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This lecture

* Information theory and entropy.
® Decisions.

* Classification.

* Significance.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

* Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
* You don’t know what hée’ll say.

® You have a certain amount of uncertainty — a lack of
information.
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Information

* Imagine you then observe Darth Vader saying “no”
® Your uncertainty is gone; you’ve received information.
°* How much information do you receive about event £

when you observe it?

1
I(E) =1
(E) 082 P(E)
For the units For the inverse

W of measurement

1
= log, —— = 1 bit

I(no) = log,
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Information

* Imagine Darth Vader is about to roll a fair die.
®* You have more uncertainty about an event because
there are more possibilities.
® You receive more information when you observe it.

~ 2.59 bits
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Information is additive

* From kindependent, equally likely events E,

1 1 1
k) = log, ——— = log, ——— I(k binary decisions) = 1 = k bi
I(E¥) logzP(Ek) logZP(E)k (k binary decisions) = log, 1/ k its
2
® For a unigram model, with each of 50K words w equally likely,
I(w) = log, T ~ 15.61 bits
/50000

and for a sequence of 1K words in that model,

1
I(Wk) = log; " )1000 zl ]

(V50000
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Information with unequal events

* An information source S emits symbols without memory from
a vocabulary {w;,w,, ..., w, }. Each symbol has its own

probability {p4, p,, ..., P}

°* What is the average amount of
information we get in observing
the output of source S ?

* You still have 6 events that are

= Yes (0.1) = No (0.7) possible — but you’re fairly

® Maybe (0.04) m Sure (0.03) sure it will be ‘No’.
m Darkside (0.06) m Destiny (0.07)

T
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Entropy

°* Entropy: n. the average amount of information we get in
observing the output of source S.

H(S) N zpll(wl) — Zpl lOgZ

Note that this is very similar to how we define the
expected value (i.e., ‘average’) of something:

. EX= ) p()x
xeX
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Entropy — examples

1
: i
M Yes (0.1) ® No (0.7) =0 7lag 0.7) + 0.11l0og,(1/0.1) + ---
¥ Maybe (0.04) ® Sure (0.03) = 1.542 bits

® Darkside (0.06) m Destiny (0.07)

H(S)—Z: 1 1—6 11 -

‘ — P82 T 26 %216

Nl m2 E3 N4 5 H6 = 2.585 bits
9
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Entropy characterizes the distribution

* ‘Flatter’ distributions have a higher entropy because the

choices are more equivalent, on average.
* So which of these distributions has a lower entropy?
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Low entropy makes decisions easier

°* When predicting the next word, e.g., we'd like a distribution

with lower entropy.

°* Low entropy = less uncertainty
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Bounds on entropy

* Maximum: uniform distribution 51 Given M choices,

H(S;) = ZPL logz > z logy, —— 1/M = log, M

0
* Minimum: only one choice, H(s,) = p;log, - = 1logy 1 =0

0.1 1
0.08 0.8
e 5
= 0.06 = 0.6
((°) ©
S 0.04 2 0.4
a a
0.02 0.2
0 0
Words Words
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Coding symbols efficiently

* If we want to transmit Vader’s words efficiently, we can
encode them so that more probable words require fewer bits.
* On average, fewer bits will need to be transmitted.

Word Linear Huffman
(sorted) | Code Code

No 000 0

Yes 001 11

Destiny 010 101

Darkside 011 1001

Maybe 100 10000
M Yes (0.1) M No (0.7)

Sure 101

® Maybe (0.04) m Sure (0.03)
® Darkside (0.06) m Destiny (0.07)

5
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Coding symbols efficiently

* Another way of looking at this is through the (binary) Huffman
tree (r-ary trees are often flatter, all else being equal):

y\ Word Linear Huffman
NoO /\ (sorted) | Code Code
0 1

No 000 0

Y
%\4 ” Yes 001 11
Destiny Destiny 010 101
101 Darkside 011 1001
. Darkside Maybe 100 10000
LI Sure 101
Maybe Sure

10000 10001

o
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Alternative notions of entropy

* Entropy is equivalently:
°* The average amount of information provided
by symbols in a vocabulary,
* The average amount of uncertainty you have before
observing a symbol from a vocabulary,
* The average amount of ‘surprise’ you receive when
observing a symbol,

°* The number of bits needed to communicate that alphabet
* Aside: Shannon showed that you cannot have a coding scheme
that can communicate the vocabulary more efficiently than H(S)
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Entropy of several variables

* Joint entropy
* Conditional entropy
®* Mutual information

UMNIVERST

5
CSC401/2511 — Winter 2019 18 % TO RONT O



Entropy of several variables

®* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature = {hot, mild, cold}
°* Wetness = {dry, wet}

P(W =dry) = 0.6,

P(W =wet) = 0.4

P(T = hot) = 0.3,
P(T = mild) = 0.5,

P(T = cold) = 0.2

CSC401/2511 — Winter 2019
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1 1 1
H(T) = 0310g2ﬁ+0510g2ﬁ+0210g202 = 1.48548 bits

But W and T are not independent,

P(W,T) %= P(W)P(T)

Example from Roni Rosenfeld - ; UNIVERSITY OF
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Joint entropy

* Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

VO 1
H(X,Y) = Z % p(x,)l0gz

® Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.
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Entropy of several variables

* Consider joint probability, P(W,T)

* Joint entropy, H(W,T), computed as a sum over the space
of joint events (W =w,T =t)

H(W, T) = 0.1 10g2 1/0_1 + 0.4 logz 1/0_4_ + 0.1 logz 1/0_1
+0.2 10g2 1/0_2 + 0.1 logz 1/0_1 + 0.1 logz 1/0_1 = 2.32193 bits

% UNIVERSITY OF
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Entropy given knowledge

° In our example, joint entropy of two variables together is
lower than the sum of their individual entropies
* HW,T) = 232< 246 = HW) + H(T)

°* Why?

* Information is shared among variables
* There are dependencies, e.g., between temperature and

wetness.
°* E.g., if we knew exactly how wet it is, is there less

confusion about what the temperature is ... ?

2 UNIVERSITY OF
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Conditional entropy

* Conditional entropy: n. the average amount of information
needed to specify one variable given
that you know another.

* A.k.a ‘equivocation’

HOYIX) = ) pOH(YIX = x)

xeX

* Hint: this is very similar to how we compute expected values in
general distributions.
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Entropy given knowledge

* Consider conditional probability, P(T|W)

O e I T

PT W
0.1/0.6 0.4/ "
BT o o

0.1/0.6
0.1/

a
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Entropy given knowledge

* Consider conditional probability, P(T|W)

TN N T

T EETEE
e EOEEETENETE

* HT|W = dry) = H ({Z,2,<}) = 1.25163 bits
e H(T|W = wet) = H ({%%%}) — 1.5 bits

* Conditional entropy combines these:

H(T|W) bife 0.4
) [p(W(d/W)H(TIW — dry)] + [p(W.=et) 1 (T — wet)]
= 1.350978 bits
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Equivocation removes uncertainty

* Remember H(T) = 1.48548 bits Entropy (i.e., confusion) about
o H(W} T) = 2.32193 bits temperature is reduced if we know
° H(TlW) — 1.350978 bits how wet it is outside.

* How much does W tell us about T?
* H(T) — H(T|W) = 1.48548 — 1.350978 =~ 0.1345 bits

* Well, a little bit!

T

UNIVERSITY OF
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Perhaps T is more informative?

Consider another conditional probability, P(W|T)

POVIT) | T=cod | mid | ot

H(W
H(W
H(W

:

wer G

.1/0.3 0.4/0.5 0.1/0.2
.2/0.3 0.1/0.5 0.1/0.2

T=cold)=H(

=,21) = 0.918295 bits

T = mild) = H ({‘E}) — (.721928 bits

T=hot)=H({

L) = 1o

H(W|T) = 0.8364528 bits

CSC401/2511 — Winter 2019
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Equivocation removes uncertainty

* H(T) = 1.48548 bits

e H(W) = 0.970951 bits

e H(W,T) = 2.32193 bits

e H(T|W) = 1.350978 hits <

Previously
computed

* H(T) — H(T|W) =~ 0.1345 bits

®* How much does T tell us about I/ on average?
s HW) — H(W|T) = 0970951 — 0.8364528
~ 0.1345 bits

®* Interesting ... is that a coincidence?

T
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Mutual information

®* Mutual information: n. the average amount of information
shared between variables.

1(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

- p(x,y)
= Ly P )08 200

® Hint: The amount of uncertainty removed in variable X if you know Y.
* Hint2: If X and Y are independent, p(x,y) = p(x)p(y), then

p(x,y) _ N B - . .
log, PO log, 1 = 0 Vx, y — there is no mutual information!

A
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Relations between entropies

H(X,Y)

H(X,Y) = H(X) + H(Y) — I(X;Y)

o
B ] UMIVERSITY OF
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Preview — the noisy channel

* Messages can get distorted when passed through a noisy
conduit — how much information is lost/retained?

* Signals

* Symbols -
Channel

®* Languages

Hello, computer Bonjour, ordinateur

o
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Relating corpora

b
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Relatedness of two distributions

°* How similar are two probability distributions?
°* e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words

2Ea
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Relatedness of two distributions

* A Huffman code based on Vader (Q) instead of Kylo (P) will

be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability

Probability

Words

Words

2
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Kullback-Leibler divergence

n. the average log difference between the
distributions P and Q, relative to Q.

a.k.a. relative entropy.
caveat: we assume Olog0 =0

* KL divergence:

Probability
Probability

Words

Words

A
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Kullback-Leibler divergence

D1 (P]|Q) = Ep(l) log—— Fi)

Qi)
°* Why logPEg
. P(i) .
log—= 20 = log P(i) —log Q(i) —log( (1)) log (P(l))

* If word w; is less probable in Q than P (i.e., it carries more

information), it will be Huffman encoded in more bits, so

when we see w; from P, we need log% more bits.

A
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Kullback-Leibler divergence

* KL divergence:
* is somewhat like a ‘distance’ :
* D (Pl[Q) =0 VP, 0
®* D1 (P||Q) = 0iff P and Q are identical.
® is not symmetric, Dy; (P||Q) # Dk (Q||P)

* Aside:
I(P; Q) = Dk (P(X,V)|IP(X)P(Y))

2
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Kullback-Leibler divergence

* KL divergence generalizes to continuous distributions.
* Below, Dk, (green||blue) > Dyg; (purple||blue)

purple

0.4

5

% | UNIVERSITY OF
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Applications of KL divergence

* Often used towards some other purpose, e.g.,
* In evaluation to say that purple is a better model
than green of the true distribution blue.
* In machine learning to adjust the parameters of

purple to be, e.g., less like green and more like blue.
purple

0.4 . —
f_.r .\ 7 / .-_ l,-": ."-.I
I,l" _ Ill.’ [ X
A ! f \ ) \ -,
|ll,l 0.3 __I-'IE ! A ! \ \

/ H \\ f \III".
blue/ [ X K \ \green

T
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Entropy as intrinsic LM evaluation

* Cross-entropy measures how difficult it is to encode
an event drawn from a true probability p given a
model based on a distribution g.

* What if we don’t know the true probability p?
* We’'d have to estimate p.
* We estimate p by estimating the probability of a test
corpus C using the distribution q:

By (C)

2
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Probability of a corpus?

® The probability P(C) of a corpus C requires similar
assumptions that allowed us to compute the probability
P(s;) of a sentence s;.

T e T e

Chain P(s;) = P(C) =
rule P(wy) [1i=2 P(We|wy. (t— 1)) P(wy) H“ ”P(Wt|W1 :(t— 1))

Approx. P(s;) = | lP(Wt) P(C) = l AP(Si)
t i

* Regardless of the LM used for P(s;), we can assume
complete independence between sentences.

d"{l
UMNIVERST
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Intrinsic evaluation — Cross-entropy

* Cross-entropy of a LM Mand a new test corpus C
with size ||C|| (total number of words), where sentence
s; € C, is approximated by:

log, Py (C) _ 2108, Py (si)

AGH) == > 1lsil

* Perplexity comes from this definition:
PPy (C) = 2H (M)

T
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Decisions

b
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Deciding what we know

* Anecdotes are often useless except as proofs by contradiction.
* E.g., “I saw Google used as a verb” does not mean that Google is
always (or even likely to be) a verb, just that it is not always a noun.

* Shallow statistics are often not enough to be truly meaningful.
* E.g., “My ASR system is 95% accurate on my test data. Yours is only
94.5% accurate, you horrible knuckle-dragging idiot.”
* What if the test data was biased to favor my system?
°* What if we only used a very small amount of data?

* Given all this potential ambiguity, we need a test to see if our
statistics actually mean something.

UNIVERSITY OF
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Differences due to sampling

* We saw that KL divergence essentially measures how different
two distributions are from each other.

® But what if their difference is due to randomness in sampling?

°* How can we tell that a distribution is really different from
another?

A
UNIVERSITY OF

CSC401/2511 — Winter 2019 45 @ TORONTO



Hypothesis testing

* Often, we assume a null hypothesis, Hy, which states that the
two distributions are the same (i.e., come from the same

underlying model, population, or phenomenon).

* We reject the null hypothesis if the probability of it being true
is too small.

* This is often our goal —e.g., if my ASR system beats yours by 0.5%,
| want to show that this difference is not a random accident.

° | assume it was an accident, then show how nearly impossible that is.

* As scientists, we have to be very careful to not reject H, too hastily.
°* How can we ensure our diligence?

CSC401/2511 — Winter 2019 46
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Confidence

* We reject Hy if it is too improbable.
* How do we determine the value of ‘too’?

* Significance level a (0 < a < 1) is the maximum probability that
two distributions are identical allowing us to disregard H,.
° In practice, a < 0.05. Usually, it’s much lower.
* Confidencelevelisy =1 —«a
® E.g., a confidence level of 95% (¢ = 0.05) implies that we
expect that our decision is correct 95% of the time,
regardless of the test data.

A
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Confidence

* We will briefly see three types of statistical tests that can tell us
how confident we can be in a claim:

1. A t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the
t-test to more than two groups.

3. The y” test, which evaluates categorical (discrete) outputs.

A
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1. The t-test

* The t-test is a method to compute if distributions are
significantly different from one another.

° It is based on the mean (x) and variance (o) of N samples.
* |t compares X and o to Hy which states that the samples are
drawn from a distribution with a mean L.

o2 /N

o If [t =

(the “t-statistic”) iS large enough, we can reject H.

An example would be

nice...
There are actually several types of t-tests for different situations...

Al
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Example of the t-test: tails

* Imagine the average tweet length of a McGill ‘student’ is u = 158 chars.

* We sample N = 200 UofT students and find that our average tweet is
X = 169 chars (with 0% = 2600).

* Are UofT tweets significantly longer than much worse McGill tweets?

* We use a ‘one-tailed’ test because we want to see if UofT tweet lengths
are significantly higher.
* |f we just wanted to see if UofT tweets were significantly different,
we’d use a two-tailed test.

T

two tails
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Example of the t-test: freedom

* Imagine the average tweet length of a McGill ‘student’ is u = 158 chars.

* We sample N = 200 UofT students and find that our average tweet is
X = 169 chars (with 0% = 2600).

* Are UofT tweets significantly longer than much worse McGill tweets?

* Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the
number of observations in each group,
minus 2 (because there are two groups).

* In our example, we have Ny, = 200 for DCS students, but because we

don’t sample at McGill, Ny;.cip = 0, so d. f.= oo.
* (this example is adapted from Manning & Schiitze)

A
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Example of the t-test

* Imagine the average tweet length of a McGill ‘student’ is u = 158 chars.

* We sample N = 200 UofT students and find that our average tweet is
X = 169 chars (with 0% = 2600).

* Are UofT tweets significantly longer than much worse McGill tweets?

® Sot = =
O'Z/N /2600/20O

* |n a t-test table, we look up the minimum value of t necessary to reject
Hyata = 0.005 (we want to be quite confident) for a 1-tailed test...

A
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Example of the t-test

* Sot = = ~ 3.05

° |n a t-test table, we look up the minimum value of t necessary to reject

Hy at a = 0.005, and find 2.576.
* Since 3.05 > 2.576, we can reject H, at the 99.5% level of confidence
(y =1 —a = 0.995) ; UofT students are significantly more verbose.

-mmm

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
00 1.645 1.960 2.326 2.576 3.091 3.291

5
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Example of the t-test

* Some things to observe about the t-test table:

* We need more evidence, t, if we want to be
more confident (left-right dimension).
* We need more evidence, t, if we have

fewer measurements (top-down dimension).

* A common criticism of the t-test is that picking a is ad-hoc.
There are ways to correct for the selection of a.

-mmm

6.314 12.71 31.82 63.66 318.3 636.6
10 1.812 2.228 2.764 3.169 4.144 4.587
20 1.725 2.086 2.528 2.845 3.552 3.850
00 1.645 1.960 2.326 2.576 3.091 3.291

d.f.

Jéi";:i'
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Another example: collocations

* Collocation: n. a ‘turn-of-phrase’ or usage where a
sequence of words is ‘perceived’ to have a
meaning ‘beyond’ the sum of its parts.

* E.g., ‘disk drive’, ‘video recorder’, and * drink’ are
collocations. ‘cylinder drive’, “video storer’, * drink’
are not despite some near-synonymy between alternatives.

* Collocations are not just highly frequent bigrams, otherwise
‘of the’, and ‘and the’ would be collocations.

®* How can we test if a bigram is a collocation or not?

A
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Hypothesis testing collocations

* For collocations, the null hypothesis H is that there is no
association between two given words beyond pure chance.

* |.e., the bigram’s actual distribution and pure chance are the same.
* We compute the probability of those words occurring together
if Hy were true. If that probability is too low, we reject H,.

* E.g., we expect ‘of the’ to occur together, because they’re both likely
words to draw randomly
* We could probably not reject H, in that case.

A
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Example of the t-test on collocations

* |s ‘new companies’ a collocation?
* |n our corpus of 14,307,668 word tokens, new appears 15,828 times

and companies appears 4,675 times.
* Our null hypothesis, H, is that they are independent, i.e.,

Hy: P(new companies) = P(new)P(companies)
15828 4675

14307668 14307668

3.615 x 1077

Q

T
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Example of the t-test on collocations

* The Manning & Schiitze text claims that if the process of randomly
generating bigrams follows a Bernoulli distribution.

° j.e., assigning 1 whenever new companies appears and 0 otherwise
gives X = p = P(new companies)

* For Bernoulli distributions, 62 = p(1 — p). Manning & Schiitze claim
that we can assume 6% = p(1 — p) = p, since for most bigrams, p is
very small.

A
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Example of the t-test on collocations

* So, u = 3.615 x 1077 is the expected mean in H,.

* We actually count 8 occurrences of new companies in our corpus

° ¥y — 8 ~ 5.591 X 10—7 There is 1 fewer bigram instance

14307667 than word tokens in the corpus
~0?~p=x%=5591x10"7

X—p _ 5.591x1077-3.615x10"7

02/ 5.591><10—7/
N 14307667

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2. 576.
* Since < 2.576, we cannot reject H, at the 99.5% level of
confidence.
* We don’t have enough evidence to think that new companies
is a collocation (we can’t say that it definitely isn’t, though!).

A
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2. Analysis of variance (aside)

* Analyses of variance (ANOVAS) (there are several types) can be:
* A way to generalize t-tests to more than two groups.
* A way to determine which (if any) of several variables are responsible
for the variation in an observation (and the interaction between them).

* E.g., we measure the accuracy of an ASR system for different settings of
empirical parameters M and Q (more on these later in the course...).

Accuracy (%) M =2 M=4 M=16

Q=2 53.33 66.67 53.33
26.67 53.33 40.00

0.00 40.00 26.67

Q=5 93.33 26.67 100.00
66.67 13.33 80.00
40.00 0.00 60.00

.~ Hy: no effect of source variables.

mm—

0.179 Accept H,

M 2 0.106 Accept H

interaction 0.006 Reject Hyata = 0.01

‘ A completely fictional example

ﬁ".;«:i'
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3. Pearson’s y* test (details aside)

* The y* test applies to categorical data, like the output of a
classifier.

* Like the t-test, we decide on the degrees of freedom (number of
categories minus number of parameters), compute the test-statistic, then

look it up in a table. L0

* The test statistic is: o)
- |

> z (OC e Ec)z go.ﬁ:-

X = E -

c=1 ¢ 4T

where O, and E_ are the observed o}
and expected number of .

] . 0 2
Obse rvatlons Of type C, res pectlvely. X2 = Pearson’s cumulative test statistic
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3. Pearson’s y2 test 9

®* For example, is our die from Lecture 2 fair or not?
* Imagine we throw it 60 times. The expected number of
appearances of each side is 10.

BXACADEANOSERIOREIR) . ;7 _ ;- s

; g 10 i 4 04 the critical value is
3 9 10 1 1 01 11.07<13.4, so we
4 8 10 2 4 0.4 throw away Hy:

S I 0 0 0 the die is biased.

6 20 10 10 100 10 ° We’II see XZ again

soon...
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Reading

®* Manning & Schitze: 2.2, 5.3-5.5
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Entropy and decisions

~* Information theory is a vast ocean that provides statistical
: models of communication at the heart of cybernetics.

°* We've only taken a first step on the beach.

* See the ground-breaking work of Shannon & Weaver, e.g.

* So far, we’ve mainly dealt with random variables that the
world provides — e.g., words tokens, mainly.

* What if we could transform those inputs into new random =
variables, or features, that are directly engineered to be
useful to decision tasks...




