What's the probability of a corpus $P_q(C)$?

Probability of a corpus?

 The probability P(C) of a corpus C requires similar assumptions that allowed us to compute the probability P(s_i) of a sentence s_i.

	Sentence	Corpus
Chain rule	$P(s_i) = P(w_1) \prod_{t=2}^{n} P(w_t w_{1:(t-1)})$	$P(C) = P(w_1) \prod_{t=2}^{\ C\ } P(w_t w_{1:(t-1)})$
Approx.	$P(s_i) \approx \prod_t P(w_t)$	$P(C) \approx \prod_{i} P(s_i)$

Regardless of the LM used for P(s_i), we can assume complete independence between sentences.

Intrinsic evaluation – Cross-entropy

• Cross-entropy of a LM M and a *new* test corpus C with size ||C|| (total number of words), where sentence $s_i \in C$, is approximated by:

$$H(C; M) = -\frac{\log_2 P_M(C)}{\|C\|} = -\frac{\sum_i \log_2 P_M(s_i)}{\sum_i \|s_i\|}$$

• **Perplexity** comes from this definition: $PP_M(C) = 2^{H(C;M)}$

Cross-entropy in Machine Learning

• **Cross-entropy** in ML measures the quality of a predicted distribution q(Y) with respect to p(Y):

$$H(p,q) = \sum_{y} p(y) \log \frac{1}{q(y)}$$

- Note 1: ML usually uses log with base e.
- Note 2: Cross entropy is usually used as the target for optimization, i.e., cross-entropy loss.
- Note 3: This is also called log-loss, or negative loglikelihood loss.

Decisions

CSC401/2511 - Spring 2022

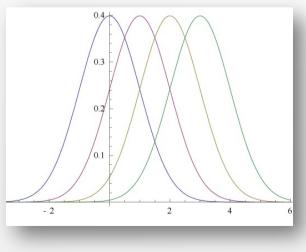
Deciding what we know

• Anecdotes are often useless except as proofs by contradiction.

- E.g., "I saw Google used as a verb" does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.
- Shallow statistics are often not enough to be truly meaningful.
 - E.g., "My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate, you horrible knuckle-dragging idiot."
 - What if the test data was **biased** to favor my system?
 - What if we only used a **very small** amount of data?
- Given all this potential ambiguity, we need a test to see if our statistics actually mean something.

Differences due to sampling

- We saw that KL divergence essentially measures how different two distributions are from each other.
- But what if their difference is due to **randomness** in **sampling**?
- How can we tell that a distribution is *really* different from another?



Hypothesis testing

- Often, we assume a null hypothesis, H₀, which states that the two distributions are <u>the same</u> (i.e., come from the same underlying model, population, or phenomenon).
- We reject the null hypothesis if the probability of it being true is too small.
 - This is often our goal e.g., if my ASR system beats yours by 0.5%, I want to show that this difference is **not** a random accident.
 - I assume it *was* an accident, then show how nearly *impossible* that is.
 - As scientists, we have to be very **careful** to not reject H_0 too hastily.
 - How can we ensure our **diligence**?

Confidence

• We reject H_0 if it is too improbable based on the evidence.

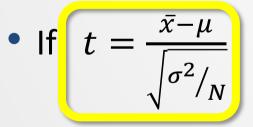
- How do we determine the value of 'too'?
- Significance level α ($0 \le \alpha \le 1$) is the maximum probability that two distributions are identical allowing us to disregard H_0 .
 - In practice, $\alpha \leq 0.05$. Usually, it's much lower.
 - **Confidence level** is $\gamma = 1 \alpha$
 - E.g., a confidence level of 95% (α = 0.05) implies that we expect that our decision is correct 95% of the time, regardless of the test data.

Confidence

- We will briefly see three types of statistical tests that can tell us how confident we can be in a claim:
 - A *t*-test, which usually tests whether the means of two models are the same. There are many types, but most assume Gaussian distributions.
 - 2. An analysis of variance (ANOVA), which generalizes the *t*-test to more than two groups.
 - 3. The χ^2 test, which evaluates categorical (discrete) outputs.

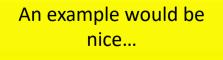
1. The t-test

- The *t*-test is a method to compute if distributions are significantly different from one another.
- It is based on the mean (\overline{x}) and variance (σ^2) of N samples.
- It compares \bar{x} and σ to H_0 which states that the samples are drawn from a distribution with a **mean** μ .



(the "t-statistic") is large enough, we can reject H_0 .

There are actually **several types** of *t*-tests for different situations...



Example of the *t***-test: tails**

- Imagine the average tweet length of a McGill 'student' is $\mu = 158$ chars.
- We sample N = 200 UofT students and find that our average tweet is $\bar{x} = 169$ chars (with $\sigma^2 = 2600$).
- Are UofT tweets significantly **longer** than McGill tweets?
- We use a 'one-tailed' test because we want to see if UofT tweet lengths are significantly higher.
 - If we just wanted to see if UofT tweets were significantly different, we'd use a two-tailed test.

Example of the *t*-test: freedom

- Imagine the average tweet length of a McGill 'student' is $\mu = 158$ chars.
- We sample N = 200 UofT students and find that our average tweet is $\bar{x} = 169$ chars (with $\sigma^2 = 2600$).
- Are UofT tweets significantly **longer** than McGill tweets?
- Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the number of observations, minus 1 (the number of sample sets).
- In our example, we have $N_{UofT} = 200$ for UofT students, meaning d.f. = 199
 - (this example is adapted from Manning & Schütze)

Example of the *t***-test**

- Imagine the average tweet length of a McGill 'student' is $\mu = 158$ chars.
- We sample N = 200 UofT students and find that our average tweet is $\bar{x} = 169$ chars (with $\sigma^2 = 2600$).
- Are UofT tweets significantly **longer** than McGill tweets?

• So
$$t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2 / N}} = \frac{169 - 158}{\sqrt{2600} / 200} \approx 3.05$$

• In a *t*-test table, we look up the minimum value of *t* necessary to reject H_0 at $\alpha = 0.005$ (we want to be quite confident) for a 1-tailed test...

Example of the *t***-test**

• So
$$t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2 / N}} = \frac{169 - 158}{\sqrt{2600} / 200} \approx 3.05$$

- In a *t*-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha = 0.005$, and find 2.576 (using $d.f. = 199 \approx \infty$)
 - Since 3.05 > 2.576, we can reject H_0 at the 99.5% level of confidence $(\gamma = 1 \alpha = 0.995)$; **UofT students are significantly more verbose**.

	lpha (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
	∞	1.645	1.960	2.326	2.576	3.091	3.291

Example of the *t***-test**

• Some things to observe about the *t*-test table:

- We need **more evidence**, *t*, if we want to be **more confident** (left-right dimension).
- We need **more evidence**, *t*, if we have

fewer measurements (top-down dimension).

A common criticism of the *t*-test is that picking *α* is ad-hoc.
 There are ways to correct for the selection of *α*.

	lpha (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
	∞	1.645	1.960	2.326	2.576	3.091	3.291

Another example: collocations

- Collocation: *n.* a 'turn-of-phrase' or usage where a sequence of words is '**perceived**' to have a meaning '**beyond**' the sum of its parts.
- E.g., 'disk drive', 'video recorder', and 'soft drink' are collocations. 'cylinder drive', 'video storer', 'weak drink' are not despite some near-synonymy between alternatives.
- Collocations are not just highly frequent bigrams, otherwise 'of the', and 'and the' would be collocations.
- How can we test if a bigram is a collocation or not?

Hypothesis testing collocations

- For collocations, the null hypothesis H₀ is that there is no association between two given words beyond pure chance.
 - I.e., the bigram's **actual** distribution and pure chance are the **same**.
 - We compute the probability of those words occurring together if H_0 were true. If that probability **is too low**, we **reject** H_0 .
 - E.g., we expect 'of the' to occur together, because they're both likely words to draw randomly
 - We could probably **not** reject H_0 in that case.

Example of the *t***-test on collocations**

- Is 'new companies' a collocation?
- In our corpus of 14,307,668 word tokens, new appears 15,828 times and companies appears 4,675 times.
- Our null hypothesis, H₀ is that they are independent, i.e.,

H₀: $P(new \ companies) = P(new)P(companies)$ = $\frac{15828}{14307668} \times \frac{4675}{14307668}$

 $\approx 3.615 \times 10^{-7}$

Example of the *t*-test on collocations

- The Manning & Schütze text claims that if the process of randomly generating bigrams follows a **Bernoulli distribution**.
 - i.e., assigning 1 whenever *new companies* appears and 0 otherwise gives $\bar{x} = p = P(new \ companies)$
 - For Bernoulli distributions, $\sigma^2 = p(1-p)$. Manning & Schütze claim that we can assume $\sigma^2 = p(1-p) \approx p$, since for most bigrams, p is very small.

Example of the *t*-test on collocations

• So, $\mu = 3.615 \times 10^{-7}$ is the expected mean in H_0 .

We actually count 8 occurrences of new companies in our corpus

•
$$\bar{x} = \frac{8}{14307667} \approx 5.591 \times 10^{-7}$$

• So $t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2 / N}} = \frac{5.591 \times 10^{-7} - 3.615 \times 10^{-7}}{\sqrt{5.591 \times 10^{-7} / 14307667}} \approx 0.9999$

- In a *t*-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha = 0.005$, and find 2.576.
 - Since 0.9999 < 2.576, we cannot reject H₀ at the 99.5% level of confidence.
 - We don't have enough evidence to think that new companies is a collocation (we can't say that it definitely *isn't*, though!).

Types of *t***-tests**

- We usually use three types of *t*-tests:
- **One-sample** *t***-test**: whether a variable *X* equals a known value μ .
 - Both the previous two examples are one-sample *t*-tests.
 - X is a random variable: e.g., mean Tweet length of UofT students.
 - μ is a specified **constant**. E.g., 0.
- **Two-sample** *t*-test: whether a variable *X* equals another variable *Y*.
 - Example: *X*/*Y*: mean of UofT/McGill tweet lengths.
 - Two-sample *t*-test is useful when you sample from **both** UofT and McGill students.
- **Paired** *t*-test: whether X Y equals a known value μ .
 - Example: X/Y: weight of the participant before/after an exercise. Test whether the exercise reduces weight.
 - Paired *t*-test is just one-sample *t*-test on the difference (i.e., X Y)
 - Paired *t*-test is useful when individual effects matter.

The normality assumption of *t*-test

- *t*-tests assumes the **random variables** are **normally distributed**.
 - Without a normality assumption, don't use *t*-tests...
 - You can use nonparametric tests instead, e.g., Mann-Whitney U test
 - Next slide: For other tests, we can use ANOVA and χ^2 tests too.
- Usually, the normality is supported by the **central limit theorem**:
 - The **mean** of $n \rightarrow \infty$ **independent** samples from **any** distribution approximates a normal distribution (details omitted)
- There are some tests to check normality.
 - E.g., Shapiro-Wilks test
 - As an exploratory analysis, just do a quantile-quantile plot (Q-Q plot) against a normal distribution.

Most tests are one-liners in either scipy or scikit-learn

2. Analysis of variance (aside)

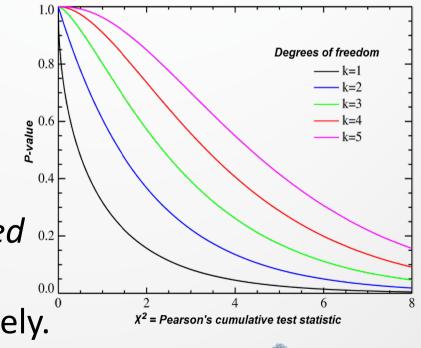
- Analyses of variance (ANOVAs) (there are several types) can be:
 - A way to generalize *t*-tests to more than two groups.
 - A way to determine which (if any) of several variables are responsible for the variation in an observation (and the interaction between them).
- An ANOVA usually involves these steps:
 - Compute a statistic, *F*.
 - Which is, *approximately*, a ratio between two variances (divided by their degrees of freedom).
 - The F statistic, together with the two degrees of freedom, gives us a p value.
 - If this p value is smaller than the significance level α , reject H_0 .

3. Pearson's χ^2 test

- The χ^2 test applies to **categorical** data, like the output of a **classifier**.
- Like the *t*-test, we decide on the degrees of freedom (number of categories minus number of parameters), compute the test-statistic, then look it up in a table.
- The test statistic is:

$$\chi^{2} = \sum_{c=1}^{C} \frac{(O_{c} - E_{c})^{2}}{E_{c}}$$

where O_c and E_c are the observed of and expected number of observations of type c, respectively.



3. Pearson's χ^2 test

- For example, is the die of Darth Vader fair or not?
- Imagine we throw it 60 times. The expected number of appearances of each side is 10.

С	<i>0</i> _c	E _c	$O_c - E_c$	$(\boldsymbol{\theta}_c - \boldsymbol{E}_c)^2$	$(\boldsymbol{O}_c - \boldsymbol{E}_c)^2 / \boldsymbol{E}_c$
1	5	10	-5	25	2.5
2	8	10	-2	4	0.4
3	9	10	-1	1	0.1
4	8	10	-2	4	0.4
5	10	10	0	0	0
6	20	10	10	100	10
			13.4		

 With df = 6 - 1 = 5, the critical value is 11.07<13.4, so we throw away H₀: the die is biased.

• We'll see χ^2 again soon...

Entropy and decisions

- Information theory is a vast ocean that provides statistical models of communication at the heart of cybernetics.
 - We've only taken a first step on the beach.
 - See the ground-breaking work of Shannon & Weaver, e.g.
- So far, we've mainly dealt with random variables that the world provides – e.g., words tokens, mainly.
- What if we could transform those inputs into new random variables, or features, that are directly engineered to be useful to decision tasks...

Feature selection

Determining a good set of features

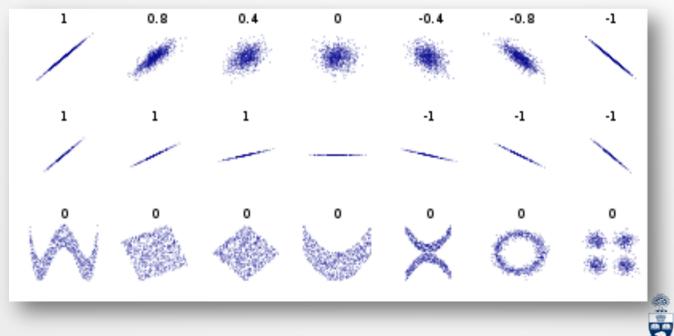
- Restricting your feature set to a proper subset quickens training and reduces overfitting.
- There are a few methods that select good features, e.g.,
 - 1. Correlation-based feature selection
 - 2. Minimum Redundancy, Maximum Relevance
 - 3. χ^2

1. Pearson's correlation

• Pearson is a measure of linear dependence

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

Does not measure 'slope' nor non-linear relations.



1. Spearman's correlation

- Spearman is a non-parametric measure of rank correlation, $r_{cX} = r(c, X)$.
 - It is basically Pearson's correlation, but on 'rank variables' that are monotonically increasing integers.
 - If the class *c* can be **ordered** (e.g., in any binary case), then we can compute the correlation between a feature *X* and that class.

1. Correlation-based feature selection

- 'Good' features should correlate strongly (+ or -) with the *predicted variable* but not with other *features*.
- S_{CFS} is some set S of k features f_i that maximizes this ratio, given class c:

$$S_{CFS} = \underset{S}{\operatorname{argmax}} \frac{\sum_{f_i \in S} r_{cf_i}}{\sqrt{k + 2\sum_{i=1}^{k-1} \sum_{j=i+1}^k \rho_{f_i f_j}}}$$

2. mRMR feature selection

- Minimum-redundancy-maximum-relevance (mRMR) can use correlation, distance scores (e.g., D_{KL}) or mutual information to select features.
- For feature set S of features f_i, and class c,
 D(S, c) : a measure of relevance S has for c, and
 R(S) : a measure of the redundancy within S,

$$S_{mRMR} = \underset{s}{\operatorname{argmax}} [D(S,c) - R(S)]$$

2. mRMR feature selection

 Measures of relevance and redundancy can make use of our familiar measures of *mutual information*,

•
$$D(S,c) = \frac{1}{\|S\|} \sum_{f_i \in S} I(f_i;c)$$

•
$$R(S) = \frac{1}{\|S\|^2} \sum_{f_i \in S} \sum_{f_j \in S} I(f_i; f_j)$$

 mRMR is robust but doesn't measure interactions of features in estimating C (for that we could use ANOVAs).

3. χ^2 method

• We adapt the χ^2 method we saw when testing whether distributions were significantly different:

$$\chi^{2} = \sum_{c=1}^{C} \frac{(O_{c} - E_{c})^{2}}{E_{c}} \longrightarrow \chi^{2} = \sum_{c=1}^{C} \sum_{f_{i}=f}^{F} \frac{(O_{c,f} - E_{c,f})^{2}}{E_{c,f}}$$

where $O_{c,f}$ and $E_{c,f}$ are the observed and expected number, respectively, of times the class c occurs together with the (discrete) feature f.

- The expectation $E_{c,f}$ assumes c and f are **independent**.
- Now, every feature has a p-value. A lower p-value means c and f are less likely to be independent.
- Select the *k* features with the lowest *p*-values.

Multiple comparisons

- If we're just ordering features, this χ^2 approach is (mostly) fine.
- But what if we get a 'significant' p-value (e.g., p < 0.05)?
 Can we claim a significant effect of the class on that feature?
- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in 9/10 flips, it's biased.
- Assuming H_0 , the coin is fair, the probability that a fair coin would come up heads \geq 9 out of 10 times is:

$$(10 + 1) \times 0.5^{10} = 0.0107$$

$$Mumber of ways 9 Number of ways all 10 flips are heads flips are heads$$

Multiple comparisons

- But imagine that you're simultaneously testing 173 coins you're doing 173 (multiple) comparisons.
- If you want to see if *a specific chosen* coin is fair, you still have only a 1.07% chance that it will give heads $\geq \frac{9}{10}$ times.
- **But** if you don't preselect a coin, what is the probability that *none* of these fair coins will accidentally appear biased?

 $(1 - 0.0107)^{173} \approx 0.156$

• If you're testing 1000 coins?

 $(1 - 0.0107)^{1000} \approx 0.0000213$

Multiple comparisons

- The more features you evaluate with a statistical test (like χ^2), the more likely you are to accidentally find spurious (incorrect) significance **accidentally**.
- **Bonferroni correction** is an adjustment method:
 - Divide your level of significance required α, by the number of comparisons.
 - E.g., if $\alpha = 0.05$, and you're doing 173 comparisons, each would need $p < \frac{0.05}{173} \approx 0.00029$ to be considered significant.

Reading

- Manning & Schütze: 2.2, 5.3-5.5
- Cover & Thomas Elements of Information Theory, Chapter 2

