

CSC401/2511 – Spring 2019 2

Lecture 2 overview
• This lecture:
• Linguistic data,
• Language models
• i.e., “N-grams”
• Smoothing

• Some slides are based on content from Bob Carpenter, Dan Klein,
Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald
Penn, and Bill MacCartney.

CSC401/2511 – Spring 2019 3

Statistics: what are we counting?
• Almost all statistics are based on simple counting.
•What are we counting?

• Tokens: n.pl. instances of words or punctuation
(13).

• Types: n.pl. ‘kinds’ of words or punctuation (10).

First, we shape our tools and thereafter
our tools shape us.

CSC401/2511 – Spring 2019 4

Confounding factors
• Are the following pairs one type or two?
• (run, runs) (verb conjugation)

• (happy, happily) (adjective vs. adverb)
• (fra(1)gment, fragme(1)nt) (spoken stress)
• (realize, realise) (spelling)

• (We, we) (capitalization)

• How do we count speech disfluencies?
• e.g., I uh main-mainly do data processing

• Answer: It depends on your task.
• e.g., if you’re doing summarization,

you usually don’t care about ‘uh’.

CSC401/2511 – Spring 2019 5

Does it matter how we count things?
• Answer: See lecture on feature extraction.

• Preview: yes, it matters…(sometimes)

• E.g., to diagnose Alzheimer’s disease from a
patient’s speech, you may want to measure:
• Excessive pauses (disfluencies),
• Excessive word type repetition, and
• Simplistic or short sentences.

•Where do we count things?

CSC401/2511 – Spring 2019 6

Corpora
• Corpus: n. A body of language data of a particular

sort (pl. corpora).

•Most useful corpora occur naturally
• e.g., newspaper articles, telephone conversations,

multilingual transcripts of the United Nations, tweets.

•We use corpora to gather statistics.
•More is better (typically between 10M and 1T words).
• Be aware of bias.

CSC401/2511 – Spring 2019 7

Historically notable corpora
• Brown corpus: 1M tokens, 61,805 types. Balanced

collection of genres in US English from 1961.
• Penn treebank: Syntactically annotated Brown,

plus others incl. 1989 Wall Street Journal.
• London-Lund corpus: 435K tokens. Transcriptions

of 87 UK English conversations.
• Switchboard corpus: 120 hours ≈ 2.4M tokens.

2.4K spoken telephone conversations between
US English speakers.

CSC401/2511 – Spring 2019 8

Additional notable corpora
• Hansard corpus: Canadian parliamentary

proceedings, French/English bilingual.
• Gutenberg project: 33K free eBooks, several

languages. http://www.gutenberg.org
• Google corpus: Index of between 1011 and 1012

5-word sequences (13,588,391 word types
(incl. numbers, names, misspellings, etc.)
http://ngrams.googlelabs.com/

•… and hundreds more

http://www.gutenberg.org/
http://ngrams.googlelabs.com/

CSC401/2511 – Spring 2019 9

Statistical modelling
• Insofar as language can be modelled statistically, it

might help to think of it in terms of dice.

Fair die Language

• Vocabulary: numbers
• Vocabulary size: 6

• Vocabulary: words
• Vocabulary size: 2– 200,000

CSC401/2511 – Spring 2019 10

Learning probabilities
• What if the symbols are not equally likely?
• We have to estimate the bias using training data.

Loaded die Language

• Observe many rolls of the die.
• e.g.,

1,6,5,4,1,3,2,2,….

• Observe many words.
• e.g.,

…and then I will…

Training data

CSC401/2511 – Spring 2019 11

Training vs testing
LanguageLoaded die

• So you’ve learned your probabilities.
• Do they model unseen data from the same source well?

• Keep rolling the same dice.
• Do sides keep appearing in the

same proportion as we expect?

• Keep reading words.
• Do words keep appearing in the

same proportion as we expect?

CSC401/2511 – Spring 2019 12

Sequences with no dependencies

LanguageLoaded die

• Language involves context. Ignoring that gives weird results, e.g.,
! 2,1,4 = ! 2 ! 1 !(4) !)ℎ+ ,-. /01 = !)ℎ+ ! ,-. !(/01)

! 2,1,4 = ! 2 ! 1 ! 4
= ! 2 ! 4 ! 1 = !(2,4,1)

!)ℎ+ ,-. /01 = !)ℎ+ ! ,-. ! /01
= !)ℎ+ ! /01 ! ,-.
= !()ℎ+ /01 ,-.)

• If you ignore the past entirely, the probability of a sequence
is the product of prior probabilities.

CSC401/2511 – Spring 2019 13

Sequences with full dependencies
LanguageMagic die

(with total memory)

• If you consider all of the past, you will never gather enough
data in order to be useful in practice.
• Imagine you’ve only seen the Brown corpus.
• The sequence ‘the old car’ never appears therein.
• ! "#$ %ℎ' ()* = 0 ∴ ! %ℎ' ()* "#$ = 0

! 2,1,4 = ! 2 ! 1|2 !(4|2,1) ! %ℎ' ()* "#$ = ! %ℎ' ! ()*|%ℎ' !("#$|%ℎ' ()*)

CSC401/2511 – Spring 2019 14

Sequences with fewer dependencies?

• Only consider two words at a time...

• Imagine you’ve only seen the Brown corpus.

• The sequences ‘the old’ & ‘old car’ do appear therein!

• ! "#$ %ℎ' > 0, ! +,-|"#$ > 0 ∴ ! %ℎ' "#$ +,- > 0
• Also, ! %ℎ' "#$ +,- > !(%ℎ' +,- "#$)

! 2,1,4 = ! 2 ! 1|2 !(4|1) ! %ℎ' "#$ +,- = ! %ℎ' ! "#$|%ℎ'
6 !(+,-|"#$)

LanguageMagic die
(with recent memory)

LANGUAGE MODELS

CSC401/2511 – Spring 2019 17

Word prediction
• Guess the next word…

• You can do quite well by
counting how often certain
tokens occur given their
contexts.
• E.g., estimate
!(#$|#$&')

CSC401/2511 – Spring 2019 18

Word prediction with N-grams
• N-grams: n.pl. token sequences of length N.

• The fragment ‘in this sentence is’ contains the
following 2-grams (i.e., ‘bigrams’):
• (in this), (this sentence), (sentence is)

• The next bigram must start with ‘is’.

• What word is most likely to follow ‘is’?

CSC401/2511 – Spring 2019 19

Use of N-gram models
• Given the probabilities of N-grams, we can compute the

conditional probabilities of possible subsequent words.

• E.g., ! "# $ℎ& > ! "# (∴
! $ℎ& "# > !((|"#)

Then we would predict:

‘the last word in this sentence is the.’

(The last word in this sentence is missing.)

CSC401/2511 – Spring 2019 20

Language models
• Language model: n. The statistical model of a

language (obviously).
• e.g., probabilities of words in an
ordered sequence.

i.e., ! "#,"%, … ,"'

•Word prediction is at the heart of language
modelling.

•What do we do with a language model?

CSC401/2511 – Spring 2019 21

Language models
• Language models can score and sort sentences.
• e.g., ! " #$%& '((#&) ≫ !(" #$,% '((#&))

• Language models encode some grammaticality.
• e.g., ! #&) (.//&) 0.12&) > !(#&) 0.12&) (.//&))

• Language models require suspension of disbelief.
• i.e., can a sentence really have a probability?

• How do we calculate ! … ?

CSC401/2511 – Spring 2019 22

Frequency statistics
• Term count (!"#$%) of term w in corpus C is the

number of tokens of term w in C.
()*+, -, (

• Relative frequency (/!) is defined relative to the
total number of tokens in the corpus, (.

01 - = ()*+,(-, ()
(

• In theory, lim1 →9 : - =01 - . (the “frequentist view”)

CSC401/2511 – Spring 2019 23

The chain rule
• Recall,

! ", $ = ! $ " ! " = ! " $!($)
! $ " = !(", $)

!(")

• This extends to longer sequences, e.g.,
! ", $, (,) = ! " ! $ " ! (", $!()|", $, ()

• Or, in general,
! +,, +-, … , +/ = ! +, !(+-|+,)⋯!(+/|+,, +-, … , +/1,)

CSC401/2511 – Spring 2019 24

Very simple predictions
• Let’s return to word prediction.
• We want to know the probability of the next word given

the previous words in a sequence.

• We can approximate conditional probabilities by
counting occurrences in large corpora of data.
• E.g., ! "##$ % &'() *ℎ',)-)) =

!(% &'() *ℎ',)-) "##$)
!(% &'() *ℎ',)-))

≈ *#2,3(% &'() *ℎ',)-) "##$)
*#2,3(% &'() *ℎ',)-))

Why?
Hint: Corpus size

CSC401/2511 – Spring 2019 25

Problem with the chain rule
• There are many (∞?) possible sentences.
• In general, we won’t have enough data to compute

reliable statistics for long prefixes
• E.g.,
"($%&''(|* ℎ&,%- 'ℎ./ 01(',23/ '44 5,/' 61'

,' 2&,/' ℎ./ /2.-&/ ,%&) =
"(* ℎ&,%- …,%& $%&''()

"(* ℎ&,%- …,%&) = 0
0

• How can we avoid {0,∞}-probabilities?

CSC401/2511 – Spring 2019 26

Independence!
•We can simplify things if we’re willing to break

from the distant past and focus on recent history.
• e.g.,
!(#$%&&'|) ℎ%+$, &ℎ-. /0' &+12. &33 4+.&

50& +& 1%+.& ℎ-. .1-,%. +$%)
≈ ! #$%&&' .1-,%. +$%
≈ ! #$%&&' +$%

• I.e., we assume statistical independence.

CSC401/2511 – Spring 2019 27

Markov assumption
• Assume each observation only depends on

a short linear history of length L.

!(#$|#&: $(&) ≈ !(#$|# $(+ : $(&)

• Bigram version:

!(#$|#&: $(&) ≈ ! #$ #$(&)

CSC401/2511 – Spring 2019 28

Berkeley Restaurant Project corpus
• Let’s compute simple N-gram models of speech queries

about restaurants in Berkeley California.
• E.g.,
• can you tell me about any good cantonese

restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that

are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

CSC401/2511 – Spring 2019 29

Example bigram counts

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0

Chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

• Out of 9222 sentences,
• e.g., “I want” occurred 827 times

CSC401/2511 – Spring 2019 30

Example bigram probabilities

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

• Obtain likelihoods by dividing bigram counts by unigram
counts.

! "#$% & ≈ ()*$%(& "#$%)
()*$%(&) = 827

2533 ≈ 0.33

! 567$8 & ≈ ()*$%(& 567$8)
()*$%(&) = 2

2533 ≈ 7.9×10<=

Unigram counts:

CSC401/2511 – Spring 2019 31

Example bigram probabilities

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

Chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0

• Obtain likelihoods by dividing bigram counts by unigram
counts.

Unigram counts:

CSC401/2511 – Spring 2019 32

Bigram estimate of an unseen phrase
• We can string bigram probabilities together to estimate

the probability of whole sentences.
• We need to use the start (<s>) and end (</s>) tags here.

• E.g.,
P	(<s>	I	want	english food	</s>)	≈

P	(I |	<s>)	P	(want |	I)∙
P(english |	want)	P(food	|	english)	∙	

P(</s>	|	food)
≈	0.000031	

CSC401/2511 – Spring 2019 33

N-grams as linguistic knowledge
• Despite their simplicity, N-gram probabilities can crudely

capture interesting facts about language and the world.

• E.g., !(#$%&'(ℎ|+,$-) = 0.0011
!(3ℎ'$#(#|+,$-) = 0.0065

! -6 +,$- = 0.66
! #,- -6 = 0.28
!(966:|-6) = 0

!('| < (>) = 0.25

World
knowledge

Syntax

Discourse

• The probability of a sentence ! is defined as the product
of the conditional probabilities of its N-grams:

" ! = $
%&'

(
"(*%|*%,'*%,-)

" ! =$
%&-

(
"(*%|*%,-)

• Which of these two models is better?

CSC401/2511 – Spring 2019 34

Probabilities of sentences

bigram

trigram

EVALUATING LANGUAGE MODELS

CSC401/2511 – Spring 2019 36

Shannon’s method

•We can use a language model to generate
random sequences.

•We ought to see sequences that are similar to
those we used for training.

• This approach is attributed to Claude Shannon.

CSC401/2511 – Spring 2019 37

Shannon’s method – unigrams

• Sample a model according to its probability.
• For unigrams, keep picking tokens.
• e.g., imagine throwing darts at this:

the
Cat
in
Hat
</s>

CSC401/2511 – Spring 2019 38

Problem with unigrams

• Unigrams give high probability to odd phrases.
e.g., ! "ℎ$ "ℎ$ "ℎ$ "ℎ$ "ℎ$ </s> = ! "ℎ$ * ⋅ !(</s>)

> !("ℎ$./" 01 "ℎ$ 2/" </s>)

the
Cat
in
Hat
</s>

CSC401/2511 – Spring 2019 39

Shannon’s method – bigrams

• Bigrams have fixed context once that context
has been sampled.
• e.g.,

the
Cat
in
Hat
</s>

!(# |%ℎ')

the
Cat
in
Hat
</s>

Time Step 1 Time Step 2

Un
ig

ra
m

• Months the my and issue of year foreign new exchange’s September were
recession exchange new endorsed a acquire to six executives.

Bi
gr

am

• Last December through the way to preserve the Hudson corporation N.B.E.C.
Taylor would seem to complete the major central planners one point five percent
of U.S.E. has already old M.X. corporation of living on information such as more
frequently fishing to keep her.

Tr
ig

ra
m • They also point to ninety nine point six billion dollars from two hundred four oh

six three percent of the rates of interest stores as Mexico and Brazil on market
conditions.

CSC401/2511 – Spring 2019 40

Shannon and the Wall Street Journal

Un
ig

ra
m

• To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

• Hill he late speaks; or! A more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of.. Sleep knave we. Near;

vile like.

Bi
gr

am

• What means, sir. I confess she? Then all sorts, he is trim, captain.
• Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.

Live king. Follow.
• What we, hat got so she that I rest and sent to scold and nature bankrupt nor the

first gentleman?

Tr
ig

ra
m • Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

• This shall forbid it should be branded, if renown made it empty.
• Indeed the duke; and had a very good friend.

Qu
ad

rig
ra

m • King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch.
• Will you not tell me who I am?
• It cannot be but so.
• Indeed the short and the long. Marry. ‘tis a noble Lepidus.

CSC401/2511 – Spring 2019 41

Shannon’s method on Shakespeare

CSC401/2511 – Spring 2019 42

Shakespeare as a corpus
• 884,647 tokens, vocabulary of & = 29,066 types.
• Shakespeare produced about 300,000 bigram types

out of &2 ≈ 845. possible bigram types.
• ∴ 99.96% of possible bigrams were never seen

(i.e., they have 0 probability in the bigram table).

• Quadrigrams appear more similar to Shakespeare
because, for increasing context, there are fewer
possible next words, given the training data.
• E.g., 0 1234567869 766: 8ℎ6 89<=839 = 1

CSC401/2511 – Spring 2019 43

Evaluating a language model

• How can we quantify the goodness of a model?

• How do we know whether one model is better
than another?
• There are 2 general ways of evaluating LMs:
• Extrinsic: in terms of some external measure

(this depends on some task or application).
• Intrinsic: in terms of properties of the LM itself.

CSC401/2511 – Spring 2019 44

Extrinsic evaluation

• The utility of a language model is often
determined in situ (i.e., in practice).
• e.g.,

1. Alternately embed LMs ! and " into
a speech recognizer.

2. Run speech recognition using each model.
3. Compare recognition rates between

the system that uses LM ! and
the system that uses LM ".

CSC401/2511 – Spring 2019 45

Intrinsic evaluation

• To measure the intrinsic value of a language
model, we first need to estimate the probability
of a corpus, !(#).
• This will also let us adjust/estimate model parameters

(e.g., !(%&|()*%)) to maximize !(#&+,-.).

• For a corpus of sentences, #, we sometimes
make the assumption that the sentences are
conditionally independent: ! # = ∏1 !(.1)

CSC401/2511 – Spring 2019 46

Maximum likelihood estimate

Brown
corpus

…
!1 #$ %&'# = ⋯

…

•We estimate ! ⋅ given a particular corpus, e.g., Brown.
• A good model of the Brown corpus is one that makes

Brown very likely (even if that model is bad for other corpora).

…
!2 #$ %&'# = ⋯

…

!1() ≥ !-(Brown
corpus) ∀-

If

then
!1 is the best model of
the Brown corpus.

CSC401/2511 – Spring 2019 47

Maximum likelihood estimate
• Maximum likelihood estimate (MLE) of parameters !

in a model M, given training data T is

the estimate that maximizes the likelihood of the
training data using the model.

• e.g., " is the Brown corpus,
is the bigram and unigram tables
$ %& '()% is * %& '()% .

• In fact, we have been doing MLE, within the N-gram
context, all along with our simple counting.

CSC401/2511 – Spring 2019 48

Perplexity
• Perplexity of corpus !, ""(!) = 2'

()*+ ,(-)
-

• If you have a vocabulary . with . word types,
and your LM is uniform (i.e., " / = 01 . ∀ / ∈ .),

• Then

"" ! = 2'
456+ 7(8)

8 = 2'
456+ 01 . ` -

8 = 2' 456+(⁄1 .) = 2456+ .

= .

• Perplexity is sort of like a ‘branching factor’.

• Minimizing perplexity ≡ maximizing probability of corpus

CSC401/2511 – Spring 2019 49

Perplexity as an evaluation metric

• Lower perplexity → a better model.
• (more on this in the section on information theory)

• e.g., splitting WSJ corpus into a 38M word
training set and a 1.5M word test set gives:
N-gram order Unigram Bigram Trigram
Perplexity 962 170 109

CSC401/2511 – Spring 2019 50

Modelling language
• So far, we’ve modelled language as a surface phenomenon

using only our observations (i.e., words).

• Language is hugely complex and involves hidden structure
(recall: syntax, semantics, pragmatics).

• A ‘true’ model of language would take into account all
those things and the proper relations between them.

• Our first hint of modelling hidden structure will come with
uncovering grammatical roles (i.e., parts-of-speech)

ZIPF AND THE NATURAL DISTRIBUTIONS
IN LANGUAGE

CSC401/2511 – Spring 2019 52

Sparseness

• Problem with N-gram models:
• New words appear often as we read new data.

• e.g., interfrastic, espepsia, $182,321.09
• New bigrams occur even more often.

• Recall that Shakespeare only wrote ~0.04% of all
the bigrams he could have, given his vocabulary.
• Because there are so many possible bigrams, we

encounter new ones more frequently as we read.
• New trigrams occur even more even-more-often.

CSC401/2511 – Spring 2019 53

Sparseness of unigrams vs. bigrams

I want to eat Chinese food lunch spend
2533 927 2417 746 158 1093 341 278

• Conversely, we can see lots of every unigram, but still
miss many bigrams:

Unigram counts:

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

Chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

CSC401/2511 – Spring 2019 54

Why does sparseness happen?
• The bigram table appears to be filled in non-uniformly.

• Clearly, some words (e.g., want) are very popular and will

occur in many bigrams just from random chance.

• Other words are not-so-popular (e.g., hippopotomonstrosesquipedalian).

They will occur infrequently, and when they do their

partner word will have its own !(#).

• Is there some phenomenon that describes ! #
in real language?

CSC401/2511 – Spring 2019 55

Patterns of unigrams
• Words in Tom Sawyer by Mark Twain:

• A few words occur

very frequently.
• Aside: the most frequent 256 English

word types account for 50% of English

tokens.

• Aside: for Hungarian, we need the top

4096 to account for 50%.

• Many words occur

very infrequently.

Word Frequency
the 3332

and 2972

a 1775

to 1725

of 1440

was 1161

it 1027

in 906

that 877

he 877

… …

CSC401/2511 – Spring 2019 56

Frequency of frequencies
• How many words occur ! number of times in Tom Sawyer?

Word frequency # of word types with that frequency
1 3993
2 1292

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91

11-50 540

51-100 99

>100 102

e.g.,
1292 word types
occur twice

Notice how many
word types are
relatively rare!

Hapax legomena: n.pl.
words that occur once

in a corpus.

CSC401/2511 – Spring 2019 57

Ranking words in Tom Sawyer
• Rank word types in order of decreasing frequency.

Word Freq.
(f)

Rank
(r)

f·r

the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 70 9660
never 124 80 9920

Word Freq.
(f)

Rank
(r)

f·r

name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
Could 2 4000 8000
Applausive 1 8000 8000

With some
(relatively minor)
exceptions,
f·r is very
consistent!

CSC401/2511 – Spring 2019 58

Zipf’s Law
• In Human Behavior and the Principle of Least Effort, Zipf

argues(*) that all human endeavour depends on laziness.
• Speaker minimizes effort by having a small vocabulary of

common words.
• Hearer minimizes effort by having a large vocabulary of

less ambiguous words.

• Compromise: frequency and rank are inversely proportional.

! ∝ 1$ i.e., for some k ! & $ = (

(*) This does not make it true.

CSC401/2511 – Spring 2019 59

Zipf’s Law on the Brown corpus

From Manning & Schütze

CSC401/2511 – Spring 2019 60

Zipf’s Law on the novel Moby Dick

From Wikipedia

CSC401/2511 – Winter 2012 61

Mandelbrot
• In “Structure formelle des textes et communication”.
Word 10:1—27, Benoit Mandelbrot claimed that
Zipf lacks detail.

• With hand-tuneable parameters !, # and $, he
suggests

% = ! ' (+ $ *+

CSC401/2511 – Spring 2019 62

Zipf vs. Mandelbrot on Brown corpus

Zipf Mandlebrot

graphs from Manning & Schütze

CSC401/2511 – Spring 2019 63

Zipf’s Law in perspective
• Zipf’s explanation of the phenomenon involved human

laziness.

• Simon’s discourse model (1956) argued that the phenomenon
could equally be explained by two processes:
• People imitate relative frequencies of words they hear
• People innovate new words with small, constant probability

• There are other explanations.

CSC401/2511 – Spring 2019 64

Aside – Zipf’s Law in perspective
• Zipf also observed that frequency correlates with several other

properties of words, e.g.:
• Age (frequent words are old)
• Polysemy (frequent words often have many meanings or

higher-order functions of meaning, e.g., chair)
• Length (frequent words are spelled with few letters)

• He also showed that there are hyperbolic distributions in the world
(crucially, they’re not Gaussian), just like:
• Yule’s Law: B = 1 +
• s: probability of mutation becoming dominant in species
• g: probability of mutation that expels species from genus

• Pareto distributions (wealth distribution)

g
s

SMOOTHING

CSC401/2511 – Spring 2019 66

Zero probability in Shakespeare
• Shakespeare’s collected writings account for about
300,000 bigrams out of a possible
$2 ≈ 845* bigrams, given his lexicon.
• So 99.96% of the possible bigrams were never seen.
• Now imagine that someone finds a new play and wants

to know whether it is Shakespearean…
• Shakespeare isn’t very predictable! Every time the play

uses one of those 99.96% bigrams, the sentence that
contains it (and the play!) gets 0 probability.
• This is bad.

CSC401/2511 – Spring 2019 67

Zero probability in general

• Some N-grams are just really rare.
• e.g., perhaps ‘negative press covfefe’

• If we had more data, perhaps we’d see them.

• If we have no way to determine the distribution
of unseen N-grams, how can we estimate them?

CSC401/2511 – Spring 2019 68

Smoothing mechanisms

• Smoothing methods include:
1. Add-! smoothing (Laplace)
2. Good-Turing smoothing
3. Katz smoothing
4. Simple interpolation (Jelinek-Mercer)
5. Absolute discounting
6. Kneser-Ney smoothing

CSC401/2511 – Spring 2019 69

Smoothing as redistribution
• Make the distribution more uniform.
• This moves the probability mass from ‘the rich’ towards

‘the poor’.

0

2

4

6

8

10

tro
ut

salm
on

so
le

haddock
cat

fis
h

Adjusted counts Imaginary

0

2

4

6

8

10

tro
ut

salm
on

so
le

haddock
cat

fis
h

Actual counts

CSC401/2511 – Spring 2019 70

1. Add-1 smoothing (“Laplace discounting”)
• Given vocab size ! and corpus size " = $.
• Just add 1 to all the counts! No more zeros!

• MLE : % & = ⁄$()*+(&) "
• Laplace estimate : %./0 & = 12345 6 78

97 !

• Does this give a proper probability distribution? Yes:

:
6
%./0 & =:

6

$()*+ & + 1
" + ! = ∑6$()*+ & + ∑61

" + ! = " + !
" + ! = 1

CSC401/2511 – Spring 2019 71

1. Add-1 smoothing for bigrams
• Same principle for bigrams:

!"#$ %& %&'(= *+,-. %&'(%& + 1
*+,-. %&'(+ 1

• We are essentially holding out and spreading
1 /(4 + 1) uniformly over “imaginary” events.

• Does this work?

CSC401/2511 – Spring 2019 72

1. Laplace smoothed bigram counts

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5+1 827+1 1 9+1 1 1 1 2+1
want 2+1 1 608+1 1+1 6+1 6+1 5+1 1+1

to 2+1 1 4+1 686+1 2+1 1 6+1 211+1
eat 1 1 2+1 1 16+1 2+1 42+1 1

Chinese 1+1 1 1 1 1 82+1 1+1 1
food 15+1 1 15+1 1 1+1 4+1 1 1
lunch 2+1 1 1 1 1 1+1 1 1
spend 1+1 1 1+1 1 1 1 1 1

• Out of 9222 sentences in Berkeley restaurant corpus,
• e.g., “I want” occurred 827 times so Laplace gives 828

CSC401/2511 – Spring 2019 73

1. Laplace smoothed probabilities

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

to 0.00083 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

Chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

!"#$ %& %&'(= * %&'(%& + 1
* %&'(+ -

CSC401/2511 – Spring 2019 74

1. Add-! smoothing
• According to this method,

" #$ %&'# went from 0.66 to 0.26.
• That’s a huge change!

• In extrinsic evaluations, the results are not great.
• Sometimes ~90% of the probability mass is spread across

unseen events.
• It only works if we know , beforehand.

CSC401/2511 – Spring 2019 75

1. Add-! smoothing
• Generalize Laplace: Add " < $ to be a bit less generous.

• MLE : % & = ⁄)*+,-(&) 0
• Add- ! estimate : %12234 & = 56789 : ;4

<;4 =

• Does this give a proper probability distribution? Yes:

>
:
%12234 & =>

:

)*+,- & + !
0 + ! = = ∑:)*+,- & + ∑:!

0 + ! =

= 0 + ! =
0 + ! = = 1 This sometimes works

empirically (e.g., in text

categorization), sometimes

not…

CSC401/2511 – Spring 2019 76

• Has Zipf taught us nothing?
• We shouldn’t adjust all words uniformly.
• Unseen words should behave more like hapax legomena.
• Words that occur a lot should behave like other words

that occur a lot.

• If I keep reading from a corpus, by the time I see a new
word like ‘zenzizenzizenzic’, I will have seen ‘the’ a lot
more than once more.

Is there another way?

CSC401/2511 – Spring 2019 77

• Define !" as the number of N-grams that occur c times.

• For some word in ‘bin’ !", the MLEstimate is that I saw that
word # times.

• Idea: get rid of zeros by re-estimating # using the MLE
estimate of words that occur # + 1 times.

2. Good-Turing

Word
frequency

of words (i.e., unigrams)
with that frequency

1 &' = 3993
2 !) = 1292
3 !* = 664
… … (from Tom Sawyer)

CSC401/2511 – Spring 2019 78

2. Good-Turing intuition/example
• Imagine you have this toy scenario:

• What is the MLE prior probability of hearing ‘soccer’?
• ! "#$$%& = 1/23

• What is the probability of seeing something new?
• No way to tell, but 3/23 words are hapax legomena (,- = 3).
• If we use 3/23 to approximate things we’ve never seen, then we

have to also adjust other probabilities (e.g., !./ "#$$%& < 1/23).

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1

= 23 words total

CSC401/2511 – Spring 2019 79

2. Good-Turing adjustments
• !"#∗ [&'())'] = ,-/,
• Re-estimate count /∗ = 01- 2345

23

• Unseen words
• / = 0
• MLE: 7 = 0/23
• !"#∗ [&'())'] = 25

2
= 3/23

• Seen once (e.g., soccer)
• / = 1
• MLE: 7 = 1/23
• /∗ (;//)< = 2 ⋅ 2>25

= 2 ⋅ 1/3
• !"#∗ (;//)< = (@A)/23

CSC401/2511 – Spring 2019 80

2. Good-Turing limitations
• Q: What happens when you want to estimate !(#)

when # occurs % times, but no word occurs % + 1 times?
• E.g., what is !()∗ %+,- since ./ = 0 ?

• A1: We can re-estimate count %∗ = 234 5[789:]
5[78]

.
• We can use Expectation-Maximization, which we’ll see later.

• A2: We can interpolate linearly, in log-log, between
values of % that we do have.

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1

CSC401/2511 – Spring 2019 81

2. Good-Turing limitations
• Q: What happens when !"#$% &'()** +,$)#- = 0

and !"#$% &'()** 012)$0"3 = 0, and we smooth
bigrams?
• A: 4 +,$)#- &'()** = 4(012)$0"3|&'()**)
• But we’d expect
4 +,$)#- &'()** > 4 012)$0"3 &'()**
(context notwithstanding) because ‘genius’ is a more
common word than ‘brainbox’).

• The solution may be to combine bigram and unigram
models…

CSC401/2511 – Spring 2019 82

3. Katz backoff
• !-grams with non-zero count, e.g., " = $(&'()&'), are

discounted according to a ratio +,, similar to Good-Turing.

• ‘Count mass’ subtracted from existing !-grams are
redistributed to ! − 1 -grams.

$/0'1(&'()&') = 2+, ⋅ $(&'()&') if $ &'()&' > 0 ; +, ≤ 1
: &'() ;(&') otherwise

;/0'1 &' &'() = $/0'1(&'()&')
∑DE $/0'1(&F()&F)

CSC401/2511 – Spring 2019 83

3. Katz backoff

• We set !(#$%&) so ∑)* +,-$.(#$%&#$) = ∑)* +(#$%&#$).
• The solution is non-trivial (but close), and left as an exercise.

• Katz suggests ‘large’ counts (0 > 5) are reliable; 3456 = 1.
• Otherwise, we set 34 so that the total discount equals the

fictional counts given by Good-Turing to unseen events.
• I.e., solve for ∑48&, 94 1 − 34 ⋅ 0 = 9&

• Katz generalizes to higher-order <-grams, recursively.

+,-$.(#$%&#$) = =
34 ⋅ +(#$%&#$) if + #$%&#$ > 0; 34 ≤ 1
! #$%& C(#$) otherwise

CSC401/2511 – Spring 2019 84

4. Simple interpolation (Jelinek-Mercer)

• Combine trigram, bigram, and unigram probabilities.
• !" #$ #$%&#$%' =)'" #$ #$%&#$%'

+)&" #$ #$%'
+)+"(#$)

• With ∑/)/ = 1, this constitutes a real distribution.

•)/ determined from held-out (aka development) data:
• Fix N-gram probabilities on training set.
• Adjust)/ that give highest probability to held-out data.

• (again, we can use “expectation-maximization”, to be discussed later)

CSC401/2511 – Spring 2019 85

5. Absolute discounting
• Instead of multiplying highest !-gram by a "#, just subtract

a fixed discount 0 ≤ & ≤ 1 from each non-zero count.

()*+ ,- ,-./01:-.1 = max(8 ,-./01:- − &, 0)
8(,-./01:-.1)

+ 1 − "=>?@AB:>?B ()*+(,-|,-./0D:-.1)

The n-1 words
of context The discounted ML estimate

The weighting factor
for the n-1 words

of context

And recurse using
the n-2 words

of context

• Once again, you need to learn " and & using held-out data.

CSC401/2511 – Spring 2019 86

6. Kneser-Ney smoothing
• In interpolation, lower-order (e.g., ! − 1) models should

only be useful if the !-gram counts are close to 0.
• E.g., unigram models should be optimized for when

bigrams are not sufficient.
• Imagine the bigram ‘San Francisco’ is common ∴ ‘Francisco’

has a very high unigram probability because it occurs a lot.
• But ‘Francisco’ only occurs after ‘San’.

• Idea: We should give ‘Francisco’ a low unigram probability,
because it only occurs within the well-modeled ‘San Francisco’.

CSC401/2511 – Spring 2019 87

6. Kneser-Ney smoothing

• Let the unigram count be the number of different words
that it follows. I.e.:

!"# ⦁ %& = %&(": * %&("%& > 0
!"# ⦁⦁ =-

./
!"#(⦁%1)

• So, the unigram probability is 345 %& = 567 ⦁ .8
567 ⦁⦁ , and:

345 %& %&(9#":&(" =
max(* %&(9#":& − >, 0)

∑1 *(%1(9#":1)
+ > !"# %&(9#":.("⦁

∑./ * %1(9#":1
345(%&|%&(9#C:&(")

Where !"# %&(9#":.("⦁ is the number of possible words that follow the context.

←The total number of bigram types.

CSC401/2511 – Spring 2019 88

Smoothing over smoothing
• Interpolation and backoff involve combining higher- and

lower-order models.
• Only interpolation includes information from lower-order

models when higher-order models have non-zero counts.

• Jelinek-Mercer performs better on small training sets; Katz
performs better on large training sets.
• Katz smoothing performs well on N-grams with large counts;

Kneser-Ney is best for small counts.
• Interpolated models are superior to backoff models for low

(nonzero) counts.

CSC401/2511 – Spring 2019 89

Announcements and reading
• Chen & Goodman (1996) An Empirical Study of

Smoothing Techniques for Language Modeling,
Proceedings of the 34th annual meeting of the
Association for Computational Linguistics, Pages 310-
318.

• Jurafsky & Martin (2nd ed): 4.1-4.7

• Manning & Schutze: 6.1-6.2.2, 6.2.5, 6.3

http://aclweb.org/anthology/P96-1041

