MARKOV MODELS PART 1

CSC401/2511 – Natural Language Computing – Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto

CSC401/2511 – Spring 2019

Revisiting PoS tagging

 Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?

Now

- (Hidden) Markov models.
 - Using them.
 - Training them.
 - Loving them.

• We've seen this type of model:

- e.g., consider the 7-word vocabulary: {upside, down, promise, friend, midnight, monster, halloween}
- What is the probability of the **sequence** *upside*, *down*, *upside*, *down*, *monster*?
- Assuming a bigram model (i.e., 1st-order Markov),

P(upside|<s>)P(down|upside)P(upside|down)
 · P(down|upside)P(monster|down)

- This can be conceptualized graphically.
- We start with N states,
 s₁, s₂, ..., s_N that represent unique observations in the world.
- Here, N = 7 and each state represents one of the words we can observe.

- We have discrete
 timesteps, t = 0, t = 1, ...
- On the tth timestep the system is in exactly one of the available states, q_t.
 - $q_t \in \{s_1, s_2, \dots, s_N\}$
- We could start in any state. The probability of starting with a particular state s is $P(q_0 = s) = \pi(s)$

- At each step we must move to a state with some probability.
- Here, an arrow from q_t to q_{t+1} represents $P(q_{t+1}|q_t)$
- P(upside|upside)
- P(halloween|upside)
- P(down|upside)
- P(monster|down) = 0

- Probabilities on all outgoing arcs must sum to 1.
- P(upside|upside) + P(halloween|upside) + P(down|upside) = 1
- P(upside|down) + P(down|down) + P(promise|down) = 1

A multivariate system

 What if the probabilities of observing words depended only on some other variable, like mood?

word	P(word)		
upside	0.1		
down	0.05		
promise	0.05		
friend	0.6		
monster	0.05		
midnight	0.1		
halloween	0.05		

word	P(word)		
upside	0.25		
down	0.25		
promise	0.05		
friend	0.3		
monster	0.05		
midnight	0.09		
halloween	0.01		

word	P(word)		
upside	0.3		
down	0		
promise	0		
friend	0.2		
monster	0.05		
midnight	0.05		
halloween	0.4		

CSC401/2511 - Spring 2019

A multivariate system

• What if that variable **changes** over time?

- e.g., I'm happy one second and disgusted the next.
- Here, $state \equiv mood$ observation $\equiv word$.

word	P(word)
upside	0.25
down	0.25
promise	0.05
friend	0.3
monster	0.05
midnight	0.09
halloween	0.01

word	P(word)	
upside	0.3	
down	0	
promise	0	
friend	0.2	
monster	0.05	
midnight	0.05	
halloween	0.4	
UNIVERSITY OF		

Observable multivariate systems

- Imagine you have access to my emotional state somehow.
- All your data are completely observable at every timestep.
- E.g.,

Observable multivariate systems

• What is the probability of a sequence of words and states?

• $P(w_{0:t}, q_{0:t}) = P(q_{0:t})P(w_{0:t}|q_{0:t}) \approx \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i)$

• e.g.,

 $P(\langle friend, upside \rangle, \textcircled{C} \not\subseteq \rangle) = P(q_0 = \textcircled{C}) \cdot P(friend | \textcircled{C})$ $\cdot P(\textcircled{C} | \textcircled{C}) \cdot P(upside | \textcircled{C})$

Observable multivariate systems

• **Q**: How do you **learn** these probabilities?

• $P(w_{0:t}, q_{0:t}) \approx \prod_{i=0}^{t} P(q_i | q_{i-1}) P(w_i | q_i)$

- A: When all data are observed, basically the same as before.
 - $P(q_i|q_{i-1}) = \frac{P(q_{i-1}q_i)}{P(q_{i-1})}$ is learned with MLE from training data. $P(w_i|q_i) = \frac{P(w_i,q_i)}{P(q_i)}$ is also learned with MLE from training data.

Hidden variables

- Q: What if you **don't** know the **states** during *testing*?
 - e.g., compute P((upside, down, monster, friend))
- Q: What if you **don't** know the **states** during *training*?

Examples of hidden phenomena

- We want to represent surface (i.e., observable) phenomena as the output of hidden underlying systems.
 - e.g.,
 - Words are the outputs of hidden parts-of-speech,
 - French phrases are the outputs of hidden English phrases,
 - Speech sounds are the outputs of hidden phonemes.
 - in other fields,
 - Encrypted symbols are the outputs of hidden messages,
 - Genes are the outputs of hidden functional relationships,
 - Weather is the output of hidden climate conditions,
 - Stock prices are the outputs of hidden market conditions,

Definition of an HMM

- A hidden Markov model (HMM) is specified by the 5-tuple $\{S, W, \Pi, A, B\}$:
 - $S = \{s_1, ..., s_N\}$
 - $W = \{w_1, ..., w_k\}$

$$\int \Pi = \{\pi_1, \dots, \pi_N\}$$

• $A = \{q_{ij}\} i j \in S$

• $A = \{a_{ij}\}, i, j \in S$: state **transition** probabilities • $B = b_i(w), i \in S, w \in W$: state **output** probabilities

yielding

- $Q = \{q_0, \dots, q_T\}, q_i \in S$: state sequence
- $\mathcal{O} = \{ \sigma_0, \dots, \sigma_T \}, \sigma_i \in W$

- : set of states (e.g., moods)
- : output **alphabet** (e.g., words)
- : initial state probabilities
- : state transition probabilities

- : output sequence

A hidden Markov production process

- An HMM is a **representation** of a process in the world.
 - We can synthesize data, as in Shannon's game.
- This is how an HMM generates new sequences:
- $t \coloneqq 0$
- Start in state $q_0 = s_i$ with probability π_i
- Emit observation symbol $\sigma_0 = w_k$ with probability $b_i(\sigma_0)$
- While (not forever)
 - **Go** from state $q_t = s_i$ to state $q_{t+1} = s_j$ with probability a_{ij}
 - Emit observation symbol $\sigma_{t+1} = w_k$ with probability $b_j(\sigma_{t+1})$

•
$$t \coloneqq t + 1$$

Fundamental tasks for HMMs

1. Given a model with particular parameters $\theta = \langle \Pi, A, B \rangle$, how do we efficiently compute the likelihood of a *particular* observation sequence, $P(\mathcal{O}; \theta)$?

We previously computed the probabilities of word sequences using *N*-grams.

The probability of a particular sequence is usually useful as a means to some other end.

Fundamental tasks for HMMs

2. Given an observation sequence O and a model θ , how do we choose a state sequence $Q = \{q_0, \dots, q_T\}$ that *best explains* the observations?

This is the task of **inference** – i.e., guessing at the best explanation of unknown ('latent') variables given our model.

This is often an important part of **classification**.

Fundamental tasks for HMMs

3. Given a large **observation sequence** O, how do we choose the *best parameters* $\theta = \langle \Pi, A, B \rangle$ that explain the data O?

This is the task of **training**.

As before, we want our parameters to be set so that the available training data is maximally likely, But doing so will involve guessing unseen information.

Task 1: Computing $P(\mathcal{O}; \theta)$

We've seen the probability of a joint sequence of observations and states:

$$P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta) P(Q; \theta) = \pi_{q_0} b_{q_0}(\sigma_0) a_{q_0 q_1} b_{q_1}(\sigma_1) a_{q_1 q_2} b_{q_2}(\sigma_2) \dots$$

• To get the probability of our observations **without** seeing the state, we must **sum over all possible state sequences**:

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O}|Q;\theta) P(Q;\theta).$$

Computing $P(\mathcal{O}; \theta)$ naïvely

 To get the total probability of our observations, we could directly sum over all possible state sequences:

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O}|Q;\theta) P(Q;\theta).$$

- For observations of length *T*, each state sequence involves 2*T* multiplications (1 for each state transition, 1 for each observation, 1 for the start state, minus 1).
- There are up to N^T possible state sequences of length T given N states.

 $\therefore \sim (1 + T + T - 1) \cdot N^T$ multiplications

Computing $P(\mathcal{O}; \theta)$ cleverly

- To avoid this complexity, we use dynamic programming; we remember, rather than recompute, partial results.
- We make a trellis which is an array of states vs. time.
 The element at (*i*, *t*) is α_i(*t*)

the probability of being in state *i* at time *t* after seeing all previous observations: $P(\sigma_{o:t-1}, q_t = s_i; \theta)$

Trellis

ORONTO

ORONTO

ORONTO

ORONTO

AND SO ON...

CSC401/2511 - Spring 2019

Trellis

The Forward procedure

• To compute

$$\alpha_i(t) = P(\sigma_{0:t}, q_t = s_i; \theta)$$

we can compute $\alpha_j(t-1)$ for possible *previous* states s_j , then use our knowledge of a_{ji} and $b_i(\sigma_t)$

 We compute the trellis left-to-right (because of the convention of time) and top-to-bottom ('just because').

• **Remember**: σ_t is fixed and known. $\alpha_i(t)$ is agnostic of the future.

The Forward procedure

- The trellis is computed left-to-right and top-to-bottom.
- There are three steps in this procedure:
 - Initialization: Compute the nodes in the *first* column of the trellis (t = 0).
 - Induction: Iteratively compute the nodes in the *rest* of the trellis $(1 \le t < T)$.
 - Conclusion:
- Sum over the nodes in the *last* column of the trellis (t = T 1).

Initialization of Forward procedure

Induction of Forward procedure

Induction of Forward procedure

CSC401/2511 - Spring 2019

Conclusion of Forward procedure

The Forward procedure

- The naïve approach needed $(2T) \cdot N^T$ multiplications.
- The Forward procedure (using dynamic programming) needs only 2N²T multiplications.
- The Forward procedure gives us $P(\mathcal{O}; \theta)$.
- Clearly, but less intuitively, we can also compute the trellis from back-to-front, i.e., backwards in time...

Remember the point

The point was to compute the equivalent of

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O},Q;\theta)$$

where $P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta)P(Q; \theta)$ $= \pi_{q_0} b_{q_0}(\sigma_0) a_{q_0q_1} b_{q_1}(\sigma_1) a_{q_1q_2} b_{q_2}(\sigma_2) \dots$ $\stackrel{\alpha_i(0)}{\underset{\alpha_i(2)}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}}}$

The Forward algorithm stores all possible 1-state sequences (from the start), to store all possible 2-state sequences (from the start), to store all possible 3-state sequences (from the start)...

CSC401/2511 – Spring 2019

Remember the point

• But, we can compute these factors in reverse $P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta)P(Q; \theta)$

We can still deal with sequences that evolve *forward* in time, but simply **store temporary results in reverse**...

The Backward procedure

• In the $(i, t)^{th}$ node of the **trellis**, we store $\beta_i(t) = P(\sigma_{t+1:T} | q_t = s_i; \theta)$

which is computed by summing probabilities on **outgoing** arcs **from** that node.

 $\beta_i(t)$ is the probability of starting in state *i* at time *t* then observing everything that comes thereafter.

• The trellis is computed **right-to-left** and **top-to-bottom**.

Step 1: Backward initialization

Step 2: Backward induction

Step 3: Backward conclusion

The Backward procedure

- Initialization
 - $\beta_i(T-1) = 1, \qquad i \coloneqq 1..N$
- Induction $\beta_i(t) = \sum_{j=1}^N a_{ij} b_j(\sigma_{t+1}) \beta_j(t+1), \qquad i \coloneqq 1..N$ $t \coloneqq T - 1..0$
- Conclusion $P(\mathcal{O};\theta) = \sum_{i=1}^{N} \pi_{i} b_{i}(\sigma_{0}) \beta_{i}(0)$

The Backward procedure – so what?

- The combination of Forward and Backward procedures will be vital for solving parameter re-estimation, i.e., training.
- Generally, we can combine α and β at any point in time to represent the probability of an entire observation sequence...

Combining α and β

$$P(\mathcal{O}, q_t = i; \theta) = \alpha_i(t)\beta_i(t)$$

$$\therefore P(\mathcal{O}; \theta) = \sum_{i=1}^{N} \alpha_i(t)\beta_i(t)$$

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_2 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_2 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s$$

This requires the current word to be incorporated by $\alpha_i(t)$, but **not** $\beta_i(t)$.

> This isn't merely for fun – it will soon become useful...

Reading

- (optional) Manning & Schütze: Section 9.2—9.4.1
 - Note that they use another formulation...
- Rabiner, L. (1990) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: *Readings in speech recognition*. Morgan Kaufmann. (posted on course website)
- Optional software:
 - Hidden Markov Model Toolkit (<u>http://htk.eng.cam.ac.uk/</u>)
 - Sci-kit's HMM (<u>http://scikit-learn.sourceforge.net/stable/modules/hmm.html</u>)

