
CSC401/2511 – Spring 2019

CSC401/2511 – Natural Language Computing – Spring 2019
Lecture 5 Frank Rudzicz and Chloé Pou-Prom

University of Toronto

CSC401/2511 – Spring 2019

Revisiting PoS tagging

• Will/MD the/DT chair/NN chair/?? the/DT
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)

CSC401/2511 – Spring 2019

Now

• (Hidden) Markov models.
• Using them.
• Training them.
• Loving them.

CSC401/2511 – Spring 2019

Observable Markov model

• We’ve seen this type of model:
• e.g., consider the 7-word vocabulary:

{𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛, 𝑝𝑟𝑜𝑚𝑖𝑠𝑒, 𝑓𝑟𝑖𝑒𝑛𝑑,𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡,
𝑚𝑜𝑛𝑠𝑡𝑒𝑟, ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛}

• What is the probability of the sequence
𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛, 𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛,𝑚𝑜𝑛𝑠𝑡𝑒𝑟?

• Assuming a bigram model (i.e., 1st-order Markov),

𝑃 𝑢𝑝𝑠𝑖𝑑𝑒|<s> 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑑𝑜𝑤𝑛
∙ 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 𝑃(𝑚𝑜𝑛𝑠𝑡𝑒𝑟|𝑑𝑜𝑤𝑛)

CSC401/2511 – Spring 2019

Observable Markov model

• This can be conceptualized
graphically.

• We start with 𝑁 states,
𝑠1, 𝑠2, … , 𝑠𝑁 that represent
unique observations in the
world.

• Here, 𝑁 = 7 and each
state represents one of the
words we can observe.

CSC401/2511 – Spring 2019

Observable Markov model

• We have discrete
timesteps, 𝑡 = 0, 𝑡 = 1,…

• On the 𝑡𝑡ℎ timestep the
system is in exactly one of
the available states, 𝒒𝒕.
• 𝑞𝑡 ∈ {𝑠1, 𝑠2, … , 𝑠𝑁}

• We could start in any state.
The probability of starting
with a particular state 𝑠 is
𝑃 𝑞0 = 𝑠 = 𝝅(𝒔)

𝑃 𝑞0 = 𝑢𝑝𝑠𝑖𝑑𝑒 = 𝜋(𝑢𝑝𝑠𝑖𝑑𝑒)

CSC401/2511 – Spring 2019

Observable Markov model

• At each step we must
move to a state with some
probability.

• Here, an arrow from 𝑞𝑡 to
𝑞𝑡+1 represents
𝑃(𝑞𝑡+1|𝑞𝑡)

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 𝑚𝑜𝑛𝑠𝑡𝑒𝑟 𝑑𝑜𝑤𝑛 = 0

CSC401/2511 – Spring 2019

Observable Markov model

• Probabilities on all outgoing
arcs must sum to 1.

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑢𝑝𝑠𝑖𝑑𝑒 +
𝑃 ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 +
𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 = 1

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑑𝑜𝑤𝑛 +
𝑃 𝑑𝑜𝑤𝑛 𝑑𝑜𝑤𝑛 +
𝑃 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑑𝑜𝑤𝑛 = 1

• …

CSC401/2511 – Spring 2019

A multivariate system

• What if the probabilities of observing words depended only
on some other variable, like mood?

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

CSC401/2511 – Spring 2019

A multivariate system

• What if that variable changes over time?
• e.g., I’m happy one second and

disgusted the next.
• Here, state ≡ mood

observation ≡ word.

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

• Imagine you have access to my emotional state somehow.

• All your data are completely observable at every timestep.

• E.g.,

CSC401/2511 – Spring 2019

Observable multivariate systems

t 0 1 2 …

state …

word midnight friend upside …

≡

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 , ∗ , ,∗ ,

𝑃 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 , ∗ ,∗ = 𝑃 𝑞0 = ∗ ∙ 𝑃 𝑓𝑟𝑖𝑒𝑛𝑑 ∗

∙ 𝑃 ∗ | ∗ ∙ 𝑃(𝑢𝑝𝑠𝑖𝑑𝑒| ∗)

• What is the probability of a sequence of words and states?
• 𝑃 𝑤0:𝑡 , 𝑞0:𝑡 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0

𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖

CSC401/2511 – Spring 2019

Observable multivariate systems

w P(w)

upside …

down …

promise …

friend …

monster …

midnight …

halloween …

• e.g.,

• Q: How do you learn these probabilities?
• 𝑃 𝑤0:𝑡 , 𝑞0:𝑡 ≈ ς𝑖=0

𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖

CSC401/2511 – Spring 2019

Observable multivariate systems

w P(w)

upside …

down …

promise …

friend …

monster …

midnight …

halloween …

• A: When all data are observed, basically the same as before.

• 𝑃 𝑞𝑖 𝑞𝑖−1 =
𝑃(𝑞𝑖−1𝑞𝑖)

𝑃(𝑞𝑖−1)
is learned with MLE from training data.

• 𝑃 𝑤𝑖 𝑞𝑖 =
𝑃(𝑤𝑖,𝑞𝑖)

𝑃(𝑞𝑖)
is also learned with MLE from training data.

• Q: What if you don’t know the states during testing?
• e.g., compute 𝑃(𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛,𝑚𝑜𝑛𝑠𝑡𝑒𝑟, 𝑓𝑟𝑖𝑒𝑛𝑑)

• Q: What if you don’t know the states during training?

CSC401/2511 – Spring 2019

Hidden variables

MD DT NN VB …

upside down monster friend

CSC401/2511 – Spring 2019

Examples of hidden phenomena

• We want to represent surface (i.e., observable)
phenomena as the output of hidden underlying systems.
• e.g.,

• Words are the outputs of hidden parts-of-speech,
• French phrases are the outputs of hidden English phrases,
• Speech sounds are the outputs of hidden phonemes.

• in other fields,
• Encrypted symbols are the outputs of hidden messages,
• Genes are the outputs of hidden functional relationships,
• Weather is the output of hidden climate conditions,
• Stock prices are the outputs of hidden market conditions,
• …

CSC401/2511 – Spring 2019

Definition of an HMM

• A hidden Markov model (HMM) is specified by the
5-tuple {𝑆,𝑊, Π, 𝐴, 𝐵}:
• 𝑆 = {𝑠1, … , 𝑠𝑁} : set of states (e.g., moods)
• 𝑊 = {𝑤1, … , 𝑤𝐾} : output alphabet (e.g., words)

• Π = {𝜋1, … , 𝜋𝑁} : initial state probabilities

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities

• 𝐵 = 𝑏𝑖 𝑤 , 𝑖 ∈ 𝑆,𝑤 ∈ 𝑊 : state output probabilities
yielding
• 𝑄 = {𝑞0, … , 𝑞𝑇}, 𝑞𝑖 ∈ 𝑆 : state sequence
• 𝒪 = ℴ0, … , ℴ𝑇 , ℴ𝑖 ∈ 𝑊 : output sequence

𝜃

CSC401/2511 – Spring 2019

A hidden Markov production process

• 𝑡 ≔ 0
• Start in state 𝑞0 = 𝑠𝑖 with probability 𝜋𝑖
• Emit observation symbol ℴ0 = 𝑤𝑘 with probability 𝑏𝑖(ℴ0)
• While (not forever)
• Go from state 𝑞𝑡 = 𝑠𝑖 to state 𝑞𝑡+1 = 𝑠𝑗 with probability 𝑎𝑖𝑗
• Emit observation symbol ℴ𝑡+1 = 𝑤𝑘 with probability
𝑏𝑗(ℴ𝑡+1)

• 𝑡 ≔ 𝑡 + 1

• An HMM is a representation of a process in the world.
• We can synthesize data, as in Shannon’s game.

• This is how an HMM generates new sequences:

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

1. Given a model with particular parameters 𝜃 = Π, 𝐴, 𝐵 ,
how do we efficiently compute the likelihood of a
particular observation sequence, 𝑃(𝒪; 𝜃)?

We previously computed the probabilities of word sequences
using N-grams.

The probability of a particular sequence is usually useful as a
means to some other end.

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃,
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪, how do we
choose the best parameters 𝜃 = Π, 𝐴, 𝐵 that explain
the data 𝒪?

This is the task of .

As before, we want our parameters to be set so that the
available training data is maximally likely,

But doing so will involve guessing unseen information.

CSC401/2511 – Spring 2019

Task 1: Computing 𝑃(𝒪; 𝜃)

• We’ve seen the probability of a joint sequence of
observations and states:

𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃
= 𝜋𝑞0𝑏𝑞0 ℴ0 𝑎𝑞0𝑞1𝑏𝑞1 ℴ1 𝑎𝑞1𝑞2𝑏𝑞2 ℴ2 …

• To get the probability of our observations without seeing
the state, we must sum over all possible state sequences:

𝑃 𝒪; 𝜃 = σ𝑄𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .

CSC401/2511 – Spring 2019

Computing 𝑃(𝒪; 𝜃) naïvely

• To get the total probability of our observations, we could
directly sum over all possible state sequences:

𝑃 𝒪; 𝜃 = σ𝑄𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .

• For observations of length 𝑇, each state sequence involves
2𝑇 multiplications (1 for each state transition,
1 for each observation, 1 for the start state, minus 1).

• There are up to 𝑁𝑇 possible state sequences of length 𝑇
given 𝑁 states.

∴ ~ 1 + 𝑇 + 𝑇 − 1 ∙ 𝑁𝑇 multiplications

CSC401/2511 – Spring 2019

Computing 𝑃(𝒪; 𝜃) cleverly

• To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results.

• We make a trellis which is an array of states vs. time.
• The element at (𝑖, 𝑡) is 𝜶𝒊 𝒕

the probability of being in state 𝑖 at time 𝑡
after seeing all previous observations:
𝑃(ℴ𝑜:𝑡−1, 𝑞𝑡 = 𝑠𝑖; 𝜃)

CSC401/2511 – Spring 2019

Trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 = 2

CSC401/2511 – Spring 2019

Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 = 2

CSC401/2511 – Spring 2019

Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 = 2

CSC401/2511 – Spring 2019

Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 = 2

CSC401/2511 – Spring 2019

Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 =2

Notice that I already computed a
path through this node

CSC401/2511 – Spring 2019

Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of
being in state 𝑠3

at time 𝑡 =2

Notice that I already computed a
path through this node

CSC401/2511 – Spring 2019

AND SO ON…

CSC401/2511 – Spring 2019

Trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

To compute the probabilities of
the black node and the yellow
node, I need (among others) the
probabilities of the orange node
and the purple node:

I compute once, and save them.

CSC401/2511 – Spring 2019

The Forward procedure

• To compute
𝛼𝑖 𝑡 = 𝑃(ℴ0:𝑡, 𝑞𝑡 = 𝑠𝑖; 𝜃)

we can compute 𝛼𝑗(𝑡 − 1) for possible previous states 𝑠𝑗,

then use our knowledge of 𝑎𝑗𝑖 and 𝑏𝑖(ℴ𝑡)

• We compute the trellis left-to-right (because of the
convention of time) and top-to-bottom (‘just because’).

• Remember: ℴ𝑡 is fixed and known.
𝛼𝑖(𝑡) is agnostic of the future.

CSC401/2511 – Spring 2019

The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (𝑡 = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ 𝑡 < 𝑇).

• Conclusion: Sum over the nodes in the last
column of the trellis (𝑡 = 𝑇 − 1).

CSC401/2511 – Spring 2019

Initialization of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

𝛼𝑖 0 ≔ 𝜋𝑖𝑏𝑖 ℴ0 ,
𝑖 ≔ 1. . 𝑁

(Probability of starting in
state 𝑖 and reading the first

word there)

CSC401/2511 – Spring 2019

Induction of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

𝛼𝑗 𝑡 + 1 ≔

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1 ,

for 𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 0. . (𝑇 − 2)

(Probability of getting to state 𝑗 at
time 𝑡 + 1)

CSC401/2511 – Spring 2019

Induction of Forward procedure

𝒔𝑵
𝜶𝑵 𝒕

𝑡 𝑡 + 1

𝒔𝟏
𝜶𝟏 𝒕

𝒔𝟐
𝜶𝟐 𝒕

𝒔𝟑
𝜶𝟑 𝒕 𝒔𝒋

𝜶𝒋 𝒕 + 𝟏

CSC401/2511 – Spring 2019

Conclusion of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Sum over all possible final
states.

𝑃 𝒪; 𝜃 =

𝑖=1

𝑁

𝛼𝑖(𝑇 − 1)

CSC401/2511 – Spring 2019

The Forward procedure - Example

• Let’s compute P(𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒)

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒
We need initial state probabilities
𝚷 and transition probabilities 𝜶𝒊𝒋

𝚷 = 0.80

𝚷 = 0.20

𝚷 = 0

0.4

0.1

0.80.2

1.0

0.5

CSC401/2511 – Spring 2019

The Forward procedure - Example

• Let’s compute P(𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒)

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Initialization

Compute the probability of starting in state
𝑖 and reading the first word there

𝜶𝒊 𝟎 ≔ 𝝅𝒊𝒃𝒊 𝓸𝟎

𝛂 𝟎 = 𝟎. 𝟖𝟎 × 𝟎. 𝟏𝟎 = 𝟎. 𝟎𝟖

𝛂 𝟎 = 𝟎. 𝟐𝟎 × 𝟎. 𝟎𝟗 = 𝟎. 𝟎𝟏𝟖

𝛂 𝟎 = 𝟎 × 𝟎. 𝟎𝟓 = 𝟎

0.08

0.018

0

CSC401/2511 – Spring 2019

The Forward procedure - Example

• Let’s compute P(𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒)

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Induction

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to
state j at time t+1

𝛼𝑗 𝑡 + 1 ≔

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1

𝛂 𝒕 + 𝟏 = 𝟎. 𝟎𝟖 𝟎. 𝟒 𝟎. 𝟔
+ 𝟎. 𝟎𝟏𝟖 𝟎 𝟎. 𝟔
+ 𝟎 𝟎 𝟎. 𝟔
= 𝟎. 𝟎𝟏𝟗𝟐

0.08

0.018

0

0.0192

CSC401/2511 – Spring 2019

The Forward procedure - Example

• Let’s compute P(𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒)

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Induction

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to
state j at time t+1

𝛼𝑗 𝑡 + 1 ≔

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

CSC401/2511 – Spring 2019

The Forward procedure - Example

• Let’s compute P(𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒)

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

Conclusion

Sum over all possible final states

𝑷 𝓞;𝜽 =

𝒊=𝟏

𝑵

𝜶𝒊(𝑻 − 𝟏)

𝑃 𝒪; 𝜃
= 0.00076 + 0.00283 + 0.0048
= 𝟎. 𝟎𝟎𝟖𝟑𝟗

CSC401/2511 – Spring 2019

The Forward procedure

• The naïve approach needed 2𝑇 ∙ 𝑁𝑇 multiplications.

• The Forward procedure (using dynamic programming)
needs only 2𝑁2𝑇 multiplications.

• The Forward procedure gives us 𝑃(𝒪; 𝜃).

• Clearly, but less intuitively, we can also compute the trellis
from back-to-front, i.e., backwards in time…

CSC401/2511 – Spring 2019

Remember the point

• The point was to compute the equivalent of

𝑃 𝒪; 𝜃 =

𝑄

𝑃(𝒪, 𝑄; 𝜃)

where
𝑃 𝒪,𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋𝑞0𝑏𝑞0 ℴ0 𝑎𝑞0𝑞1𝑏𝑞1 ℴ1 𝑎𝑞1𝑞2𝑏𝑞2 ℴ2 …

The Forward algorithm stores all possible 1-state sequences (from the
start), to store all possible 2-state sequences (from the start), to store all
possible 3-state sequences (from the start)…

𝛼𝑖 0

𝛼𝑖 1

𝛼𝑖 2

CSC401/2511 – Spring 2019

Remember the point

• But, we can compute these factors in reverse
𝑃 𝒪,𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋𝑞0 …𝑏𝑞𝑇−2 ℴ𝑇−2 𝑎𝑞𝑇−2𝑞𝑇−1𝑏𝑞𝑇−1 ℴ𝑇−1 𝑎𝑞𝑇−1𝑞𝑇𝑏𝑞𝑇 ℴ𝑇

We can still deal with sequences that evolve forward in time, but simply
store temporary results in reverse…

𝛽𝑖 𝑇 − 1

𝛽𝑖 𝑇 − 2

𝛽𝑖 𝑇 − 3

CSC401/2511 – Spring 2019

The Backward procedure

• In the 𝑖, 𝑡 𝑡ℎ node of the trellis, we store
𝛽𝑖 𝑡 = 𝑃(ℴ𝑡+1:𝑇|𝑞𝑡 = 𝑠𝑖; 𝜃)

which is computed by summing probabilities on outgoing
arcs from that node.

𝛽𝑖 𝑡 is the probability of starting in state 𝑖 at time 𝑡 then
observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.

CSC401/2511 – Spring 2019

Step 1: Backward initialization
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

𝑇 − 3

1

1

1

𝑇 − 1𝑇 − 2

𝛽𝑖 𝑇 − 1 ≔ 1,
𝑖 ≔ 1. . 𝑁

(We’ll see why, soon)

CSC401/2511 – Spring 2019

Step 2: Backward induction
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

1

1

1

𝑇 − 1

𝛽𝑖 𝑡 =

𝑗=1

𝑁

𝑎𝑖𝑗𝒃𝒋 𝓸𝒕+𝟏 𝛽𝑗 𝑡 + 1 ,

𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 𝑇 − 2 . . 0

(Probability of being in state 𝑖 at
time 𝑡, then reading everything

to follow)

𝑇 − 3 𝑇 − 2

CSC401/2511 – Spring 2019

Step 3: Backward conclusion
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

𝑇 − 1

Sum over all possible
initial states.

𝑃 𝒪; 𝜃

=

𝑖=1

𝑁

𝜋𝑖𝑏𝑖(ℴ0)𝛽𝑖(0)

𝑇 − 3 𝑇 − 2

CSC401/2511 – Spring 2019

The Backward procedure

• Initialization
𝛽𝑖 𝑇 − 1 = 1, 𝑖 ≔ 1. . 𝑁

• Induction

𝛽𝑖 𝑡 = σ𝑗=1
𝑁 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1 𝛽𝑗 𝑡 + 1 , 𝑖 ≔ 1. . 𝑁

𝑡 ≔ 𝑇 − 1. . 0

• Conclusion

𝑃 𝒪; 𝜃 = σ𝑖=1
𝑁 𝜋𝑖𝑏𝑖(ℴ0)𝛽𝑖(0)

CSC401/2511 – Spring 2019

The Backward procedure – so what?

• The combination of Forward and Backward procedures
will be vital for solving parameter re-estimation,
i.e., training.

• Generally, we can combine 𝛼 and 𝛽 at any point in time to
represent the probability of an entire observation
sequence…

CSC401/2511 – Spring 2019

Combining 𝜶 and 𝜷

𝑃 𝒪, 𝑞𝑡 = 𝑖; 𝜃 = 𝛼𝑖 𝑡 𝛽𝑖 𝑡

∴ 𝑃 𝒪; 𝜃 =

𝑖=1

𝑁

𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑠𝑁
0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

This requires
the current
word to be
incorporated by
𝛼𝑖 𝑡 , but not
𝛽𝑖 𝑡 .

This isn’t merely
for fun – it will
soon become
useful…

CSC401/2511 – Spring 2019

Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. In: Readings
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software:
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)

http://htk.eng.cam.ac.uk/
http://scikit-learn.sourceforge.net/stable/modules/hmm.html

