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Lecture 2 overview
• This lecture: 
• Linguistic data, 
• Language models
• i.e., “N-grams”
• Smoothing

• Some slides are based on content from Bob Carpenter, Dan Klein, 
Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald 
Penn, and Bill MacCartney.
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Statistics: what are we counting?
• Almost all statistics are based on simple counting.
•What are we counting?

• Tokens: n.pl. instances of words or punctuation 
(13).

• Types: n.pl. ‘kinds’ of words or punctuation (10).

First, we shape our tools and thereafter 
our tools shape us.
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Confounding factors
• Are the following pairs one type or two?
• (run, runs) (verb conjugation)

• (happy, happily) (adjective vs. adverb)
• (fra(1)gment, fragme(1)nt) (spoken stress)
• (realize, realise) (spelling)

• (We, we) (capitalization)

• How do we count speech disfluencies?
• e.g., I uh main-mainly do data processing

• Answer: It depends on your task.
• e.g., if you’re doing summarization, 

you usually don’t care about ‘uh’.
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Does it matter how we count things?
• Answer: See lecture on feature extraction.

• Preview: yes, it matters…(sometimes)

• E.g., to diagnose Alzheimer’s disease from a 
patient’s speech, you may want to measure:
• Excessive pauses (disfluencies),
• Excessive word type repetition, and
• Simplistic or short sentences.

•Where do we count things?
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Corpora
• Corpus: n. A body of language data of a particular 

sort (pl. corpora).

•Most useful corpora occur naturally
• e.g., newspaper articles, telephone conversations, 

multilingual transcripts of the United Nations, tweets.

•We use corpora to gather statistics.
•More is better (typically between 10M and 1T words).
• Be aware of bias.
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Historically notable corpora 
• Brown corpus: 1M tokens, 61,805 types. Balanced 

collection of genres in US English from 1961.
• Penn treebank: Syntactically annotated Brown, 

plus others incl. 1989 Wall Street Journal.
• London-Lund corpus: 435K tokens. Transcriptions 

of 87 UK English conversations.
• Switchboard corpus: 120 hours ≈ 2.4M tokens. 

2.4K spoken telephone conversations between 
US English speakers.
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Additional notable corpora
• Hansard corpus: Canadian parliamentary 

proceedings, French/English bilingual.
• Gutenberg project: 33K free eBooks, several 

languages. http://www.gutenberg.org
• Google corpus: Index of between 1011 and 1012

5-word sequences (13,588,391 word types 
(incl. numbers, names, misspellings, etc.)
http://ngrams.googlelabs.com/

•… and hundreds more

http://www.gutenberg.org/
http://ngrams.googlelabs.com/
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Statistical modelling
• Insofar as language can be modelled statistically, it 

might help to think of it in terms of dice.

Fair die Language

• Vocabulary: numbers
• Vocabulary size: 6

• Vocabulary: words
• Vocabulary size: 2– 200,000
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Learning probabilities
• What if the symbols are not equally likely?
• We have to estimate the bias using training data.

Loaded die Language

• Observe many rolls of the die.
• e.g., 

1,6,5,4,1,3,2,2,….

• Observe many words.
• e.g.,

…and then I will…

Training data
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Training vs testing
LanguageLoaded die

• So you’ve learned your probabilities. 
• Do they model unseen data from the same source well?

• Keep rolling the same dice.
• Do sides keep appearing in the 

same proportion as we expect?

• Keep reading words.
• Do words keep appearing in the 

same proportion as we expect?
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Sequences with no dependencies

LanguageLoaded die

• Language involves context. Ignoring that gives weird results, e.g., 
! 2,1,4 = ! 2 ! 1 !(4) ! )ℎ+ ,-. /01 = ! )ℎ+ ! ,-. !(/01)

! 2,1,4 = ! 2 ! 1 ! 4
= ! 2 ! 4 ! 1 = !(2,4,1)

! )ℎ+ ,-. /01 = ! )ℎ+ ! ,-. ! /01
= ! )ℎ+ ! /01 ! ,-.
= !()ℎ+ /01 ,-.)

• If you ignore the past entirely, the probability of a sequence 
is the product of prior probabilities.
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Sequences with full dependencies
LanguageMagic die 

(with total memory)

• If you consider all of the past, you will never gather enough 
data in order to be useful in practice.
• Imagine you’ve only seen the Brown corpus.
• The sequence ‘the old car’ never appears therein.
• ! "#$ %ℎ' ()* = 0 ∴ ! %ℎ' ()* "#$ = 0

! 2,1,4 = ! 2 ! 1|2 !(4|2,1) ! %ℎ' ()* "#$ = ! %ℎ' ! ()*|%ℎ' !("#$|%ℎ' ()*)
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Sequences with fewer dependencies?

• Only consider two words at a time...

• Imagine you’ve only seen the Brown corpus.

• The sequences ‘the old’ & ‘old car’ do appear therein!

• ! "#$ %ℎ' > 0, ! +,-|"#$ > 0 ∴ ! %ℎ' "#$ +,- > 0
• Also, ! %ℎ' "#$ +,- > !(%ℎ' +,- "#$)

! 2,1,4 = ! 2 ! 1|2 !(4|1) ! %ℎ' "#$ +,- = ! %ℎ' ! "#$|%ℎ'
6 !(+,-|"#$)

LanguageMagic die 
(with recent memory)



LANGUAGE MODELS
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Word prediction
• Guess the next word…

• You can do quite well by 
counting how often certain 
tokens occur given their 
contexts.
• E.g., estimate 
!(#$|#$&')



CSC401/2511 – Spring 2019 18

Word prediction with N-grams
• N-grams: n.pl. token sequences of length N.

• The fragment ‘in this sentence is’ contains the 
following 2-grams (i.e., ‘bigrams’):
• (in this), (this sentence), (sentence is)

• The next bigram must start with ‘is’.

• What word is most likely to follow ‘is’?
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Use of N-gram models
• Given the probabilities of N-grams, we can compute the 

conditional probabilities of possible subsequent words.

• E.g., ! "# $ℎ& > ! "# ( ∴
! $ℎ& "# > !((|"#)

Then we would predict:

‘the last word in this sentence is the.’

(The last word in this sentence is missing.)
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Language models
• Language model: n. The statistical model of a 

language (obviously). 
• e.g., probabilities of words in an 
ordered sequence.

i.e., ! "#,"%, … ,"'

•Word prediction is at the heart of language 
modelling. 

•What do we do with a language model?
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Language models
• Language models can score and sort sentences.
• e.g., ! " #$%& '((#&) ≫ !(" #$,% '((#&))

• Language models encode some grammaticality.
• e.g., ! #&) (.//&) 0.12&) > !(#&) 0.12&) (.//&))

• Language models require suspension of disbelief. 
• i.e., can a sentence really have a probability?

• How do we calculate ! … ?
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Frequency statistics
• Term count (!"#$%) of term w in corpus C is the 

number of tokens of term w in C.
()*+, -, (

• Relative frequency (/!) is defined relative to the 
total number of tokens in the corpus, ( .

01 - = ()*+,(-, ()
(

• In theory, lim1 →9 : - =01 - . (the “frequentist view”)
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The chain rule
• Recall, 

! ", $ = ! $ " ! " = ! " $ !($)
! $ " = !(", $)

!(")

• This extends to longer sequences, e.g.,
! ", $, (, ) = ! " ! $ " ! ( ", $ !()|", $, ()

• Or, in general, 
! +,, +-, … , +/ = ! +, !(+-|+,)⋯!(+/|+,, +-, … , +/1,)
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Very simple predictions
• Let’s return to word prediction.
• We want to know the probability of the next word given 

the previous words in a sequence.

• We can approximate conditional probabilities by 
counting occurrences in large corpora of data.
• E.g., ! "##$ % &'() *ℎ',)-)) =

!(% &'() *ℎ',)-) "##$)
!(% &'() *ℎ',)-))

≈ *#2,3(% &'() *ℎ',)-) "##$)
*#2,3(% &'() *ℎ',)-))

Why?
Hint: Corpus size
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Problem with the chain rule
• There are many (∞?) possible sentences.
• In general, we won’t have enough data to compute 

reliable statistics for long prefixes
• E.g., 
"($%&''(|* ℎ&,%- 'ℎ./ 01( ',23/ '44 5,/' 61'

,' 2&,/' ℎ./ /2.-&/ ,%&) =
"(* ℎ&,%- …,%& $%&''()

"(* ℎ&,%- …,%&) = 0
0

• How can we avoid {0,∞}-probabilities?
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Independence!
•We can simplify things if we’re willing to break

from the distant past and focus on recent history.
• e.g., 
!(#$%&&'|) ℎ%+$, &ℎ-. /0' &+12. &33 4+.&

50& +& 1%+.& ℎ-. .1-,%. +$%)
≈ ! #$%&&' .1-,%. +$%
≈ ! #$%&&' +$%

• I.e., we assume statistical independence.
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Markov assumption
• Assume each observation only depends on 

a short linear history of length L.

!(#$|#&: $(& ) ≈ !(#$|# $(+ : $(& )

• Bigram version:

!(#$|#&: $(& ) ≈ ! #$ #$(&)
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Berkeley Restaurant Project corpus
• Let’s compute simple N-gram models of speech queries 

about restaurants in Berkeley California.
• E.g.,
• can you tell me about any good cantonese

restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that 

are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day
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Example bigram counts

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0

Chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

• Out of 9222 sentences,
• e.g., “I want” occurred 827 times
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Example bigram probabilities

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

• Obtain likelihoods by dividing bigram counts by unigram 
counts.

! "#$% & ≈ ()*$%(& "#$%)
()*$%(&) = 827

2533 ≈ 0.33

! 567$8 & ≈ ()*$%(& 567$8)
()*$%(&) = 2

2533 ≈ 7.9×10<=

Unigram counts:
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Example bigram probabilities

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

Chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0

• Obtain likelihoods by dividing bigram counts by unigram 
counts.

Unigram counts:
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Bigram estimate of an unseen phrase
• We can string bigram probabilities together to estimate 

the probability of whole sentences.
• We need to use the start (<s>) and end (</s>) tags here.

• E.g.,
P	(<s>	I	want	english food	</s>)	≈

P	(I |	<s>)	P	(want |	I )∙
P(english |	want)	P(food	|	english)	∙	

P(</s>	|	food)
≈	0.000031	
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N-grams as linguistic knowledge 
• Despite their simplicity, N-gram probabilities can crudely

capture interesting facts about language and the world.

• E.g., !(#$%&'(ℎ|+,$-) = 0.0011
!(3ℎ'$#(#|+,$-) = 0.0065

! -6 +,$- = 0.66
! #,- -6 = 0.28
!(966:|-6) = 0

!('| < ( >) = 0.25

World
knowledge

Syntax

Discourse



• The probability of a sentence ! is defined as the product
of the conditional probabilities of its N-grams:

" ! = $
%&'

(
"(*%|*%,'*%,-)

" ! =$
%&-

(
"(*%|*%,-)

• Which of these two models is better?
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Probabilities of sentences

bigram

trigram



EVALUATING LANGUAGE MODELS
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Shannon’s method

•We can use a language model to generate
random sequences.

•We ought to see sequences that are similar to 
those we used for training.

• This approach is attributed to Claude Shannon.
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Shannon’s method – unigrams 

• Sample a model according to its probability.
• For unigrams, keep picking tokens.
• e.g., imagine throwing darts at this:

the
Cat
in
Hat
</s>
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Problem with unigrams

• Unigrams give high probability to odd phrases. 
e.g., ! "ℎ$ "ℎ$ "ℎ$ "ℎ$ "ℎ$ </s> = ! "ℎ$ * ⋅ !(</s>)

> !("ℎ$ ./" 01 "ℎ$ 2/" </s>)

the
Cat
in
Hat
</s>
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Shannon’s method – bigrams 

• Bigrams have fixed context once that context 
has been sampled.
• e.g., 

the
Cat
in
Hat
</s>

!(# |%ℎ')

the
Cat
in
Hat
</s>

Time Step 1 Time Step 2
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• Months the my and issue of year foreign new exchange’s September were 
recession exchange new endorsed a acquire to six executives.

Bi
gr

am

• Last December through the way to preserve the Hudson corporation N.B.E.C. 
Taylor would seem to complete the major central planners one point five percent 
of U.S.E. has already old M.X. corporation of living on information such as more 
frequently fishing to keep her.

Tr
ig

ra
m • They also point to ninety nine point six billion dollars from two hundred four oh 

six three percent of the rates of interest stores as Mexico and Brazil on market 
conditions.
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Shannon and the Wall Street Journal
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• To him swallowed confess hear both. Which. Of save on trail for are ay device and 
rote life have

• Hill he late speaks; or! A more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of.. Sleep knave we. Near; 

vile like.

Bi
gr

am

• What means, sir. I confess she? Then all sorts, he is trim, captain.
• Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. 

Live king. Follow.
• What we, hat got so she that I rest and sent to scold and nature bankrupt nor the 

first gentleman?

Tr
ig

ra
m • Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

• This shall forbid it should be branded, if renown made it empty.
• Indeed the duke; and had a very good friend.

Qu
ad

rig
ra

m • King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch.
• Will you not tell me who I am?
• It cannot be but so.
• Indeed the short and the long. Marry. ‘tis a noble Lepidus.
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Shannon’s method on Shakespeare
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Shakespeare as a corpus
• 884,647 tokens, vocabulary of & = 29,066 types.
• Shakespeare produced about 300,000 bigram types 

out of &2 ≈ 845. possible bigram types.
• ∴ 99.96% of possible bigrams were never seen 

(i.e., they have 0 probability in the bigram table).

• Quadrigrams appear more similar to Shakespeare 
because, for increasing context, there are fewer 
possible next words, given the training data.
• E.g., 0 1234567869 766: 8ℎ6 89<=839 = 1
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Evaluating a language model

• How can we quantify the goodness of a model?

• How do we know whether one model is better 
than another?
• There are 2 general ways of evaluating LMs:
• Extrinsic: in terms of some external measure

(this depends on some task or application).
• Intrinsic: in terms of properties of the LM itself.
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Extrinsic evaluation

• The utility of a language model is often 
determined in situ (i.e., in practice).
• e.g., 

1. Alternately embed LMs ! and " into 
a speech recognizer.

2. Run speech recognition using each model.
3. Compare recognition rates between 

the system that uses LM ! and 
the system that uses LM ".
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Intrinsic evaluation

• To measure the intrinsic value of a language 
model, we first need to estimate the probability 
of a corpus, !(#).
• This will also let us adjust/estimate model parameters

(e.g., !(%&|()*%)) to maximize !(#&+,-.).

• For a corpus of sentences, #, we sometimes 
make the assumption that the sentences are 
conditionally independent: ! # = ∏1 !(.1)
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Maximum likelihood estimate

Brown 
corpus

…
!1 #$ %&'# = ⋯

…

•We estimate ! ⋅ given a particular corpus, e.g., Brown.
• A good model of the Brown corpus is one that makes 

Brown very likely (even if that model is bad for other corpora).

…
!2 #$ %&'# = ⋯

…

!1( ) ≥ !-( Brown 
corpus ) ∀-

If

then 
!1 is the best model of 
the Brown corpus.
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Maximum likelihood estimate
• Maximum likelihood estimate (MLE) of parameters !

in a model M, given training data T is 

the estimate that maximizes the likelihood of the 
training data using the model.

• e.g., " is the Brown corpus,
# is the bigram and unigram tables
$ %& '()% is * %& '()% .

• In fact, we have been doing MLE, within the N-gram 
context, all along with our simple counting.
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Perplexity
• Perplexity of corpus !, ""(!) = 2'

()*+ ,(-)
-

• If you have a vocabulary . with . word types, 
and your LM is uniform (i.e., " / = 01 . ∀ / ∈ .),

• Then

"" ! = 2'
456+ 7(8)

8 = 2'
456+ 01 . ` -

8 = 2' 456+( ⁄1 . ) = 2456+ .

= .

• Perplexity is sort of like a ‘branching factor’.

• Minimizing perplexity ≡ maximizing probability of corpus
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Perplexity as an evaluation metric 

• Lower perplexity →  a better model.
• (more on this in the section on information theory)

• e.g., splitting WSJ corpus into a 38M word 
training set and a 1.5M word test set gives:
N-gram order Unigram Bigram Trigram
Perplexity 962 170 109
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Modelling language
• So far, we’ve modelled language as a surface phenomenon

using only our observations (i.e., words).

• Language is hugely complex and involves hidden structure 
(recall: syntax, semantics, pragmatics).

• A ‘true’ model of language would take into account all
those things and the proper relations between them.

• Our first hint of modelling hidden structure will come with 
uncovering grammatical roles (i.e., parts-of-speech)



ZIPF AND THE NATURAL DISTRIBUTIONS 
IN LANGUAGE
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Sparseness

• Problem with N-gram models:
• New words appear often as we read new data.

• e.g., interfrastic, espepsia, $182,321.09
• New bigrams occur even more often.

• Recall that Shakespeare only wrote ~0.04% of all 
the bigrams he could have, given his vocabulary.
• Because there are so many possible bigrams, we 

encounter new ones more frequently as we read.
• New trigrams occur even more even-more-often.
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Sparseness of unigrams vs. bigrams

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

• Conversely, we can see lots of every unigram, but still  
miss many bigrams:

Unigram counts:

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

Chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0
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Why does sparseness happen?
• The bigram table appears to be filled in non-uniformly.

• Clearly, some words (e.g., want) are very popular and will 

occur in many bigrams just from random chance.

• Other words are not-so-popular (e.g., hippopotomonstrosesquipedalian). 

They will occur infrequently, and when they do their 

partner word will have its own !(#).

• Is there some phenomenon that describes ! #
in real language?
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Patterns of unigrams
• Words in Tom Sawyer by Mark Twain:

• A few words occur 

very frequently.
• Aside: the most frequent 256 English 

word types account for 50% of English 

tokens.

• Aside: for Hungarian, we need the top 

4096  to account for 50%.

• Many words occur 

very infrequently.

Word Frequency
the 3332

and 2972

a 1775

to 1725

of 1440

was 1161

it 1027

in 906

that 877

he 877

… …
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Frequency of frequencies
• How many words occur ! number of times in Tom Sawyer?

Word frequency # of word types with that frequency
1 3993
2 1292

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91

11-50 540

51-100 99

>100 102

e.g., 
1292 word types 
occur twice

Notice how many 
word types are 
relatively rare!

Hapax legomena: n.pl.
words that occur once 

in a corpus.
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Ranking words in Tom Sawyer
• Rank word types in order of decreasing frequency.

Word Freq. 
(f)

Rank 
(r)

f·r

the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 70 9660
never 124 80 9920

Word Freq. 
(f)

Rank 
(r)

f·r

name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
Could 2 4000 8000
Applausive 1 8000 8000

With some 
(relatively minor) 
exceptions, 
f·r is very 
consistent!
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Zipf’s Law
• In Human Behavior and the Principle of Least Effort, Zipf

argues(*) that all human endeavour depends on laziness. 
• Speaker minimizes effort by having a small vocabulary of 

common words.
• Hearer minimizes effort by having a large vocabulary of

less ambiguous words.

• Compromise: frequency and rank are inversely proportional.

! ∝ 1$ i.e., for some k ! & $ = (

(*) This does not make it true.
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Zipf’s Law on the Brown corpus

From Manning & Schütze
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Zipf’s Law on the novel Moby Dick

From Wikipedia
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Mandelbrot
• In “Structure formelle des textes et communication”. 
Word 10:1—27, Benoit Mandelbrot claimed that
Zipf lacks detail.

• With hand-tuneable parameters !, # and $, he 
suggests

% = ! ' ( + $ *+
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Zipf vs. Mandelbrot on Brown corpus

Zipf Mandlebrot

graphs from Manning & Schütze
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Zipf’s Law in perspective
• Zipf’s explanation of the phenomenon involved human 

laziness.

• Simon’s discourse model (1956) argued that the phenomenon 
could equally be explained by two processes:
• People imitate relative frequencies of words they hear
• People innovate new words with small, constant probability

• There are other explanations. 
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Aside – Zipf’s Law in perspective
• Zipf also observed that frequency correlates with several other

properties of words, e.g.:
• Age (frequent words are old)
• Polysemy (frequent words often have many meanings or 

higher-order functions of meaning, e.g., chair)
• Length (frequent words are spelled with few letters)

• He also showed that there are hyperbolic distributions in the world 
(crucially, they’re not Gaussian), just like:
• Yule’s Law: B = 1 +   
• s: probability of mutation becoming dominant in species
• g: probability of mutation that expels species from genus

• Pareto distributions (wealth distribution) 

g
s



SMOOTHING
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Zero probability in Shakespeare
• Shakespeare’s collected writings account for about 
300,000 bigrams out of a possible 
$2 ≈ 845* bigrams, given his lexicon.
• So 99.96% of the possible bigrams were never seen.
• Now imagine that someone finds a new play and wants 

to know whether it is Shakespearean…
• Shakespeare isn’t very predictable!  Every time the play 

uses one of those 99.96% bigrams, the sentence that 
contains it (and the play!) gets 0 probability.
• This is bad.
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Zero probability in general

• Some N-grams are just really rare.
• e.g., perhaps ‘negative press covfefe’

• If we had more data, perhaps we’d see them.

• If we have no way to determine the distribution 
of unseen N-grams, how can we estimate them?
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Smoothing mechanisms

• Smoothing methods include:
1. Add-! smoothing (Laplace)
2. Good-Turing smoothing
3. Katz smoothing
4. Simple interpolation (Jelinek-Mercer)
5. Absolute discounting
6. Kneser-Ney smoothing
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Smoothing as redistribution
• Make the distribution more uniform.
• This moves the probability mass from ‘the rich’ towards 

‘the poor’.
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1. Add-1 smoothing (“Laplace discounting”)
• Given vocab size ! and corpus size " = $ .
• Just add 1 to all the counts! No more zeros!

• MLE : % & = ⁄$()*+(&) "
• Laplace estimate : %./0 & = 12345 6 78

97 !

• Does this give a proper probability distribution? Yes:

:
6
%./0 & =:

6

$()*+ & + 1
" + ! = ∑6$()*+ & + ∑61

" + ! = " + !
" + ! = 1
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1. Add-1 smoothing for bigrams
• Same principle for bigrams:

!"#$ %& %&'( = *+,-. %&'(%& + 1
*+,-. %&'( + 1

• We are essentially holding out and spreading
1 /(4 + 1 ) uniformly over “imaginary” events.

• Does this work?
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1. Laplace smoothed bigram counts

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5+1 827+1 1 9+1 1 1 1 2+1
want 2+1 1 608+1 1+1 6+1 6+1 5+1 1+1

to 2+1 1 4+1 686+1 2+1 1 6+1 211+1
eat 1 1 2+1 1 16+1 2+1 42+1 1

Chinese 1+1 1 1 1 1 82+1 1+1 1
food 15+1 1 15+1 1 1+1 4+1 1 1
lunch 2+1 1 1 1 1 1+1 1 1
spend 1+1 1 1+1 1 1 1 1 1

• Out of 9222 sentences in Berkeley restaurant corpus,
• e.g., “I want” occurred 827 times so Laplace gives 828
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1. Laplace smoothed probabilities

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

to 0.00083 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

Chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

!"#$ %& %&'( = * %&'(%& + 1
* %&'( + -
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1. Add-! smoothing
• According to this method,

" #$ %&'# went from 0.66 to 0.26.
• That’s a huge change!

• In extrinsic evaluations, the results are not great.
• Sometimes ~90% of the probability mass is spread across 

unseen events.
• It only works if we know , beforehand.
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1. Add-! smoothing
• Generalize Laplace: Add " < $ to be a bit less generous.

• MLE : % & = ⁄)*+,-(&) 0
• Add- ! estimate : %12234 & = 56789 : ;4

<;4 =

• Does this give a proper probability distribution? Yes:

>
:
%12234 & =>

:

)*+,- & + !
0 + ! = = ∑:)*+,- & + ∑:!

0 + ! =

= 0 + ! =
0 + ! = = 1 This sometimes works 

empirically (e.g., in text 

categorization), sometimes 

not… 
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• Has Zipf taught us nothing?
• We shouldn’t adjust all words uniformly. 
• Unseen words should behave more like hapax legomena.
• Words that occur a lot should behave like other words 

that occur a lot.

• If I keep reading from a corpus, by the time I see a new 
word like ‘zenzizenzizenzic’, I will have seen ‘the’ a lot 
more than once more.

Is there another way?
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• Define !" as the number of N-grams that occur c times.

• For some word in ‘bin’ !", the MLEstimate is that I saw that 
word # times.

• Idea: get rid of zeros by re-estimating # using the MLE 
estimate of words that occur # + 1 times.

2. Good-Turing

Word 
frequency

# of words  (i.e., unigrams)
with that frequency

1 &' = 3993
2 !) = 1292
3 !* = 664
… … (from Tom Sawyer)
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2. Good-Turing intuition/example
• Imagine you have this toy scenario:

• What is the MLE prior probability of hearing ‘soccer’?
• ! "#$$%& = 1/23

• What is the probability of seeing something new?
• No way to tell, but 3/23 words are hapax legomena (,- = 3).
• If we use 3/23 to approximate things we’ve never seen, then we 

have to also adjust other probabilities (e.g., !./ "#$$%& < 1/23).

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1

= 23 words total
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2. Good-Turing adjustments
• !"#∗ [&'())'] = ,-/,
• Re-estimate count /∗ = 01- 2345

23

• Unseen words
• / = 0
• MLE: 7 = 0/23
• !"#∗ [&'())'] = 25

2
= 3/23

• Seen once (e.g., soccer)
• / = 1
• MLE: 7 = 1/23
• /∗ (;//)< = 2 ⋅ 2>25

= 2 ⋅ 1/3
• !"#∗ (;//)< = (@A)/23
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2. Good-Turing limitations
• Q: What happens when you want to estimate !(#)

when # occurs % times, but no word occurs % + 1 times?
• E.g., what is !()∗ %+,- since ./ = 0 ?

• A1: We can re-estimate count %∗ = 234 5[789:]
5[78]

.
• We can use Expectation-Maximization, which we’ll see later.

• A2: We can interpolate linearly, in log-log, between 
values of % that we do have.

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1
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2. Good-Turing limitations
• Q: What happens when !"#$% &'()** +,$)#- = 0

and !"#$% &'()** 012)$0"3 = 0, and we smooth 
bigrams?
• A: 4 +,$)#- &'()** = 4(012)$0"3|&'()**)
• But we’d expect
4 +,$)#- &'()** > 4 012)$0"3 &'()**
(context notwithstanding) because ‘genius’ is a more 
common word than ‘brainbox’).

• The solution may be to combine bigram and unigram 
models…
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3. Katz backoff
• !-grams with non-zero count, e.g., " = $(&'()&'), are 

discounted according to a ratio +,, similar to Good-Turing.

• ‘Count mass’ subtracted from existing !-grams are 
redistributed to ! − 1 -grams.

$/0'1(&'()&') = 2+, ⋅ $(&'()&') if $ &'()&' > 0 ; +, ≤ 1
: &'() ;(&') otherwise

;/0'1 &' &'() = $/0'1(&'()&')
∑DE $/0'1(&F()&F)
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3. Katz backoff

• We set !(#$%&) so ∑)* +,-$.(#$%&#$) = ∑)* +(#$%&#$).
• The solution is non-trivial (but close), and left as an exercise.

• Katz suggests ‘large’ counts (0 > 5) are reliable; 3456 = 1. 
• Otherwise, we set 34 so that the total discount equals the 

fictional counts given by Good-Turing to unseen events.
• I.e., solve for ∑48&, 94 1 − 34 ⋅ 0 = 9&

• Katz generalizes to higher-order <-grams, recursively.

+,-$.(#$%&#$) = =
34 ⋅ +(#$%&#$) if + #$%&#$ > 0; 34 ≤ 1
! #$%& C(#$) otherwise
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4. Simple interpolation (Jelinek-Mercer)

• Combine trigram, bigram, and unigram probabilities.
• !" #$ #$%&#$%' = )'" #$ #$%&#$%'

+)&" #$ #$%'
+)+"(#$)

• With ∑/ )/ = 1, this constitutes a real distribution.

• )/ determined from held-out (aka development) data:
• Fix N-gram probabilities on training set.
• Adjust )/ that give highest probability to held-out data.

• (again, we can use “expectation-maximization”, to be discussed later)
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5. Absolute discounting
• Instead of multiplying highest !-gram by a "#, just subtract 

a fixed discount 0 ≤ & ≤ 1 from each non-zero count.

()*+ ,- ,-./01:-.1 = max(8 ,-./01:- − &, 0)
8(,-./01:-.1)

+ 1 − "=>?@AB:>?B ()*+(,-|,-./0D:-.1)

The n-1 words 
of context The discounted ML estimate

The weighting factor 
for the n-1 words

of context

And recurse using
the n-2 words 

of context

• Once again, you need to learn " and & using held-out data.
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6. Kneser-Ney smoothing
• In interpolation, lower-order (e.g., ! − 1) models should 

only be useful if the !-gram counts are close to 0. 
• E.g., unigram models should be optimized for when 

bigrams are not sufficient.
• Imagine the bigram ‘San Francisco’ is common ∴ ‘Francisco’ 

has a very high unigram probability because it occurs a lot. 
• But ‘Francisco’ only occurs after ‘San’.

• Idea: We should give ‘Francisco’ a low unigram probability, 
because it only occurs within the well-modeled ‘San Francisco’.
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6. Kneser-Ney smoothing

• Let the unigram count be the number of different words 
that it follows. I.e.:

!"# ⦁ %& = %&(": * %&("%& > 0
!"# ⦁⦁ =-

./
!"#(⦁%1)

• So, the unigram probability is 345 %& = 567 ⦁ .8
567 ⦁⦁ , and:

345 %& %&(9#":&(" =
max(* %&(9#":& − >, 0)

∑1 *(%1(9#":1)
+ > !"# %&(9#":.("⦁

∑./ * %1(9#":1
345(%&|%&(9#C:&(")

Where !"# %&(9#":.("⦁ is the number of possible words that follow the context.

←The total number of bigram types.
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Smoothing over smoothing
• Interpolation and backoff involve combining higher- and 

lower-order models.
• Only interpolation includes information from lower-order 

models when higher-order models have non-zero counts.

• Jelinek-Mercer performs better on small training sets; Katz 
performs better on large training sets.
• Katz smoothing performs well on N-grams with large counts; 

Kneser-Ney is best for small counts. 
• Interpolated models are superior to backoff models for low 

(nonzero) counts. 
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Announcements and reading
• Chen & Goodman (1996) An Empirical Study of 

Smoothing Techniques for Language Modeling, 
Proceedings of the 34th annual meeting of the 
Association for Computational Linguistics, Pages 310-
318. 

• Jurafsky & Martin (2nd ed):  4.1-4.7

• Manning & Schutze: 6.1-6.2.2, 6.2.5, 6.3

http://aclweb.org/anthology/P96-1041

