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Revisiting PoS tagging

• Will/MD the/DT chair/NN chair/?? the/DT 
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)
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Now

• (Hidden) Markov models.
• Using them.
• Training them.
• Loving them.
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Observable Markov model

• We’ve seen this type of model: 
• e.g., consider the 7-word vocabulary:

{𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛, 𝑝𝑟𝑜𝑚𝑖𝑠𝑒, 𝑓𝑟𝑖𝑒𝑛𝑑,𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡,
𝑚𝑜𝑛𝑠𝑡𝑒𝑟, ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛}

• What is the probability of the sequence
𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛, 𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛,𝑚𝑜𝑛𝑠𝑡𝑒𝑟?

• Assuming a bigram model (i.e., 1st-order Markov),

𝑃 𝑢𝑝𝑠𝑖𝑑𝑒|<s> 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑑𝑜𝑤𝑛
∙ 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 𝑃(𝑚𝑜𝑛𝑠𝑡𝑒𝑟|𝑑𝑜𝑤𝑛)
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Observable Markov model

• This can be conceptualized 
graphically.

• We start with 𝑁 states,
𝑠1, 𝑠2, … , 𝑠𝑁 that represent 
unique observations in the 
world.

• Here, 𝑁 = 7 and each 
state represents one of the 
words we can observe. 
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Observable Markov model

• We have discrete 
timesteps, 𝑡 = 0, 𝑡 = 1,…

• On the 𝑡𝑡ℎ timestep the 
system is in exactly one of 
the available states, 𝒒𝒕.
• 𝑞𝑡 ∈ {𝑠1, 𝑠2, … , 𝑠𝑁}

• We could start in any state. 
The probability of starting 
with a particular state 𝑠 is 
𝑃 𝑞0 = 𝑠 = 𝝅(𝒔)

𝑃 𝑞0 = 𝑢𝑝𝑠𝑖𝑑𝑒 = 𝜋(𝑢𝑝𝑠𝑖𝑑𝑒)
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Observable Markov model

• At each step we must 
move to a state with some 
probability.

• Here, an arrow from 𝑞𝑡 to 
𝑞𝑡+1 represents 
𝑃(𝑞𝑡+1|𝑞𝑡)

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒
• 𝑃 𝑚𝑜𝑛𝑠𝑡𝑒𝑟 𝑑𝑜𝑤𝑛 = 0
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Observable Markov model

• Probabilities on all outgoing 
arcs must sum to 1.

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑢𝑝𝑠𝑖𝑑𝑒 +
𝑃 ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 +
𝑃 𝑑𝑜𝑤𝑛 𝑢𝑝𝑠𝑖𝑑𝑒 = 1

• 𝑃 𝑢𝑝𝑠𝑖𝑑𝑒 𝑑𝑜𝑤𝑛 +
𝑃 𝑑𝑜𝑤𝑛 𝑑𝑜𝑤𝑛 +
𝑃 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑑𝑜𝑤𝑛 = 1

• …
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A multivariate system

• What if the probabilities of observing words depended only
on some other variable, like mood?

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4
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A multivariate system

• What if that variable changes over time?
• e.g., I’m happy one second and 

disgusted the next.
• Here,              state ≡ mood

observation ≡ word.

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01



• Imagine you have access to my emotional state somehow.

• All your data are completely observable at every timestep.

• E.g., 
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Observable multivariate systems

t 0 1 2 …

state …

word midnight friend upside …

≡

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 , ∗ , ,∗ ,



𝑃 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 , ∗ ,∗ = 𝑃 𝑞0 = ∗ ∙ 𝑃 𝑓𝑟𝑖𝑒𝑛𝑑 ∗

∙ 𝑃 ∗ | ∗ ∙ 𝑃(𝑢𝑝𝑠𝑖𝑑𝑒| ∗ )

• What is the probability of a sequence of words and states? 
• 𝑃 𝑤0:𝑡 , 𝑞0:𝑡 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0

𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖
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Observable multivariate systems

w P(w)

upside …

down …

promise …

friend …

monster …

midnight …

halloween …

• e.g., 



• Q: How do you learn these probabilities? 
• 𝑃 𝑤0:𝑡 , 𝑞0:𝑡 ≈ ς𝑖=0

𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖
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Observable multivariate systems

w P(w)

upside …

down …

promise …

friend …

monster …

midnight …

halloween …

• A: When all data are observed, basically the same as before.

• 𝑃 𝑞𝑖 𝑞𝑖−1 =
𝑃(𝑞𝑖−1𝑞𝑖)

𝑃(𝑞𝑖−1)
is learned with MLE from training data.

• 𝑃 𝑤𝑖 𝑞𝑖 =
𝑃(𝑤𝑖,𝑞𝑖)

𝑃(𝑞𝑖)
is also learned with MLE from training data.



• Q: What if you don’t know the states during testing?
• e.g., compute 𝑃( 𝑢𝑝𝑠𝑖𝑑𝑒, 𝑑𝑜𝑤𝑛,𝑚𝑜𝑛𝑠𝑡𝑒𝑟, 𝑓𝑟𝑖𝑒𝑛𝑑 )

• Q: What if you don’t know the states during training?
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Hidden variables

MD DT NN VB …

upside down monster friend
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Examples of hidden phenomena

• We want to represent surface (i.e., observable) 
phenomena as the output of hidden underlying systems.
• e.g.,

• Words are the outputs of hidden parts-of-speech,
• French phrases are the outputs of hidden English phrases,
• Speech sounds are the outputs of hidden phonemes.

• in other fields,
• Encrypted symbols are the outputs of hidden messages,
• Genes are the outputs of hidden functional relationships,
• Weather is the output of hidden climate conditions,
• Stock prices are the outputs of hidden market conditions,
• …
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Definition of an HMM

• A hidden Markov model (HMM) is specified by the 
5-tuple {𝑆,𝑊, Π, 𝐴, 𝐵}:
• 𝑆 = {𝑠1, … , 𝑠𝑁} : set of states (e.g., moods)
• 𝑊 = {𝑤1, … , 𝑤𝐾} : output alphabet (e.g., words)

• Π = {𝜋1, … , 𝜋𝑁} : initial state probabilities

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities

• 𝐵 = 𝑏𝑖 𝑤 , 𝑖 ∈ 𝑆,𝑤 ∈ 𝑊 : state output probabilities 
yielding
• 𝑄 = {𝑞0, … , 𝑞𝑇}, 𝑞𝑖 ∈ 𝑆 : state sequence
• 𝒪 = ℴ0, … , ℴ𝑇 , ℴ𝑖 ∈ 𝑊 : output sequence

𝜃
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A hidden Markov production process

• 𝑡 ≔ 0
• Start in state 𝑞0 = 𝑠𝑖 with probability 𝜋𝑖
• Emit observation symbol ℴ0 = 𝑤𝑘 with probability 𝑏𝑖(ℴ0)
• While (not forever)
• Go from state 𝑞𝑡 = 𝑠𝑖 to state 𝑞𝑡+1 = 𝑠𝑗 with probability 𝑎𝑖𝑗
• Emit observation symbol ℴ𝑡+1 = 𝑤𝑘 with probability 
𝑏𝑗(ℴ𝑡+1)

• 𝑡 ≔ 𝑡 + 1

• An HMM is a representation of a process in the world.
• We can synthesize data, as in Shannon’s game.

• This is how an HMM generates new sequences:
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Fundamental tasks for HMMs

1. Given a model with particular parameters 𝜃 = Π, 𝐴, 𝐵 , 
how do we efficiently compute the likelihood of a 
particular observation sequence, 𝑃(𝒪; 𝜃)?

We previously computed the probabilities of word sequences 
using N-grams.

The probability of a particular sequence is usually useful as a 
means to some other end.
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Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃, 
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪, how do we 
choose the best parameters 𝜃 = Π, 𝐴, 𝐵 that explain 
the data 𝒪?

This is the task of . 

As before, we want our parameters to be set so that the 
available training data is maximally likely, 

But doing so will involve guessing unseen information.
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Task 1: Computing 𝑃(𝒪; 𝜃)

• We’ve seen the probability of a joint sequence of 
observations and states:

𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃
= 𝜋𝑞0𝑏𝑞0 ℴ0 𝑎𝑞0𝑞1𝑏𝑞1 ℴ1 𝑎𝑞1𝑞2𝑏𝑞2 ℴ2 …

• To get the probability of our observations without seeing 
the state, we must sum over all possible state sequences:

𝑃 𝒪; 𝜃 = σ𝑄𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .
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Computing 𝑃(𝒪; 𝜃) naïvely 

• To get the total probability of our observations, we could 
directly sum over all possible state sequences:

𝑃 𝒪; 𝜃 = σ𝑄𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .

• For observations of length 𝑇, each state sequence involves 
2𝑇 multiplications (1 for each state transition, 
1 for each observation, 1 for the start state, minus 1).

• There are up to 𝑁𝑇 possible state sequences of length 𝑇
given 𝑁 states.

∴ ~ 1 + 𝑇 + 𝑇 − 1 ∙ 𝑁𝑇 multiplications
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Computing 𝑃(𝒪; 𝜃) cleverly

• To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results.

• We make a trellis which is an array of states vs. time.
• The element at (𝑖, 𝑡) is 𝜶𝒊 𝒕

the probability of being in state 𝑖 at time 𝑡
after seeing all previous observations:
𝑃(ℴ𝑜:𝑡−1, 𝑞𝑡 = 𝑠𝑖; 𝜃)
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Trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 =2

Notice that I already computed a 
path through this node
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Probability of 
being in state 𝑠3

at time 𝑡 =2

Notice that I already computed a 
path through this node
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AND SO ON…
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Trellis
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

To compute the probabilities of 
the black node and the yellow
node, I need (among others) the 
probabilities of the orange node 
and the purple node:

I compute once, and save them.
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The Forward procedure

• To compute
𝛼𝑖 𝑡 = 𝑃(ℴ0:𝑡, 𝑞𝑡 = 𝑠𝑖; 𝜃)

we can compute 𝛼𝑗(𝑡 − 1) for possible previous states 𝑠𝑗,

then use our knowledge of 𝑎𝑗𝑖 and 𝑏𝑖(ℴ𝑡)

• We compute the trellis left-to-right (because of the 
convention of time) and top-to-bottom (‘just because’).

• Remember: ℴ𝑡 is fixed and known.
𝛼𝑖(𝑡) is agnostic of the future.
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The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (𝑡 = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ 𝑡 < 𝑇).

• Conclusion: Sum over the nodes in the last
column of the trellis (𝑡 = 𝑇 − 1).
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Initialization of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

𝛼𝑖 0 ≔ 𝜋𝑖𝑏𝑖 ℴ0 ,
𝑖 ≔ 1. . 𝑁

(Probability of starting in 
state 𝑖 and reading the first 

word there)
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Induction of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

𝛼𝑗 𝑡 + 1 ≔ 

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1 ,

for 𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 0. . (𝑇 − 2)

(Probability of getting to state 𝑗 at 
time 𝑡 + 1)
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Induction of Forward procedure

𝒔𝑵
𝜶𝑵 𝒕

𝑡 𝑡 + 1

𝒔𝟏
𝜶𝟏 𝒕

𝒔𝟐
𝜶𝟐 𝒕

𝒔𝟑
𝜶𝟑 𝒕 𝒔𝒋

𝜶𝒋 𝒕 + 𝟏
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Conclusion of Forward procedure
St

at
e

Time, 𝑡

𝑠𝑁

0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

Sum over all possible final 
states.

𝑃 𝒪; 𝜃 =

𝑖=1

𝑁

𝛼𝑖(𝑇 − 1)
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The Forward procedure - Example

• Let’s compute P( 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 )

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒
We need initial state probabilities 
𝚷 and transition probabilities 𝜶𝒊𝒋

𝚷 = 0.80

𝚷 = 0.20

𝚷 = 0

0.4

0.1

0.80.2

1.0

0.5
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The Forward procedure - Example

• Let’s compute P( 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 )

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Initialization

Compute the probability of starting in state 
𝑖 and reading the first word there

𝜶𝒊 𝟎 ≔ 𝝅𝒊𝒃𝒊 𝓸𝟎

𝛂 𝟎 = 𝟎. 𝟖𝟎 × 𝟎. 𝟏𝟎 = 𝟎. 𝟎𝟖

𝛂 𝟎 = 𝟎. 𝟐𝟎 × 𝟎. 𝟎𝟗 = 𝟎. 𝟎𝟏𝟖

𝛂 𝟎 = 𝟎 × 𝟎. 𝟎𝟓 = 𝟎

0.08

0.018

0
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The Forward procedure - Example

• Let’s compute P( 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 )

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

𝛼𝑗 𝑡 + 1 ≔ 

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1

𝛂 𝒕 + 𝟏 = 𝟎. 𝟎𝟖 𝟎. 𝟒 𝟎. 𝟔
+ 𝟎. 𝟎𝟏𝟖 𝟎 𝟎. 𝟔
+ 𝟎 𝟎 𝟎. 𝟔
= 𝟎. 𝟎𝟏𝟗𝟐

0.08

0.018

0

0.0192
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The Forward procedure - Example

• Let’s compute P( 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 )

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒 Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

𝛼𝑗 𝑡 + 1 ≔ 

𝑖=1

𝑁

𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048
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The Forward procedure - Example

• Let’s compute P( 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑, 𝑢𝑝𝑠𝑖𝑑𝑒 )

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡 𝑓𝑟𝑖𝑒𝑛𝑑 𝑢𝑝𝑠𝑖𝑑𝑒

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

Conclusion

Sum over all possible final states

𝑷 𝓞;𝜽 =

𝒊=𝟏

𝑵

𝜶𝒊(𝑻 − 𝟏)

𝑃 𝒪; 𝜃
= 0.00076 + 0.00283 + 0.0048
= 𝟎. 𝟎𝟎𝟖𝟑𝟗
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The Forward procedure

• The naïve approach needed 2𝑇 ∙ 𝑁𝑇 multiplications.

• The Forward procedure (using dynamic programming) 
needs only 2𝑁2𝑇 multiplications.

• The Forward procedure gives us 𝑃(𝒪; 𝜃).

• Clearly, but less intuitively, we can also compute the trellis 
from back-to-front, i.e., backwards in time…
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Remember the point

• The point was to compute the equivalent of

𝑃 𝒪; 𝜃 =

𝑄

𝑃(𝒪, 𝑄; 𝜃)

where
𝑃 𝒪,𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋𝑞0𝑏𝑞0 ℴ0 𝑎𝑞0𝑞1𝑏𝑞1 ℴ1 𝑎𝑞1𝑞2𝑏𝑞2 ℴ2 …

The Forward algorithm stores all possible 1-state sequences (from the 
start), to store all possible 2-state sequences (from the start), to store all 
possible 3-state sequences (from the start)…

𝛼𝑖 0

𝛼𝑖 1

𝛼𝑖 2
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Remember the point

• But, we can compute these factors in reverse
𝑃 𝒪,𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋𝑞0 …𝑏𝑞𝑇−2 ℴ𝑇−2 𝑎𝑞𝑇−2𝑞𝑇−1𝑏𝑞𝑇−1 ℴ𝑇−1 𝑎𝑞𝑇−1𝑞𝑇𝑏𝑞𝑇 ℴ𝑇

We can still deal with sequences that evolve forward in time, but simply 
store temporary results in reverse…

𝛽𝑖 𝑇 − 1

𝛽𝑖 𝑇 − 2

𝛽𝑖 𝑇 − 3
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The Backward procedure

• In the 𝑖, 𝑡 𝑡ℎ node of the trellis, we store 
𝛽𝑖 𝑡 = 𝑃(ℴ𝑡+1:𝑇|𝑞𝑡 = 𝑠𝑖; 𝜃)

which is computed by summing probabilities on outgoing
arcs from that node.

𝛽𝑖 𝑡 is the probability of starting in state 𝑖 at time 𝑡 then 
observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.
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Step 1: Backward initialization
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

𝑇 − 3

1

1

1

𝑇 − 1𝑇 − 2

𝛽𝑖 𝑇 − 1 ≔ 1,
𝑖 ≔ 1. . 𝑁

(We’ll see why, soon)
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Step 2: Backward induction
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

1

1

1

𝑇 − 1

𝛽𝑖 𝑡 =

𝑗=1

𝑁

𝑎𝑖𝑗𝒃𝒋 𝓸𝒕+𝟏 𝛽𝑗 𝑡 + 1 ,

𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 𝑇 − 2 . . 0

(Probability of being in state 𝑖 at 
time 𝑡, then reading everything

to follow)

𝑇 − 3 𝑇 − 2
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Step 3: Backward conclusion
St

at
e

Time, 𝑡

𝑠𝑁

0

𝑠1

𝑠3

𝑠2

𝑇 − 1

Sum over all possible 
initial states.

𝑃 𝒪; 𝜃

=

𝑖=1

𝑁

𝜋𝑖𝑏𝑖(ℴ0)𝛽𝑖(0)

𝑇 − 3 𝑇 − 2
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The Backward procedure

• Initialization
𝛽𝑖 𝑇 − 1 = 1, 𝑖 ≔ 1. . 𝑁

• Induction

𝛽𝑖 𝑡 = σ𝑗=1
𝑁 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1 𝛽𝑗 𝑡 + 1 , 𝑖 ≔ 1. . 𝑁

𝑡 ≔ 𝑇 − 1. . 0

• Conclusion

𝑃 𝒪; 𝜃 = σ𝑖=1
𝑁 𝜋𝑖𝑏𝑖(ℴ0)𝛽𝑖(0)
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The Backward procedure – so what?

• The combination of Forward and Backward procedures 
will be vital for solving parameter re-estimation, 
i.e., training.

• Generally, we can combine 𝛼 and 𝛽 at any point in time to 
represent the probability of an entire observation 
sequence…



CSC401/2511 – Spring 2019

Combining 𝜶 and 𝜷

𝑃 𝒪, 𝑞𝑡 = 𝑖; 𝜃 = 𝛼𝑖 𝑡 𝛽𝑖 𝑡

∴ 𝑃 𝒪; 𝜃 =

𝑖=1

𝑁

𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑠𝑁
0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

This requires 
the current 
word to be 
incorporated by 
𝛼𝑖 𝑡 , but not
𝛽𝑖 𝑡 .

This isn’t merely 
for fun – it will 
soon become 
useful…
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Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition. In: Readings 
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software: 
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)

http://htk.eng.cam.ac.uk/
http://scikit-learn.sourceforge.net/stable/modules/hmm.html

