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This lecture

• Information theory and entropy.
• Decisions.
• Classification.
• Significance.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

• Imagine Darth Vader is about to say either “yes” or 
“no” with equal probability.  
• You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of 
information.

Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck

Star Trek is better than Star Wars
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Information

• Imagine you then observe Darth Vader saying “no”
• Your uncertainty is gone; you’ve received information.
• How much information do you receive about event 𝐸

when you observe it?

𝐼 𝑛𝑜 = log2
1

𝑃(𝑛𝑜)
= log2

1

ൗ1 2

= 1 bit

𝐼 𝐸 = log2
1

𝑃(𝐸)

For the units
of measurement

For the inverse
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Information

• Imagine Darth Vader is about to roll a fair die.
• You have more uncertainty about an event because 

there are more possibilities.
• You receive more information when you observe it.

𝐼 5 = log2
1

𝑃(5)

= log2
1

Τ1 6
≈ 2.59 bits
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Information is additive

• From k independent, equally likely events 𝐸,

• For a unigram model, with each of 50K words 𝑤 equally likely,

and for a sequence of 1K words in that model,

𝐼 𝑘 binary decisions = log2
1

ൗ1 2

𝑘 = 𝑘 bits𝐼 𝐸𝑘 = log2
1

𝑃(𝐸𝑘)
= log2

1

𝑃 𝐸 𝑘

𝐼 𝑤 = log2
1

ൗ1 50000

≈ 15.61 bits

𝐼 𝑤𝑘 = log2
1

ൗ1 50000

1000 ≈ 15,610 bits???
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Information with unequal events

• An information source S emits symbols without memory from 
a vocabulary 𝑤1, 𝑤2, … , 𝑤𝑛 . Each symbol has its own
probability {𝑝1, 𝑝2, … , 𝑝𝑛}

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

• What is the average amount of 
information we get in observing 
the output of source S  ?

• You still have 6 events that are 
possible – but you’re fairly 
sure it will be ‘No’.
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Entropy

• Entropy: n. the average amount of  information we get in 
observing  the output of source S .

𝐻 𝑆 = ෍

𝑖

𝑝𝑖𝐼 𝑤𝑖 =෍

𝑖

𝑝𝑖 log2
1

𝑝𝑖

ENTROPY

Note that this is very similar to how we define the 
expected value (i.e., ‘average’) of something: 

𝐸[𝑋] = ෍

𝑥∈𝑋

𝑝(𝑥) 𝑥
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Entropy – examples

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

𝐻 𝑆 =෍

𝑖

𝑝𝑖 log2
1

𝑝𝑖

= 0.7 log2(1/0.7) + 0.1 log2(1/0.1) + ⋯
= 1.542 bits

1 2 3 4 5 6

𝐻 𝑆 =෍

𝑖

𝑝𝑖 log2
1

𝑝𝑖
= 6

1

6
log2

1

1/6

= 2.585 bits

There is less average uncertainty when the 
probabilities are ‘skewed’.
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Entropy characterizes the distribution

• ‘Flatter’ distributions have a higher entropy because the 
choices are more equivalent, on average.
• So which of these distributions has a lower entropy?
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Low entropy makes decisions easier

• When predicting the next word, e.g., we’d like a distribution 
with lower entropy.
• Low entropy ≡ less uncertainty

LowHigh
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Bounds on entropy
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• Maximum: uniform distribution 𝑆1. Given 𝑀 choices, 

𝐻 𝑆1 =෍

𝑖

𝑝𝑖 log2
1

𝑝𝑖
=෍

𝑖

1

𝑀
log2

1

1/𝑀
= 𝐥𝐨𝐠𝟐𝑴

• Minimum: only one choice, 𝐻 𝑆2 = 𝑝𝑖 log2
1

𝑝𝑖
= 1 log2 1 = 𝟎

0
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Coding symbols efficiently

• If we want to transmit Vader’s words efficiently, we can 
encode them so that more probable words require fewer bits.
• On average, fewer bits will need to be transmitted. 

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

Huffman 
Code

No 000 0

Yes 001 11

Destiny 010 101

Darkside 011 1001

Maybe 100 10000

Sure 101 10001
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Coding symbols efficiently

• Another way of looking at this is through the (binary) Huffman 
tree (r-ary trees are often flatter, all else being equal):

Word
(sorted)

Linear 
Code

Huffman 
Code

No 000 0

Yes 001 11

Destiny 010 101

Darkside 011 1001

Maybe 100 10000

Sure 101 10001
Sure

10001
Maybe
10000

10

10

10

10
No
0

10

Darkside
1001

Destiny
101

Yes
11
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Alternative notions of entropy

• Entropy is equivalently:
• The average amount of information provided

by symbols in a vocabulary,
• The average amount of uncertainty you have before

observing a symbol from a vocabulary,
• The average amount of ‘surprise’ you receive when 

observing a symbol,
• The number of bits needed to communicate that alphabet

• Aside: Shannon showed that you cannot have a coding scheme 
that can communicate the vocabulary more efficiently than 𝐻(𝑆)
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Entropy of several variables

• Joint entropy
• Conditional entropy
• Mutual information

1818
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Entropy of several variables

• Consider the vocabulary of a meteorologist describing 
Temperature and Wetness.
• Temperature = {hot, mild, cold}
• Wetness = {dry, wet}

19
Example from Roni Rosenfeld 

𝑃 𝑊 = 𝑑𝑟𝑦 = 0.6, 
𝑃 𝑊 = 𝑤𝑒𝑡 = 0.4

𝑃 𝑇 = ℎ𝑜𝑡 = 0.3, 
𝑃 𝑇 = 𝑚𝑖𝑙𝑑 = 0.5, 
𝑃 𝑇 = 𝑐𝑜𝑙𝑑 = 0.2

𝑯 𝑾 = 0.6 log2
1

0.6
+ 0.4 log2

1

0.4
= 𝟎. 𝟗𝟕𝟎𝟗𝟓𝟏 bits

𝑯 𝑻 = 0.3 log2
1

0.3
+ 0.5 log2

1

0.5
+ 0.2 log2

1

0.2
=𝟏. 𝟒𝟖𝟓𝟒𝟖 bits

But 𝑊 and 𝑇 are not independent, 
𝑃(𝑊, 𝑇) ≠ 𝑃 𝑊 𝑃(𝑇)

19
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Joint entropy

• Joint Entropy: n. the average amount of information needed 
to specify multiple variables simultaneously.

𝐻 𝑋, 𝑌 = ෍

𝑥

෍

𝑦

𝑝(𝑥, 𝑦) log2
1

𝑝(𝑥, 𝑦)

• Hint: this is very similar to univariate entropy – we just replace 
univariate probabilities with joint probabilities and sum over 
everything.
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Entropy of several variables

• Consider joint probability, 𝑃(𝑊, 𝑇)

21

cold mild hot

dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• Joint entropy, 𝐻(𝑊, 𝑇), computed as a sum over the space 
of joint events (𝑊 = 𝑤, 𝑇 = 𝑡)

𝐻 𝑊,𝑇 = 0.1 log2 Τ1 0.1+ 0.4 log2 Τ1 0.4+ 0.1 log2 Τ1 0.1

+0.2 log2 Τ1 0.2+ 0.1 log2 Τ1 0.1+ 0.1 log2 Τ1 0.1 = 𝟐. 𝟑𝟐𝟏𝟗𝟑 bits

Notice 𝐻 𝑊,𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)

21
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Entropy given knowledge

• In our example, joint entropy of two variables together is 
lower than the sum of their individual entropies

• 𝐻 𝑊, 𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)

• Why?

• Information is shared among variables
• There are dependencies, e.g., between temperature and 

wetness.
• E.g., if we knew exactly how wet it is, is there less 

confusion about what the temperature is … ?

22
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Conditional entropy

• Conditional entropy: n. the average amount of information 
needed to specify one variable given 
that you know another.
• A.k.a ‘equivocation’

𝐻 𝑌|𝑋 = ෍

𝑥∈𝑋

𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥)

• Hint: this is very similar to how we compute expected values in 
general distributions.

23
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Entropy given knowledge

• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑾, 𝑻) 𝑻 = cold mild hot

𝑊 = dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.6 0.4/0.6 0.1/0.6 1.0

wet 0.2/0.4 0.1/0.4 0.1/0.4 1.0

𝑃 𝑇 𝑊 = 𝑃(𝑊, 𝑇)/𝑃(𝑊)

24



CSC401/2511 – Winter 2019

Entropy given knowledge

• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 1/6 2/3 1/6 1.0

wet 1/2 1/4 1/4 1.0

• 𝑯 𝑻 𝑾 = 𝒅𝒓𝒚 = 𝐻
1

6
,
2

3
,
1

6
= 𝟏. 𝟐𝟓𝟏𝟔𝟑 bits

• 𝑯 𝑻 𝑾 = 𝒘𝒆𝒕 = 𝐻
1

2
,
1

4
,
1

4
= 𝟏. 𝟓 bits

• Conditional entropy combines these:
𝑯 𝑻 𝑾
= 𝑝 𝑊 = 𝑑𝑟𝑦 𝐻 𝑇 𝑊 = 𝑑𝑟𝑦 + 𝑝 𝑊 = 𝑤𝑒𝑡 𝐻 𝑇 𝑊 = 𝑤𝑒𝑡
= 𝟏. 𝟑𝟓𝟎𝟗𝟕𝟖 bits

0.6 0.4

25
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Equivocation removes uncertainty

• Remember 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊, 𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits

• How much does 𝑊 tell us about 𝑇?
• 𝐻 𝑇 − 𝐻 𝑇 𝑊 = 1.48548 − 1.350978 ≈ 0.1345 bits
• Well, a little bit!

Entropy (i.e., confusion) about 
temperature is reduced if we know
how wet it is outside.

26



CSC401/2511 – Winter 2019

Perhaps 𝑻 is more informative?

• Consider another conditional probability, 𝑃(𝑊|𝑇)

• 𝐻 𝑊 𝑇 = 𝑐𝑜𝑙𝑑 = 𝐻
1

3
,
2

3
= 0.918295 bits

• 𝐻 𝑊 𝑇 = 𝑚𝑖𝑙𝑑 = 𝐻
4

5
,
1

5
= 0.721928 bits

• 𝐻 𝑊 𝑇 = ℎ𝑜𝑡 = 𝐻
1

2
,
1

2
= 1 bit

• 𝑯 𝑾 𝑻 = 𝟎. 𝟖𝟑𝟔𝟒𝟓𝟐𝟖 bits

𝑷(𝑾|𝑻) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.3 0.4/0.5 0.1/0.2

wet 0.2/0.3 0.1/0.5 0.1/0.2

1.0 1.0 1.0
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Equivocation removes uncertainty

• 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊 = 0.970951 bits
• 𝐻 𝑊, 𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits
• 𝑯 𝑻 −𝑯 𝑻 𝑾 ≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• How much does 𝑇 tell us about 𝑊 on average?
• 𝑯 𝑾 −𝑯 𝑾 𝑻 = 0.970951 − 0.8364528

≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• Interesting … is that a coincidence?

Previously 
computed

28
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Mutual information

• Mutual information: n. the average amount of information 
shared between variables.

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

= σ𝑥,𝑦 𝑝(𝑥, 𝑦) log2
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)

• Hint: The amount of uncertainty removed in variable 𝑋 if you know 𝑌.
• Hint2: If 𝑋 and 𝑌 are independent, 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝(𝑦), then 

log2
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)
= log2 1 = 0 ∀𝑥, 𝑦 – there is no mutual information!
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Relations between entropies

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼(𝑋; 𝑌)

30
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Preview – the noisy channel

• Messages can get distorted when passed through a noisy
conduit – how much information is lost/retained?

• Signals

• Symbols

• Languages

Sexual abuse Locker room talk

Hello, computer Bonjour, ordinateur

31
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Relatedness of two distributions

• How similar are two probability distributions?
• e.g., Distribution P learned from Kylo Ren

Distribution Q learned from Darth Vader

P Q

Words Words
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Relatedness of two distributions

• A Huffman code based on Vader (Q) instead of Kylo (P) will 
be less efficient at coding symbols that Kylo will say.

• What is the average number of extra bits required to code 
symbols from P when using a code based on Q?

P Q

Words Words
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Kullback-Leibler divergence

• KL divergence: n. the average log difference between the 
distributions P and Q, relative to Q.
a.k.a. relative entropy.
caveat: we assume 0 log 0 = 0

P Q
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Kullback-Leibler divergence

𝐷𝐾𝐿(𝑃||𝑄) =෍

𝑖

𝑃 𝑖 log
𝑃(𝑖)

𝑄(𝑖)

• Why log
𝑃 𝑖

𝑄 𝑖
?

• log
𝑃 𝑖

𝑄 𝑖
= log 𝑃 𝑖 − log𝑄 𝑖 = log

1

𝑄 𝑖
− log

1

𝑃 𝑖

• If word 𝑤𝑖 is less probable in 𝑄 than 𝑃 (i.e., it carries more 
information), it will be Huffman encoded in more bits, so 

when we see 𝑤𝑖 from 𝑃, we need log
𝑃 𝑖

𝑄 𝑖
more bits.

36



CSC401/2511 – Winter 2019

Kullback-Leibler divergence

• KL divergence:
• is somewhat like a ‘distance’ :

• 𝐷𝐾𝐿(𝑃||𝑄) ≥ 0 ∀𝑃, 𝑄
• 𝐷𝐾𝐿(𝑃||𝑄) = 0 iff 𝑃 and 𝑄 are identical.  

• is not symmetric, 𝐷𝐾𝐿(𝑃||𝑄) ≠ 𝐷𝐾𝐿(𝑄||𝑃)

• Aside:

𝐼 𝑃; 𝑄 = 𝐷𝐾𝐿 𝑃(𝑋, 𝑌)||𝑃 𝑋 𝑃 𝑌
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Kullback-Leibler divergence

• KL divergence generalizes to continuous distributions.
• Below, 𝐷𝐾𝐿(𝒈𝒓𝒆𝒆𝒏||𝒃𝒍𝒖𝒆) > 𝐷𝐾𝐿(𝒑𝒖𝒓𝒑𝒍𝒆||𝒃𝒍𝒖𝒆)

greenblue

purple
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Applications of KL divergence

• Often used towards some other purpose, e.g., 
• In evaluation to say that purple is a better model 

than green of the true distribution blue.
• In machine learning to adjust the parameters of 

purple to be, e.g., less like green and more like blue.

greenblue

purple

39
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Entropy as intrinsic LM evaluation

• Cross-entropy measures how difficult it is to encode 
an event drawn from a true probability 𝑝 given a 
model based on a distribution 𝑞.

• What if we don’t know the true probability 𝑝?
• We’d have to estimate 𝑝.
• We estimate 𝑝 by estimating the probability of a test 

corpus 𝐶 using the distribution 𝑞:

𝑃𝑞(𝐶)

40
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Probability of a corpus?

• The probability 𝑃(𝐶) of a corpus 𝐶 requires similar 
assumptions that allowed us to compute the probability 
𝑃(𝑠𝑖) of a sentence 𝑠𝑖.

Sentence Corpus

Chain
rule

𝑃 𝑠𝑖 =
𝑃(𝑤1)ς𝑡=2

𝑛 𝑃(𝑤𝑡|𝑤1: 𝑡−1 )

𝑃 𝐶 =

𝑃(𝑤1)ς𝑡=2
𝐶 𝑃(𝑤𝑡|𝑤1: 𝑡−1 )

Approx. 𝑃 𝑠𝑖 ≈ෑ

𝑡

𝑃(𝑤𝑡) 𝑃 𝐶 ≈ෑ

𝑖

𝑃(𝑠𝑖)

• Regardless of the LM used for 𝑃(𝑠𝑖), we can assume 
complete independence between sentences.
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Intrinsic evaluation – Cross-entropy

• Cross-entropy of a LM M and a new test corpus C
with size 𝐶 (total number of words), where sentence 
𝑠𝑖 ∈ 𝐶, is approximated by:

𝐻(𝐶;𝑀) = −
log2 𝑃𝑀 𝐶

𝐶
= −

σ𝑖 log2 𝑃𝑀(𝑠𝑖)

σ𝑖 𝑠𝑖

• Perplexity comes from this definition:

𝑃𝑃𝑀 𝐶 = 2𝐻(𝐶;𝑀)

42
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Deciding what we know

• Anecdotes are often useless except as proofs by contradiction.
• E.g., “I saw Google used as a verb” does not mean that Google is 

always (or even likely to be) a verb, just that it is not always a noun.

• Shallow statistics are often not enough to be truly meaningful.
• E.g., “My ASR system is 95% accurate on my test data. Yours is only 

94.5% accurate, you horrible knuckle-dragging idiot.”
• What if the test data was biased to favor my system?
• What if we only used a very small amount of data?

• Given all this potential ambiguity, we need a test to see if our 
statistics actually mean something.

44
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Differences due to sampling

• We saw that KL divergence essentially measures how different
two distributions are from each other.

• But what if their difference is due to randomness in sampling?

• How can we tell that a distribution is really different from 
another?

45
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Hypothesis testing

• Often, we assume a null hypothesis, 𝐻0, which states that the 
two distributions are the same (i.e., come from the same 
underlying model, population, or phenomenon).

• We reject the null hypothesis if the probability of it being true 
is too small.
• This is often our goal – e.g., if my ASR system beats yours by 0.5%, 

I want to show that this difference is not a random accident.
• I assume it was an accident, then show how nearly impossible that is.

• As scientists, we have to be very careful to not reject 𝐻0 too hastily.
• How can we ensure our diligence?

46
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Confidence

• We reject 𝐻0 if it is too improbable.
• How do we determine the value of ‘too’?

• Significance level 𝜶 (0 ≤ 𝛼 ≤ 1) is the maximum probability that 
two distributions are identical allowing us to disregard 𝐻0.
• In practice, 𝛼 ≤ 0.05. Usually, it’s much lower.
• Confidence level is 𝛾 = 1 − 𝛼
• E.g., a confidence level of 95% (𝛼 = 0.05) implies that we 

expect that our decision is correct 95% of the time, 
regardless of the test data.
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Confidence

• We will briefly see three types of statistical tests that can tell us 
how confident we can be in a claim:

1. A  t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the 
t-test to more than two groups.

3. The 𝝌𝟐 test, which evaluates categorical (discrete) outputs.
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1. The t-test

• The t-test is a method to compute if distributions are 
significantly different from one another.

• It is based on the mean (ഥ𝒙) and variance (𝝈) of 𝑁 samples. 
• It compares ҧ𝑥 and 𝜎 to 𝐻0 which states that the samples are 

drawn from a distribution with a mean 𝝁.

• If   𝑡 =
ҧ𝑥−𝜇

ൗ𝜎2
𝑁

(the “t-statistic”) is large enough, we can reject 𝐻0.

An example would be 
nice…

There are actually several types of t-tests for different situations…
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Example of the t-test: tails

• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 

ҧ𝑥 = 169 chars (with 𝜎2 = 2600).
• Are UofT tweets significantly longer than much worse McGill tweets?

• We use a ‘one-tailed’ test because we want to see if UofT tweet lengths 
are significantly higher.
• If we just wanted to see if UofT tweets were significantly different, 

we’d use a two-tailed test.

one tail two tails
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Example of the t-test: freedom

• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 

ҧ𝑥 = 169 chars (with 𝜎2 = 2600).
• Are UofT tweets significantly longer than much worse McGill tweets?

• Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the 
number of observations in each group, 
minus 2 (because there are two groups).

• In our example, we have 𝑁𝑈𝑜𝑓𝑇 = 200 for DCS students, but because we 

don’t sample at McGill, 𝑁𝑀𝑐𝐺𝑖𝑙𝑙 ≈ ∞, so 𝑑. 𝑓. = ∞.
• (this example is adapted from Manning & Schütze)
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Example of the t-test

• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 

ҧ𝑥 = 169 chars (with 𝜎2 = 2600).
• Are UofT tweets significantly longer than much worse McGill tweets?

• So 𝑡 =
ҧ𝑥−𝜇

ൗ𝜎2
𝑁

=
169−158

Τ2600
200

≈ 3.05

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻0 at 𝛼 = 0.005 (we want to be quite confident) for a 1-tailed test…
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Example of the t-test

𝜶 (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6

10 1.812 2.228 2.764 3.169 4.144 4.587

20 1.725 2.086 2.528 2.845 3.552 3.850

∞ 1.645 1.960 2.326 2.576 3.091 3.291

• So 𝑡 =
ҧ𝑥−𝜇

ൗ𝜎2
𝑁

=
169−158

Τ2600
200

≈ 3.05

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻0 at 𝛼 = 0.005, and find 2.576.
• Since 3.05 > 2.576, we can reject 𝐻0 at the 99.5% level of confidence 

(𝛾 = 1 − 𝛼 = 0.995) ; UofT students are significantly more verbose.
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Example of the t-test

• Some things to observe about the t-test table:
• We need more evidence, t, if we want to be 

more confident (left-right dimension).
• We need more evidence, t, if we have 

fewer measurements (top-down dimension).
• A common criticism of the t-test is that picking 𝛼 is ad-hoc. 

There are ways to correct for the selection of 𝛼.

𝜶 (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6

10 1.812 2.228 2.764 3.169 4.144 4.587

20 1.725 2.086 2.528 2.845 3.552 3.850

∞ 1.645 1.960 2.326 2.576 3.091 3.291
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Another example: collocations

• Collocation: n. a ‘turn-of-phrase’ or usage where a 
sequence of words is ‘perceived’ to have a 
meaning ‘beyond’ the sum of its parts.

• E.g., ‘disk drive’, ‘video recorder’, and ‘soft drink’ are
collocations. ‘cylinder drive’, ‘video storer’, ‘weak drink’ 
are not despite some near-synonymy between alternatives.

• Collocations are not just highly frequent bigrams, otherwise 
‘of the’, and ‘and the’ would be collocations.

• How can we test if a bigram is a collocation or not?
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Hypothesis testing collocations

• For collocations, the null hypothesis 𝐻0 is that there is no 
association between two given words beyond pure chance.
• I.e., the bigram’s actual distribution and pure chance are the same.
• We compute the probability of those words occurring together 

if 𝐻0 were true. If that probability is too low, we reject 𝐻0.

• E.g., we expect ‘of the’ to occur together, because they’re both likely 
words to draw randomly 
• We could probably not reject 𝐻0 in that case.
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Example of the t-test on collocations

• Is ‘new companies’ a collocation?
• In our corpus of 14,307,668 word tokens, new appears 15,828 times 

and companies appears 4,675 times.
• Our null hypothesis, 𝐻0 is that they are independent, i.e., 

H0: 𝑃 𝑛𝑒𝑤 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠 = 𝑃 𝑛𝑒𝑤 𝑃 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠

=
15828

14307668
×

4675

14307668

≈ 3.615 × 10−7
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Example of the t-test on collocations

• The Manning & Schütze text claims that if the process of randomly 
generating bigrams follows a Bernoulli distribution.

• i.e., assigning 1 whenever new companies appears and 0 otherwise 
gives ҧ𝑥 = 𝑝 = 𝑃(𝑛𝑒𝑤 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠)

• For Bernoulli distributions, 𝜎2 = 𝑝(1 − 𝑝). Manning & Schütze claim 
that we can assume 𝜎2 = 𝑝(1 − 𝑝) ≈ 𝑝, since for most bigrams, 𝑝 is 
very small.
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Example of the t-test on collocations

• So, 𝜇 = 3.615 × 10−7 is the expected mean in 𝐻0.
• We actually count 8 occurrences of new companies in our corpus

• ҧ𝑥 =
8

14307667
≈ 5.591 × 10−7

• So 𝑡 =
ҧ𝑥−𝜇

ൗ𝜎2
𝑁

=
5.591×10−7−3.615×10−7

ൗ5.591×10−7
14307667

≈ 𝟎. 𝟗𝟗𝟗𝟗

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻0 at 𝛼 = 0.005, and find 𝟐. 𝟓𝟕𝟔.
• Since 𝟎. 𝟗𝟗𝟗𝟗 < 𝟐. 𝟓𝟕𝟔, we cannot reject 𝐻0 at the 99.5% level of 

confidence. 
• We don’t have enough evidence to think that new companies

is a collocation (we can’t say that it definitely isn’t, though!).

There is 1 fewer bigram instance 
than word tokens in the corpus

∴ 𝜎2 ≈ 𝑝 = ҧ𝑥 = 5.591 × 10−7
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2. Analysis of variance (aside)

• Analyses of variance (ANOVAs) (there are several types) can be:
• A way to generalize t-tests to more than two groups.
• A way to determine which (if any) of several variables are responsible

for the variation in an observation (and the interaction between them). 

• E.g., we measure the accuracy of an ASR system for different settings of 
empirical parameters 𝑀 and 𝑄 (more on these later in the course…).

Accuracy (%) 𝑴 = 𝟐 𝑴 = 𝟒 𝑴 = 𝟏𝟔

𝑸 = 𝟐 53.33 66.67 53.33

26.67 53.33 40.00

0.00 40.00 26.67

𝑸 = 𝟓 93.33 26.67 100.00

66.67 13.33 80.00

40.00 0.00 60.00

Source 𝒅. 𝒇. 𝒑 value

𝑄 1 0.179 Accept 𝐻0

𝑀 2 0.106 Accept 𝐻0

interaction 2 0.006 Reject 𝐻0 at 𝛼 = 0.01

A completely fictional example

𝐻0: no effect of source variables.
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3. Pearson’s 𝝌𝟐 test (details aside)

• The 𝝌𝟐 test applies to categorical data, like the output of a 
classifier.

• Like the t-test, we decide on the degrees of freedom (number of 

categories minus number of parameters), compute the test-statistic, then 
look it up in a table.  

• The test statistic is:

where 𝑂𝑐 and 𝐸𝑐 are the observed
and expected number of 
observations of type 𝑐, respectively.

𝜒2 =෍

𝑐=1

𝐶
𝑂𝑐 − 𝐸𝑐

2

𝐸𝑐
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3. Pearson’s 𝝌𝟐 test

• For example, is our die from Lecture 2 fair or not?
• Imagine we throw it 60 times. The expected number of 

appearances of each side is 10. 

𝑐 𝑶𝒄 𝑬𝒄 𝑶𝒄 − 𝑬𝒄 𝑶𝒄 − 𝑬𝒄
𝟐 𝑶𝒄 − 𝑬𝒄

𝟐/𝑬𝒄

1 5 10 -5 25 2.5

2 8 10 -2 4 0.4

3 9 10 -1 1 0.1

4 8 10 -2 4 0.4

5 10 10 0 0 0

6 20 10 10 100 10

Sum (𝜒2) 13.4

• With 𝑑𝑓 = 6 − 1 = 5, 
the critical value is 
11.07<13.4, so we 
throw away 𝐻0: 
the die is biased.

• We’ll see 𝜒2 again 
soon…
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Reading

• Manning & Schütze: 2.2, 5.3-5.5
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Entropy and decisions

• Information theory is a vast ocean that provides statistical 
models of communication at the heart of cybernetics.
• We’ve only taken a first step on the beach.
• See the ground-breaking work of Shannon & Weaver, e.g.

• So far, we’ve mainly dealt with random variables that the 
world provides – e.g., words tokens, mainly.

• What if we could transform those inputs into new random 
variables, or features, that are directly engineered to be 
useful to decision tasks…

64


