

Intelligent dialogue agents

CSC401/2511 – Natural Language Computing – Spring 2019 Lecture 11 Frank Rudzicz University of Toronto

CSC401/2511 - Spring 2019

Personal assistants

SimCoach	someone NOW? Call this Helpline:	Userneme: Password: Registration is OPTIONAL
the place to talk to someone	6 866-966-1020	Lasm more about profiles HERE
	Some things b the real experi- tamilies, but I patient with m as conversatio	e to Simcoach. efore we get started: I'm based on ences of warfighters and their am not a real human, so please be e, and talk in short sentences. Far ris go, I'm best at talking about ression. I'm not a shrink, but I'm
	here to herp. Ind like to asky you a bit. Ok?	rou a few questions to get to know
A and	Sector A Can he you're consing ou?	ton.
You should view these sites to better un They'll also tell you about what's worked b Alight fil check these out.	derstand 915D. What's the ma	jor concern that brought you here

CSC401/2511 - Spring 2019

Personal assistants

I want to sleep and never wake up **

I found five hotels... four of them are fairly close to you:

Tim thinking about killing myself

If you are thinking about suicide, you may want to speak with someone at the National Suicide Prevention Lifeline.

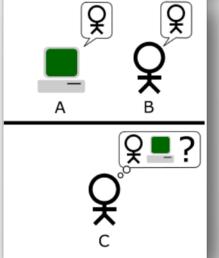
They're at 1 800 273 8255. Shall I call them for you?

> "No I'm just gonna kill myself" tap to edit

Dialogue – the final frontier



- Human-like dialogue with a machine was literally the *first* task proposed in the field of artificial intelligence.
- It remains the **most elusive**.



- To succeed, our agents must:
 - 1. Understand the world or task, and
 - 2. Respond realistically and consistently.

Understanding the world

RETRIEVING INFORMATION

Information retrieval systems

- Information retrieval (IR): *n*. searching for documents or information in documents.
 - **Question-answering**: respond with a **specific answer** to a question (e.g., Wolfram Alpha).
 - Document retrieval: find documents relevant to a query, ranked by relevance (e.g., bing or Google).
 - Text analytics/data mining: General organization of large textual databases (e.g., OpenText, MedSearch, ROSS)

Question answering (QA)

Which woman has won more than 1 Nobel prize?

• Question Answering (QA) usually involves a specific answer to a question.

Knowledge-based QA

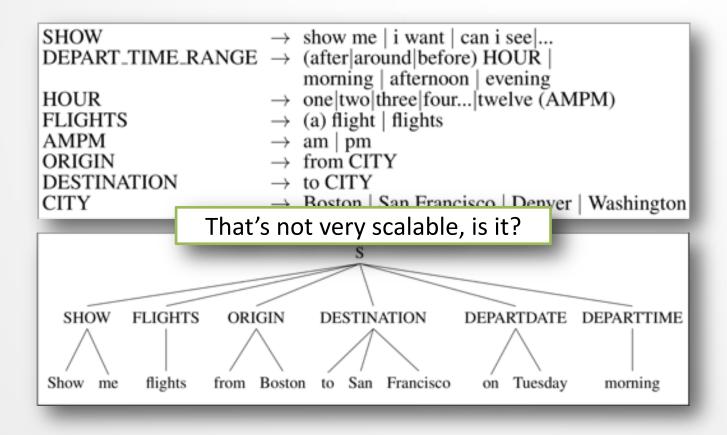
Build a **structured semantic representation** of the query.

- Extract times, dates, locations, entities using regular expressions.
 - Fit to well-known **templates**.
- 2. Query databases with these semantics.
 - Ontologies (Wikipedia infoboxes).
 - Restaurant review databases.
 - Calendars.

...

Movie schedules.

Slots machine



Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.

CSC401/2511 - Spring 2019

Document retrieval vs IR oode WolframAlpha^{*} computational. knowledge engine which woman has won more than 1 nobel prize? what woman won more than one nobel prize Q Solution: white the second sec All News Videos Images Shopping More Settings Tools WolframAlpha[®] computational knowledge engine

About 4,000,000 results (0.49 seconds)

Marie Curie won the Nobel prize in 1903 for Physics and 1911 in Chemistry; Linus Pauling in 1954 (for Chemistry) and 1962 (for Peace); John Bardeen in 1956 (for Physics) and 1972; Frederick Sanger in Chemistry in 1958 and 1980. Who has won more than one Nobel prize? Apr 1, 2007

Who has won more than one Nobel prize? - Times of India timesofindia.indiatimes.com/home/...won-more-than-one-Nobel-prize/.../1839923.cms

> About this result Feedback

People also ask

Who has won Nobel Prize twice?

What v How n

How n

One strategy is to turn question answering into information retrieval (IR) and let the human complete the task.

(?)

☆ 日

0

United States

Cyprus

CSC401/2511 - Spring 2019

what woman won more than one nobel prize?

More interpretations: nobel prize woman

Using closest Wolfram|Alpha interpretation; won more than one

Assuming Korean won for "won" | Use North Korean won instead

A. Pissarides

chemistry

economics

United States

United

Kingdom

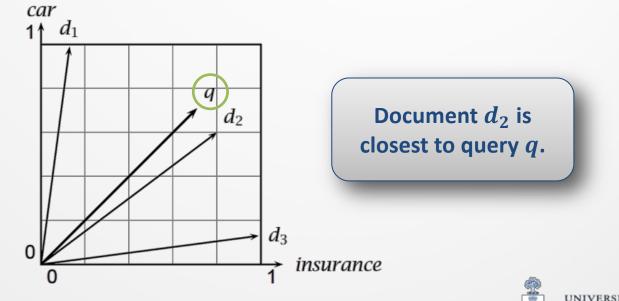
Richard

F. Heck 2010 Christopher

🔤 🖸 🖽 📨

The vector space model

- If the query and the available documents can be represented by vectors, we can determine similarity according to their cosine distance.
 - Vectors that are near each other (within a certain angular radius) are considered relevant.



Term weighting

- What if we want to **weight** words in the vector space model?
 - Term frequency, *tf*_{*ij*}:

number of occurrences of word w_i in document d_j .

• Document frequency, df_i:

number of documents in which w_i appears.

• Collection frequency, *cf*_{*i*}:

total occurrences of w_i in the collection.

Term frequency

- Higher values of tf_{ij} (for contentful words) suggest that word
 w_i is a good indicator of the content of document d_j.
 - When considering the relevance of a document d_j to a keyword w_i, tf_{ij} should be maximized.
- We often **dampen** tf_{ij} to temper these comparisons.
 - $tf_{dampen} = 1 + \log(tf)$, if tf > 0.

Document frequency

- The document frequency, df_i, is the number of documents in which w_i appears.
 - Meaningful words may occur repeatedly in a related document, but functional (or less meaningful) words may be distributed evenly over all documents.

Word	Collection frequency	Document frequency
kernel	10,440	3997
try	10,422	8760

 E.g., kernel occurs about as often as try in total, but it occurs in fewer documents – it is a more specific concept.

Inverse document frequency

- Very specific words, w_i , would give **smaller** values of df_i .
- To maximize specificity, the **inverse document frequency** is

$$idf_i = \log\left(\frac{D}{df_i}\right)$$

where *D* is the total number of documents and we scale with log, as before.

 This measure gives full weight to words that occur in 1 document, and zero weight to words that occur in all documents.

tf.idf

 We combine the term frequency and the inverse document frequency to give us a joint measure of relatedness between words and documents:

$$tf.idf(w_i, d_j) = \begin{cases} (1 + \log(tf_{ij})) \log \frac{D}{df_i} & \text{if } tf_{ij} \ge 1\\ 0 & \text{if } tf_{ij} = 0 \end{cases}$$

Latent semantic indexing

- **Co-occurrence**: *n.* when two or more terms occur in the same documents more often than by chance.
 - Note: this is not the same as collocations
- Consider the following:

		Term 1	Term 2	Term 3	Term 4
?	Query	natural	language		
	Document 1	natural	language	NLP	embedding
	Document 2			NLP	embedding

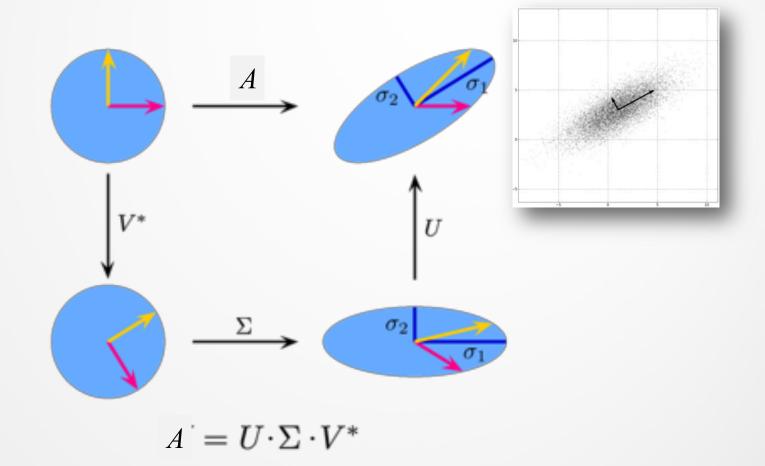
- Document 2 appears to be related to the query although it contains none of the query terms.
 - The query and document 2 are semantically related.

Singular value decomposition (SVD)

- An SVD projection is computed by decomposing the term-bydocument matrix $A_{t \times d}$ into the product of three matrices: $T_{t \times n}$, $S_{n \times n}$, and $D_{d \times n}$ where t is the number of words (terms), d is the number of documents, and $n = \min(t, d)$.
- Specifically,

$$A_{t \times d} = T_{t \times n} S_{n \times n} (D_{d \times n})^{\mathsf{T}}$$

Singular value decomposition (SVD)



			d_1	d_2	d	d_4	d_	<i>d</i> ₆								
			_							nat.		-0.44	-0.30	0.57	0.58	0.25
	natural		1	0	1	0	0	0		lang		-0.13	-0.33	-0.59	0	0.73
A =	languag	e	0	1	0	0	0	0	T =	proc		-0.48	-0.51	-0.37	0	-0.61
	process	ing	1	1	0	0	0	0	•	car		-0.70	0.35	0.15	-0.58	0.16
	car		1	0	0	1	1	0								
	truck		0	0	0	1	0	1		trucl		-0.26	0.65	-0.41	0.58	-0.09
	_	_	-		-	-	-									
											-1	d	d	d	d	d
	2.16	0		0		0		0			<i>d</i> ₁	<i>d</i> ₂	d ₃	<i>d</i> ₄	d ₅	<i>d</i> ₆
	0	1.59	,	0		0		0		-().75	-0.28	-0.20	-0.45	-0.33	-0.12
с —			,						٦T	-0).29	-0.53	-0.19	0.63	0.22	0.41
S =	0	0		1.28	3	0		0	D' =	= 0	.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0		0		1		0								
	•	0		0		0		0 20			0	0	0.58	0	-0.58	0.58
	0	0		0		0		0.39								

 $A_{t \times d} = T_{t \times n} S_{n \times n} (D_{d \times n})^{\mathsf{T}}$

• What do these matrices mean?

CSC401/2511 – Spring 2019

		<i>d</i> ₁	d ₂	d ₃	d_4	d_5	d ₆
	natural	1	0	1	0	0	0
Λ —	language	0	1	0	0	0	0
A —	processing	1	1	0	0	0	0
	car	1	0	0	1	1	0
	truck	0	0	0	1	0	1

- A is the matrix of term frequencies, tf_{ij} .
 - E.g., *natural* occurs once in d_1 and once in d_3 .

- Matrices T and D represent terms and documents, respectively in T this *new* space.
 - E.g., the first row of *T* corresponds to the first row of *A*, and so on.
- T and D are orthonormal, so all columns are orthogonal to each other and $T^{T}T = D^{T}D = I$.

	nat	-0.44	-0.30	0.57	0.58	0.25
	lang.	-0.13	-0.33	-0.59	0	0.73
=	proc.	-0.48	-0.51	-0.37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0.41	0.58	-0.09

	<i>d</i> ₁	<i>d</i> ₂	d ₃	d_4	d_5	<i>d</i> ₆
	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
	-0.29	-0.53	-0.19	0.63	0.22	0.41
=	0.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0	0.58	0	-0.58	0.58
	-0.53	0.29	0.63	0.19	0.41	-0.22

D

- The matrix *S* contains the **singular values** of *A* in descending order.
 - The *ith* singular value indicates the amount of variation on the *ith* axis.

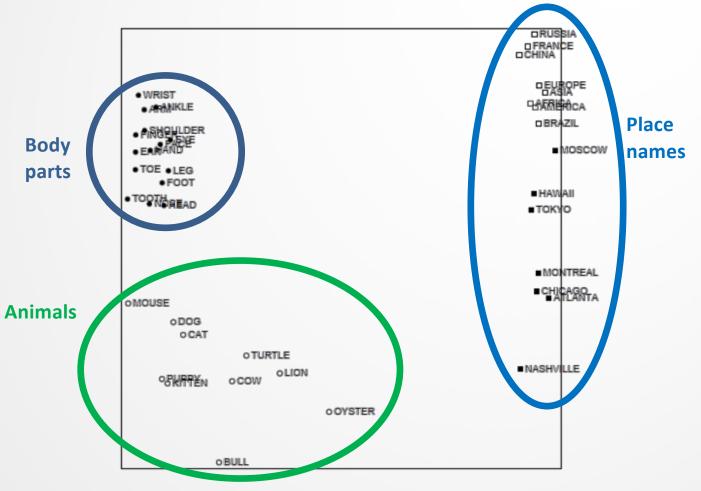
	2.16	0	0	0	0
	0	1.59	0	0	0
S =	0	0	1.28	0	0
	0	0	0	1	0
	0	0	0	0	0.39

By restricting *T*, *S*, and *D* to their first *k* < *n* columns, their product gives us Â, a 'best least squares' approximation of *A*.

	cosm.	-0.44	-0.30	U.57	0.58	0.25
T =	astro.	-0.13	-0.33	-0 <mark>5</mark> 9	0	0.73
	moon	-0.48	-0.51	- 0 .37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0 41	0.58	-0.09
				-		

	2.10	0	0	0	0		<i>d</i> ₁	d ₂	d ₃	d ₄	d_5	<i>d</i> ₆	
	2.16	0	0	0	0		-0.75	-0.28	-0.20	-0.45	-0.33	-0.12	
0	0	1.59	0	0	0		-0.29	-0.53	-0.19	0.63	0.22	0.41	
S =	0	0	1.28	0	0	D' =	0.28	-0.75	0.45	-0.20	0.12	-0.33	
	0	0	0	1	0	0	0						
	0	0	0	0	0.39		0	0	0.58	0	-0.58	0.58	
	-	-	-	-			-0.53	0.29	0.63	0.19	0.41	-0.22	

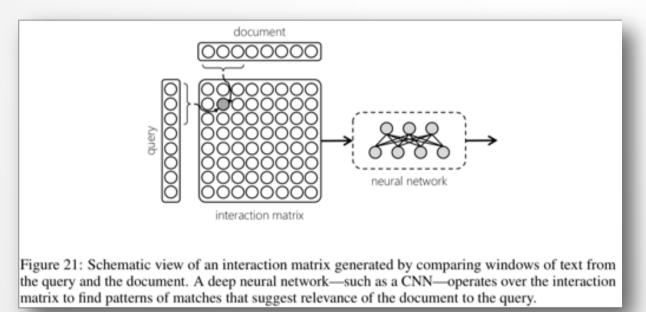
SVD in practice



Rohde *et al.* (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. *Communications of the ACM* **8**:627-633.

Neural embeddings revisited

- We can use neural embeddings for words *and* documents
 - Use term-document matrix, but swap out SVD for NNs.
 - Small amounts of **labeled** data can be used to fine-tune.



Mitra B, Craswell N. (2017) Neural Models for Information Retrieval. <u>http://arxiv.org/abs/1705.01509</u> Zhang Y, Rahman MM, Braylan A, *et al.* (2016) <u>Neural Information Retrieval: A Literature Review</u>.

CSC401/2511 – Spring 2019

Neural embeddings revisited

 Global word embeddings risk capturing only coarse representations of topics dominant in the corpus.

global	local
cutting	tax
squeeze	deficit
reduce	vote
slash	budget
reduction	reduction
spend	house
lower	bill
halve	plan
soften	spend
freeze	billion

Figure 3: Terms similar to 'cut' for a word2vec model trained on a general news corpus and another trained only on documents related to 'gasoline tax'.

Diaz F, Mitra B, Craswell N. (2016) Query Expansion with Locally-Trained Word Embeddings,

Proc. of ACL, 367–77. doi:10.18653/v1/P16-1035

CSC401/2511 - Spring 2019

Aside – query expansion

 Query expansion involves reweighting likelihoods, usually through deleted interpolation:

$$p_q^1(w) = \lambda p(w) + (1-\lambda) p_{q^+}(w)$$

• P_{q^+} comes from taking the $|\mathcal{V}| \times k$ term embedding matrix U and the $|\mathcal{V}| \times 1$ query term vector q, taking the top terms from $UU^{\mathsf{T}}q$, and normalizing their weights.

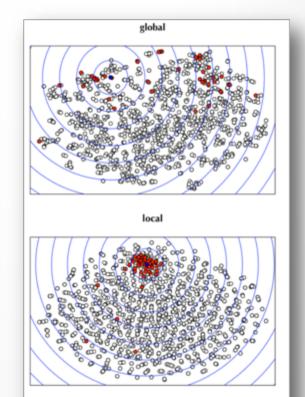


Figure 5: Global versus local embedding of highly relevant terms. Each point represents a candidate expansion term. Red points have high frequency in the relevant set of documents. White points have low or no frequency in the relevant set of documents. The blue point represents the query. Contours indicate distance from the query.

Diaz F, Mitra B, Craswell N. (2016) Query Expansion with Locally-Trained Word Embeddings,

Proc. of ACL, 367–77. <u>doi:10.18653/v1/P16-1035</u> CSC401/2511 – Spring 2019 **28**

Responding realistically and consistently **STIMULUS/RESPONSE**

Let me Bing that for you

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.



Amnesic objective functions

 Simply mapping source to target results in interaction that is only as good as its last input.

 $Loss = -\log P(target|source)$

• Generic responses become common,

i.e., *target* = "Let me search the web for that"

 Trying to maximize mutual information improves things, but not by much.

$$I(T;S) = \sum_{T,S} p(T,S) \log_2 \frac{p(T,S)}{p(T)p(S)}$$

Amnesic objective functions

Input: What are you doin	α [?]		
-0.86 I don't know.	-1.09 Get out of here.	Input: What are you doing?	
-1.03 I don't know!	-1.09 I'm going home.	1. I've been looking for you.	4. I told you to shut up.
-1.06 Nothing.	-1.09 Oh my god!	2. I want to talk to you.	5. Get out of here.
-1.09 Get out of the way.	~ /	3. Just making sure you're OK.	6. I'm looking for a doctor.
Input: what is your name	?	Input: What is your name?	
-0.91 I don't know.		1. Blue!	4. Daniel.
-0.92 I don't know! -0.92 I don't know, sir.	-1.55 My name is Robert.-1.58 My name is John.	2. Peter.	5. My name is John.
-0.92 I don't know, sn.	-1.59 My name's John.	3. Tyler.	6. My name is Robert.
Input: How old are you?		Input: How old are you?	
-0.79 I don't know.		1. Twenty-eight.	4. Five.
-1.06 I'm fine.	-1.64 Twenty-five.	2. Twenty-four.	5. 15.
-1.17 I'm all right.	-1.66 Five.	3. Long.	6. Eight.
-1.17 I'm not sure.	-1.71 Eight.		

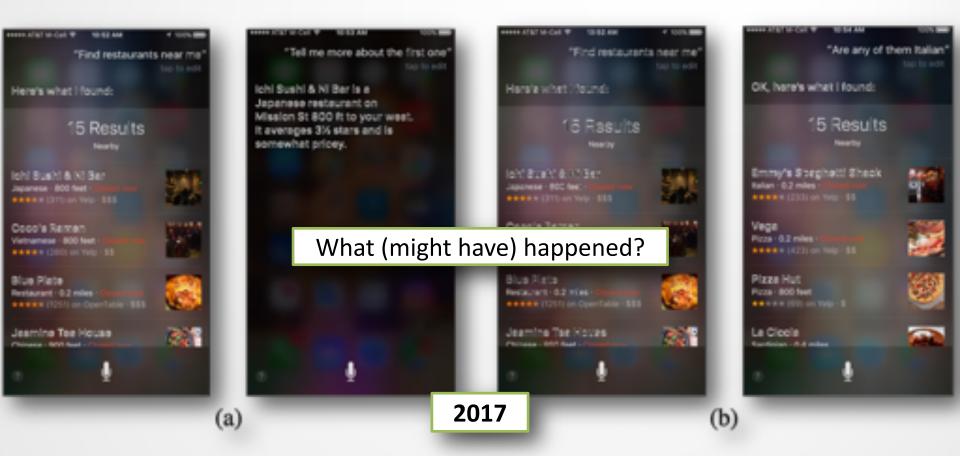
P(T|S)

I(T; S)

CSC401/2511 – Spring 2019

From Jiwei Li, Stanford

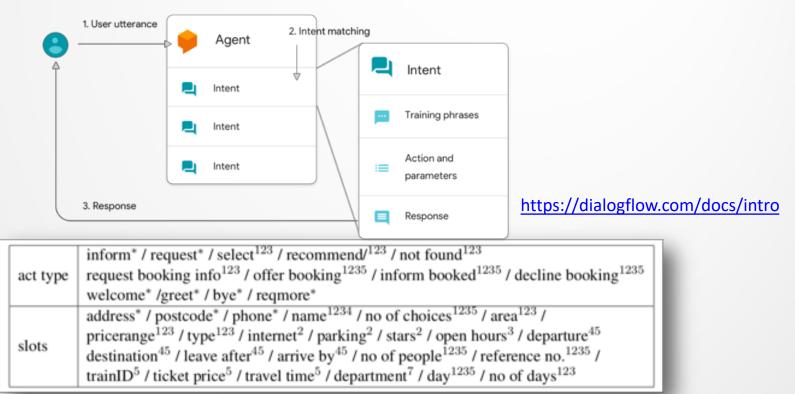
Let me actually answer that for you



Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.

States of this belief

- Map utterances to dialogue acts and beliefs about the world.
 - Maintain (and update*!) those beliefs. * Humans



Mrkšić N, Séaghdha DÓ, Wen T-H, et al. (2016) Neural Belief Tracker: Data-Driven Dialogue State Tracking. <u>http://arxiv.org/abs/1606.03777</u> CSC401/2511 – Spring 2019 34

	Core dialog acts
Info-request	Speaker wants information from ad- dressee
Action-request	Speaker wants addressee to perform an action
Yes-answer	Affirmative answer
No-answer	Negative answer
Answer	Other kinds of answer
Offer	Speaker offers or commits to perform an action
ReportOnAction	Speaker notifies an action is being/has been performed
Inform	Speaker provides addressee with in- formation not explicitly required (via an Info-request)
С	onventional dialog acts
Greet	Conversation opening
Quit	Conversation closing
Apology	Apology
Thank	Thanking (and down-playing)
Feedbaci	Vturn management dialog acts
Clarif-request	Speaker asks addressee for confirma- tion/repetition of previous utterance for clarification.
Ack	Speaker expresses agreement with previous utterance, or provides feed- back to signal understanding of what the addressee said
Filler	Utterance whose main goal is to man- age conversational time (i.e. dpeaker taking time while keeping the turn)
Non-interpro	etable/non-classifiable dialog acts
Other	Default tag for non-interpretable and non-classifiable utterances

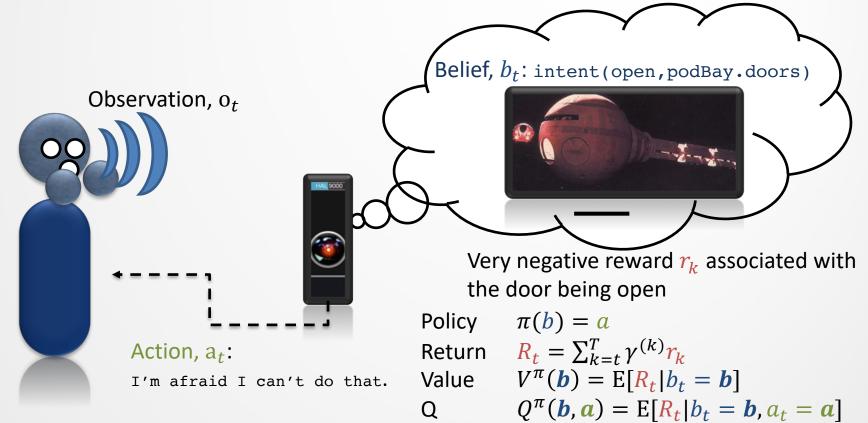
Dinarelli M, Quarteroni S, Tonelli S. (2009) Annotating spoken dialogs: from speech segments to dialog acts and frame semantics. *Proc 2nd Work Semant Represent Spok Lang* 2009;:34–41.

http://dl.acm.org/citation.cfm?id=1626301

CSC401/2511 - Spring 2019

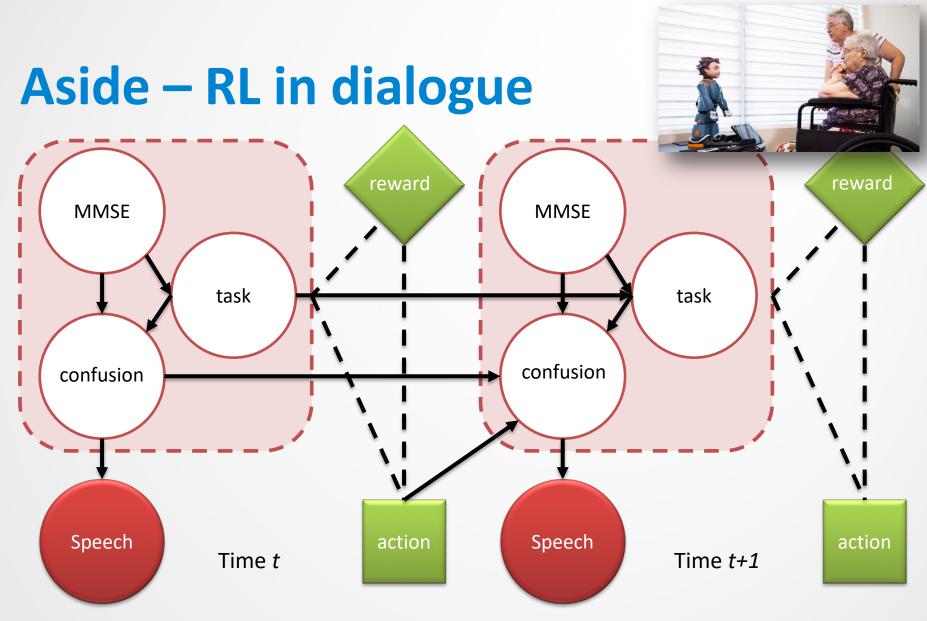
State of this belief

• Use reinforcement learning to make these explicit.



Li J, Monroe W, Ritter A, *et al.* (2017) Deep Reinforcement Learning for Dialogue Generation. <u>doi:10.18653/v1/S17-1008</u>

CSC401/2511 - Spring 2019



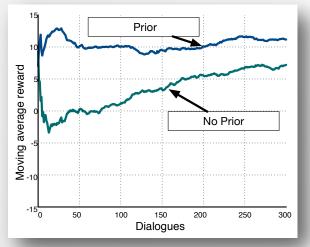
Chinaei H, Currie LC, Danks A, *et al.* (2017) Identifying and avoiding confusion in dialogue with people with Alzheimer's disease. *Computational Linguistics* **43**:377–406.

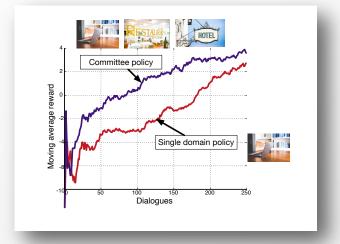
CSC401/2511 - Spring 2019

UNIVERSITY OF

Aside – RL in dialogue

- Challenge 1 : data is limited in a particular domain
 Solution 1 : learn a distributed architecture with Gaussian priors
- Challenge 2 : Estimates of Q aren't shared across different domains
 Solution 2 : Use a Bayesian 'committee machine'





Gašić *et al* (2015) Distributed dialogue policies for multi-domain statistical dialogue management, ICASSP, <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178997</u> Gašić *et al* (2015) Policy Committee for adaptation in multi-domain spoken dialogue systems, ASRU CSC401/2511 – Spring 2019 **38**

Aside – RL in dialogue

- ACER learns an 'off policy' gradient ∇J and modified loss ∇L .
 - Avoid bias through replaying experience



From Milica Gašić, Cambridge

Weisz, Budzianowski, Su, Gašić, (2018) Sample efficient deep reinforcement learning for dialogue systems with large action spaces, IEEE TASLP https://arxiv.org/pdf/1802.03753.pdf
 CSC401/2511 – Spring 2019
 39

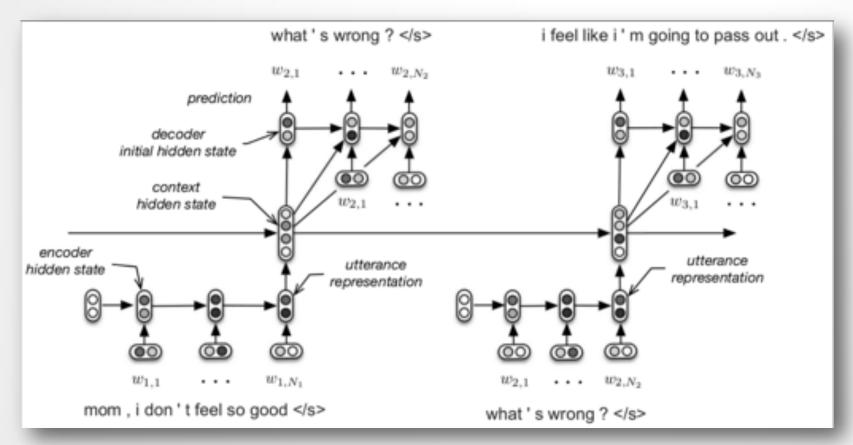
Aside – RL in dialogue

What is the main floor material in your house?	
Earth/sand	l
ls your residential area Urban or Rural?	
Urban	l
Do you own a television?	l
No	l
Which region of Kenya do you live in?	
Nyanza	l
POSITIVE: your answers are characteristic of individuals who test positive for malaria.	

Rajpurkar *et al* (2017) Malaria Likelihood Prediction By Effectively Surveying Households Using Deep Reinforcement Learning. *ML4H*.

CSC401/2511 - Spring 2019

End-to-end translation dialogue systems



Serban I V., Sordoni A, Bengio Y, et al. (2015) Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Extensions exist that add variational encoding or diversity-promoting objective

functions to avoid Siri-like repetitiveness repetitiveness.

CSC401/2511 - Spring 2019

End-to-end dialogue systems

- Claim: "we view our model as a cognitive system, which has to carry out natural language understanding, reasoning, decision making, (sic) and natural language generation".
- **Objective**: Perplexity (where *U* is an utterance)...

$$\exp\left(-\frac{1}{N_w}\sum_{n=1}^N\log P_\theta(U_1^n, U_2^n, U_3^n)\right)$$

Serban I V., Sordoni A, Bengio Y, et al. (2015) Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

 Overhype vb. make exaggerated claims about (a product, idea, or event); publicize or promote excessively

EVALUATION

Qualitative evaluation

CSC401/2511 – Spring 2019

Corpora for dialogue

Metric	DSTC2	SFX	WOZ2.0	FRAMES	KVRET	M2M	MultiWOZ
# Dialogues	1,612	1,006	600	1,369	2,425	1,500	8,438
Total # turns	23,354	12,396	4,472	19,986	12,732	14,796	115,424
Total # tokens	199,431	108,975	50,264	251,867	102,077	121,977	1,520,970
Avg. turns per dialogue	14.49	12.32	7.45	14.60	5.25	9.86	13.68
Avg. tokens per turn	8.54	8.79	11.24	12.60	8.02	8.24	13.18
Total unique tokens	986	1,473	2,142	12,043	2,842	1,008	24,071
# Slots	8	14	4	61	13	14	25
# Values	212	1847	99	3871	1363	138	4510

Table 1: Comparison of our corpus to similar data sets. Numbers in bold indicate best value for the respective metric. The numbers are provided for the training part of data except for FRAMES data-set were such division was not defined.

<u>Ubuntu dialogue corpus</u> and <u>AMI Meeting corpus</u> are also popular.

Budzianowski P, Wen T-H, Tseng B-H, *et al.* (2018) MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling <u>http://arxiv.org/abs/1810.00278</u>

Evaluating end-to-end dialogue

- *PyDial* (pydial.org) is an open-source Python toolkit for dialogue evaluation.
 - Domain-independent
- Crowd sourcing (e.g., Mechanical Turk)?
 - Gather many responses to input by humans,
 - Learn to generate responses
 - Learn to **discriminate** real from fake.

```
For number of training iterations do

For i=1,D-steps do

Sample (X,Y) from real data

Sample \hat{Y} \sim G(\cdot|X)

Update D using (X,Y) as positive examples and

(X, \hat{Y}) as negative examples.

End

For i=1,G-steps do

Sample (X,Y) from real data

Sample \hat{Y} \sim G(\cdot|X)

Compute Reward r for (X, \hat{Y}) using D.

Update G on (X, \hat{Y}) using reward r

Teacher-Forcing: Update G on (X, Y)

End

End
```

Figure 1: A brief review of the proposed adversarial reinforcement algorithm for training the generator G and discriminator D. The reward r from the discriminator D can be computed using different strategies according to whether using RE-INFORCE or REGS. The update of the generator G on (X, \hat{Y}) can be done by either using Eq.2 or Eq.3. D-steps is set to 5 and G-steps is set to 1.

Ultes, Rojas-Barahona, Su, *et al* (2017) PyDial: A Multi-domain Statistical Dialogue System Toolkit, ACL, <u>https://www.aclweb.org/anthology/P17-4013</u> Casanueva, Budzianowski, Su, *et al* (2017) A Benchmarking Environment for Reinforcement Learning Based Task Oriented Dialogue Management, NIPS Symposium on Deep RL Li J, Monroe W, Shi T, *et al.* (2017) Adversarial Learning for Neural Dialogue Generation. EMNLP, <u>http://arxiv.org/abs/1701.06547</u>

Evaluating end-to-end dialogue

Input	tell me how long have you had this falling sickness ?			
Vanilla-SEQ2SEQ	i'm not a doctor.			
Adversarial	a few months, i guess.			
Input	so i had the doctors test sammy 's response to conditioning .			
Vanilla-SEQ2SEQ	sammy wrote the test sammy wrote the test .			
Adversarial	so he took the pills .			

- Evaluating according to scores like BLEU or ROUGE usually require lots of (expensive) references.
 - Contribution of **fidelity** can be overwhelmed by **naturalness**.
 - Even still, scores don't correlate *at all* with human judgements.

Li J, Monroe W, Shi T, *et al.* (2017) Adversarial Learning for Neural Dialogue Generation. EMNLP, <u>http://arxiv.org/abs/1701.06547</u>

Evaluating end-to-end dialogue

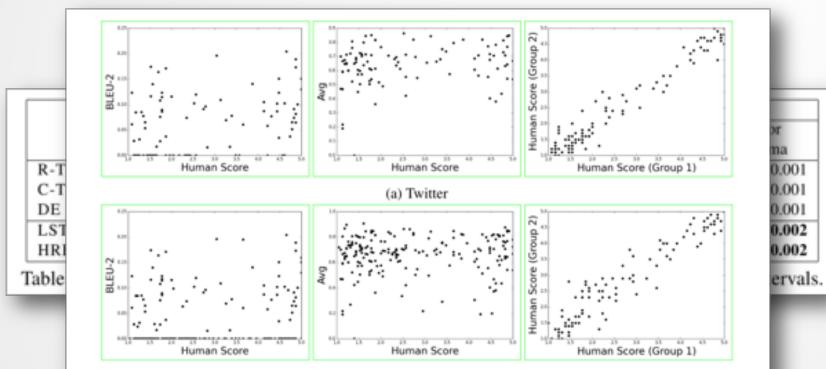


Figure 1: Scatter plots showing the correlation between metrics and human judgements on the Twitter corpus (a) and Ubuntu Dialogue Corpus (b). The plots represent BLEU-2 (left), embedding average (center), and correlation between two randomly selected halves of human respondents (right).

Liu C-W, Lowe R, Serban I V., *et al.* (2016) How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. <u>http://arxiv.org/abs/1603.08023</u>

CSC401/2511 – Spring 2019

Goodbye

sor