
CSC401/2511 – Spring 2019

CSC401/2511 – Natural Language Computing – Spring 2019
Lecture 5 Frank Rudzicz and Chloé Pou-Prom

University of Toronto

CSC401/2511 – Spring 2019

Definition of an HMM

• A hidden Markov model (HMM) is specified by the
5-tuple {𝑆,𝑊, Π, 𝐴, 𝐵}:
• 𝑆 = {𝑠1, … , 𝑠𝑁} : set of states (e.g., moods)
• 𝑊 = {𝑤1, … , 𝑤𝐾} : output alphabet (e.g., words)

• Π = {𝜋1, … , 𝜋𝑁} : initial state probabilities

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities

• 𝐵 = 𝑏𝑖 𝑤 , 𝑖 ∈ 𝑆, 𝑤 ∈ 𝑊 : state output probabilities
yielding
• 𝑄 = {𝑞0, … , 𝑞𝑇}, 𝑞𝑖 ∈ 𝑆 : state sequence
• 𝒪 = ℴ0, … , ℴ𝑇 , ℴ𝑖 ∈ 𝑊 : output sequence

𝜃

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

1. Given a model with particular parameters 𝜃 = Π, 𝐴, 𝐵 ,
how do we efficiently compute the likelihood of a
particular observation sequence, 𝑃(𝒪; 𝜃)?

We previously computed the probabilities of word sequences
using N-grams.

The probability of a particular sequence is usually useful as a
means to some other end.

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃,
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪, how do we
choose the best parameters 𝜃 = Π, 𝐴, 𝐵 that explain
the data 𝒪?

This is the task of .

As before, we want our parameters to be set so that the
available training data is maximally likely,

But doing so will involve guessing unseen information.

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃,
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.

CSC401/2511 – Spring 2019

Example – PoS state sequences

• Will/MD the/DT chair/NN chair/?? the/DT
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)

CSC401/2511 – Spring 2019

Task 2: Choosing 𝑸 = {𝒒𝟎…𝒒𝑻}

• The purpose of finding the best state sequence 𝑸∗ out of
all possible state sequences 𝑄 is that it tells us what is
most likely to be going on ‘under the hood’.
• E.g., it tells us the most likely part-of-speech tags,
• E.g., it tells us the most likely English words given

French translations (*in a very simple model).

• With the Forward algorithm, we didn’t care about specific
state sequences – we were summing over all possible state
sequences.

CSC401/2511 – Spring 2019

Task 2: Choosing 𝑸 = {𝒒𝟎…𝒒𝑻}

• In other words,
𝑄∗ = argmax

𝑄
𝑃(𝒪, 𝑄; 𝜃)

where

𝑃 𝒪, 𝑄; 𝜃 = 𝜋𝑞0𝑏𝑞0 ℴ0 ෑ

𝑡=1

𝑇

𝑎𝑞𝑡−1𝑞𝑡𝑏𝑞𝑡 ℴ𝑡

CSC401/2511 – Spring 2019

Recall

• Observation likelihoods depend on the
state, which changes over time

• We cannot simply choose the state
that maximizes the probability of
𝑜𝑡 without considering the state
sequence.

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

CSC401/2511 – Spring 2019

The Viterbi algorithm

• The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

• We define the probability of the most probable path
leading to the trellis node at (state 𝑖, time 𝑡) as

𝜹𝒊 𝒕 = max
𝑞0…𝑞𝑡−1

𝑃(𝑞0…𝑞𝑡−1, ℴ0…ℴ𝑡−1, 𝒒𝒕 = 𝒔𝒊; 𝜃)

• 𝝍𝒊(𝒕): The best possible previous state,
if If I’m in state 𝑖 at time 𝑡.

CSC401/2511 – Spring 2019

Viterbi example

• For illustration, we assume a
simpler state-transition
topology:

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.4

0.50.1

0.80.21.0

CSC401/2511 – Spring 2019

Step 1: Initialization of Viterbi

• Initialize with 𝛿0 𝑖 = 𝜋𝑖𝑏𝑖(ℴ0) and 𝜓𝑖 0 = 0 for all states.

𝝅𝒅𝒃𝒅(ℴ𝟎)

𝟎

𝜹: max probability

𝜓: backtrace

Time, 𝑡

0 1 2

𝝅𝒉𝒃𝒉(ℴ𝟎)

𝟎

𝝅𝒔𝒃𝒔(ℴ𝟎)

𝟎

CSC401/2511 – Spring 2019

Step 1: Initialization of Viterbi

• For example, let’s assume
𝜋𝑑= 0.8, 𝜋ℎ = 0.2, and 𝒪 = 𝑢𝑝𝑠𝑖𝑑𝑒, 𝑓𝑟𝑖𝑒𝑛𝑑, ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

𝟎. 𝟖 ∙ 𝟎. 𝟏

𝟎

𝜹: max probability

𝜓: backtrace

Observations, ℴ𝑡

𝟎. 𝟐 ∙ 𝟎. 𝟑

𝟎

𝟎 ∙ 𝟎. 𝟐𝟓

𝟎

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝜹𝒋 𝒕 = max
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋 𝒃𝒋(ℴ𝒕)

𝝍𝒋 𝒕 = argmax
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋

The best path to state 𝑠𝑗 at time 𝑡, 𝛿𝑗 𝑡 ,

depends on the best path to each
possible previous state, 𝛿𝑖 𝑡 − 1 , and

their transitions to 𝑗, 𝑎𝑖𝑗

𝟎

𝟎

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝜹𝒅 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

𝝍𝒅 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝒉 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

𝝍𝒔 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

Specifically…

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝟎 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠𝑑 = 0, ∴ 𝛿𝑠 0 𝑎𝑠𝑑 = 0

𝛿ℎ 0 = 0.06, 𝑎ℎ𝑑 = 0, ∴ 𝛿ℎ 0 𝑎ℎ𝑑 = 0

𝛿𝑑 0 = 0.08, 𝑎𝑑𝑑 = 0.4, ∴ 𝜹𝒅 𝟎 𝒂𝒅𝒅 = 𝟎. 𝟎𝟑𝟐

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔
𝛿𝑑 0 𝑎𝑑𝑑 = 0.032, 𝑏𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.6

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅 ℴ𝟏 = 𝟏. 𝟗𝟐 × 𝟏𝟎−𝟐 = 𝟏. 𝟗𝟐𝑬−𝟐

𝑑 was the most likely previous state

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠ℎ = 0, ∴ 𝛿𝑠 0 𝑎𝑠ℎ = 0

𝛿ℎ 0 = 0.06, 𝑎ℎℎ = 0.8, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒉 = 𝟎. 𝟎𝟒𝟖

𝛿𝑑 0 = 0.08, 𝑎𝑑ℎ = 0.5, ∴ 𝛿𝑑 0 𝑎𝑑ℎ = 0.04

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝟗. 𝟔𝑬−𝟑

𝒉

𝛿ℎ 0 𝑎ℎℎ = 0.048, 𝑏ℎ 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.2

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉 ℴ𝟏 = 𝟗. 𝟔 × 𝟏𝟎−𝟑 = 𝟗. 𝟔𝑬−𝟑

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠𝑠 = 1.0, ∴ 𝛿𝑠 0 𝑎𝑠𝑠 = 0

𝛿ℎ 0 = 0.06, 𝑎ℎ𝑠 = 0.2, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒔 = 𝟎. 𝟎𝟏𝟐

𝛿𝑑 0 = 0.08, 𝑎𝑑𝑠 = 0.1, ∴ 𝛿𝑑 0 𝑎𝑑𝑠 = 0.008

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿ℎ 0 𝑎ℎℎ = 0.012, 𝑏𝑠 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.3

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔 ℴ𝟏 = 𝟑. 𝟔 × 𝟏𝟎−𝟑 = 𝟑. 𝟔𝑬−𝟑

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑑 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑑

𝛿ℎ 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖ℎ 𝑏ℎ(ℴ2)

𝜓ℎ 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖ℎ

𝛿𝑠 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑠 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑠

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑑 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑑

𝜹𝟐 𝒉 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟐)

𝝍𝒉 𝟐 = argmax
𝒊

𝜹𝒊 𝟏 𝒂𝒊𝒉

𝜹𝟐 𝒔 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟐)

𝝍𝟐 𝒔 = argmax
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔

𝛿𝑠 1 = 3.6𝐸−3, 𝑎𝑠𝑑 = 0,
∴ 𝛿𝑠 1 𝑎𝑠𝑑 = 0

𝛿ℎ 1 = 9.6𝐸−3, 𝑎ℎ𝑑 = 0,
∴ 𝛿ℎ 1 𝑎ℎ𝑑 = 0

𝛿𝑑 1 = 1.92𝐸−2, 𝑎𝑑𝑑 = 0.4,
∴ 𝜹𝒅 𝟏 𝒂𝒅𝒅 = 𝟎. 𝟎𝟎𝟕𝟔𝟖

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = 7.68𝐸−3 ∙ 0.05

𝜓𝑑 2 = 𝑑

𝛿ℎ 2 = 9.6𝐸−3 ∙ 0.4

𝜓ℎ 2 = 𝑑

𝛿𝑠 2 = 3.6𝐸−3 ∙ 0.01

𝜓𝑠 2 = 𝑠

Continuing…

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ

Choose the best final state:

𝑄𝑇
∗ = argmax

𝑖
𝛿𝑖 𝑇

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ

Recursively choose the best
previous state:

𝑄𝑡−1
∗ = 𝜓𝑄𝑡

∗(𝑡)

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ Sequence
probability:

𝑃(𝒪, 𝑄∗; 𝜃)
= max

𝑖
𝛿𝑖(𝑇)

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

CSC401/2511 – Spring 2019

Why did we choose 𝑸∗ = {𝒒𝟎…𝒒𝑻}?

• Recall the purpose of HMMs:
• To represent multivariate systems where some variable is

unknown/hidden/latent.

• Finding the best hidden-state sequence 𝑄∗ allows us to:
• Identify unseen parts-of-speech given words,
• Identify equivalent English words given French words,
• Identify unknown phonemes given speech sounds,
• Decipher hidden messages from encrypted symbols,
• Identify hidden relationships from gene sequences,
• Identify hidden market conditions given stock prices,
• …

CSC401/2511 – Spring 2019

Working in the log domain

• Our formulation was
𝑄∗ = argmax𝑄 𝑃(𝒪, 𝑄; 𝜃)

this is equivalent to
𝑄∗ = argmin

𝑄
− log2 𝑃(𝒪, 𝑄; 𝜃)

where
−log2 𝑃 𝒪,𝑄; 𝜃

= −log 2 𝜋𝑞0𝑏𝑞0 ℴ0 −

𝑡=1

𝑇

log2 𝑎𝑞𝑡−1𝑞𝑡𝑏𝑞𝑡 ℴ𝑡

CSC401/2511 – Spring 2019

Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪 for training, but
not the state sequence, how do we choose the ‘best’
parameters 𝜃 = Π, 𝐴, 𝐵 that explain the data 𝒪?

This is the task of .

As with observable Markov models and MLE, we want our
parameters to be set so that

the available training data is maximally likely,
But doing so will involve guessing unseen information…

CSC401/2511 – Spring 2019

Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

• We want to modify the parameters of our model
𝜃 = Π, 𝐴, 𝐵 so that 𝑃(𝒪; 𝜃) is maximized for some
training data 𝒪:

𝜃 = argmax
𝜃

𝑃(𝒪; 𝜃)

• Why? E.g., if we later want to choose the best state
sequence 𝑄∗ for previously unseen test data, the
parameters of the HMM should be tuned to similar
training data.

• 𝜃 = argmax
𝜃

𝑃(𝒪; 𝜃) = argmax
𝜃

σ𝑄𝑃(𝒪, 𝑄; 𝜃)

• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0
𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖

CSC401/2511 – Spring 2019

Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

Recall that we
could use MLE

when 𝑄 was known

Can we do
this?

• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0
𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖

• If the training data contained state sequences, we could simply
do maximum likelihood estimation, as before:

• 𝑃 𝑞𝑖 𝑞𝑖−1 =
𝐶𝑜𝑢𝑛𝑡(𝑞𝑖−1 𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖−1)
𝑃 𝑤𝑖 𝑞𝑖 =

𝐶𝑜𝑢𝑛𝑡(𝑤𝑖∧𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)

CSC401/2511 – Spring 2019

Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

• But we don’t know the states; we can’t count them.

• However, we can use an iterative hill-climbing approach if we
can guess the counts.

CSC401/2511 – Spring 2019

What to do with incomplete data?

• When our training data are incomplete (i.e., one or
more variables in our model is hidden) we cannot use
maximum likelihood estimation.

• We have no way of counting the state-transitions
because we don’t know which sequence of states
generated our observations.

• We can guess the counts if we have some good
pre-existing model.

CSC401/2511 – Spring 2019

Expecting and maximizing

• If we knew 𝜃, we could make expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝜋𝑖 , 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }

CSC401/2511 – Spring 2019

Expectation-maximization

• Expectation-maximization (EM) is an iterative training
algorithm that alternates between two steps:

• Expectation (E): guesses the expected counts for
the hidden sequence using the
current model 𝜃𝑘.

• Maximization (M): computes a new 𝜃 that maximizes
the likelihood of the data, given the
guesses of the E-step. This 𝜃𝑘+1 is
then used in the next E-step.

• Continue until convergence or stopping condition…

CSC401/2511 – Spring 2019

Baum-Welch re-estimation

• Baum-Welch (BW): n. a specific version of EM for HMMs.
a.k.a. ‘forward-backward’ algorithm.

1. Initialize the model.
2. Compute expectations for 𝛼𝑖 𝑡 and 𝛽𝑖(𝑡) for each

state 𝑖 and time 𝑡, given training data 𝒪.
3. Adjust our start, transition, and observation

probabilities to maximize the likelihood of 𝒪.

4. Go to 2. and repeat until convergence or stopping
condition…

CSC401/2511 – Spring 2019

Local maxima

• Baum-Welch changes 𝜃 to climb a `hill’ in 𝑃(𝒪; 𝜃).
• How we initialize 𝜃 can have a big effect.

𝜽

𝑷(𝒪; 𝜽)

CSC401/2511 – Spring 2019

Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
a) All probabilities are uniform

(e.g., 𝑏𝑖 𝑤𝑎 = 𝑏𝑖(𝑤𝑏) for all
states 𝑖 and words 𝑤)

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.33

0.330.33

0.50.51.0

CSC401/2511 – Spring 2019

Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
b) All probabilities are drawn randomly

(subject to the condition
that σ𝑖 𝑃 𝑖 = 1)

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.4

0.50.1

0.80.21.0

CSC401/2511 – Spring 2019

Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
c) Observation distributions are drawn from prior distributions:

e.g., 𝑏𝑖 𝑤𝑎 = 𝑃(𝑤𝑎) for all states 𝑖.
sometimes this involves pre-clustering, e.g. 𝑘-means

word P(word)

upside 0.2

down 0.1

promise 0.03

friend 0.5

monster 0.07

midnight 0.02

halloween 0.08

All blue dots are
words in state BLUE.
Their probability
distribution is

CSC401/2511 – Spring 2019

What to expect when you’re
expecting
• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }, 𝜋𝑖

CSC401/2511 – Spring 2019

BW E-step (occupation)

• We define
𝜸𝒊 𝒕 = 𝑷(𝒒𝒕 = 𝒊|𝓞; 𝜽𝒌)

as the probability of being in state 𝑖 at time 𝑡, based
on our current model, 𝜃𝑘, given the entire observation, 𝒪.

and rewrite as:

𝛾𝑖 𝑡 =
𝑃(𝑞𝑡 = 𝑖, 𝒪; 𝜃𝑘)

𝑃(𝒪; 𝜃𝑘)

=
𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑃(𝒪; 𝜃𝑘)

Remember, 𝛼𝑖 𝑡
and 𝛽𝑖(𝑡) depend

on values from

𝜃 = 𝜋𝑖, 𝑎𝑖𝑗 , 𝑏𝑖 𝑤

CSC401/2511 – Spring 2019

Combining 𝜶 and 𝜷

𝑃 𝒪, 𝑞𝑡 = 𝑖; 𝜃 = 𝛼𝑖 𝑡 𝛽𝑖 𝑡

∴ 𝑃 𝒪; 𝜃 =

𝑖=1

𝑁

𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑠𝑁
0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1

CSC401/2511 – Spring 2019

BW E-step (transition)

• We define
𝝃𝒊𝒋 𝒕 = 𝑷(𝒒𝒕 = 𝒊, 𝒒𝒕+𝟏 = 𝒋|𝓞; 𝜽𝒌)

as the probability of transitioning from state 𝑖 at
time 𝑡 to state 𝑗 at time 𝑡 + 1 based on our current model, 𝜃𝑘,
and given the entire observation, 𝒪. This is:

𝜉𝑖𝑗 𝑡 =
𝑃(𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗, 𝒪; 𝜃𝑘)

𝑃(𝒪; 𝜃𝑘)

=
𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗(ℴ𝑡+1)𝛽𝑗(𝑡 + 1)

𝑃(𝒪; 𝜃𝑘)

Again, these
estimates come

from our model at
iteration 𝑘, 𝜃𝑘 .

CSC401/2511 – Spring 2019

BW E-step (transition)

𝑡 𝑡 + 1

𝒔𝒊

𝑡 − 1

𝛼𝑖(𝑡)

𝒔𝒋

𝛽𝑗(𝑡 + 1)
𝑡 + 2

𝑎𝑖𝑗𝑏𝑗(ℴ𝑡+1)

CSC401/2511 – Spring 2019

Expecting and maximizing

• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }, 𝜋𝑖

CSC401/2511 – Spring 2019

BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

ො𝜋𝑖 = 𝛾𝑖(0) for 𝑖 ≔ 1. . 𝑁

II. State-transition probabilities:

ො𝑎𝑖𝑗 =
σ𝑡=0
𝑇−1 𝜉𝑖𝑗(𝑡)

σ𝑡=0
𝑇−1 𝛾𝑖 𝑡

for 𝑖, 𝑗 ≔ 1. . 𝑁

III. Discrete observation probabilities:

𝑏𝑗 𝑤 =
σ𝑡=0
𝑇−1 𝛾𝑗 𝑡 |ℴ𝑡=𝑤

σ𝑡=0
𝑇−1 𝛾𝑗 𝑡

for 𝑗 ≔ 1. . 𝑁 and 𝑤 ∈ 𝒱

𝑃 𝑞𝑗 𝑞𝑖

=
𝐶𝑜𝑢𝑛𝑡(𝑞𝑖 𝑞𝑗)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)

𝑃 𝑤𝑖 𝑞𝑖

=
𝐶𝑜𝑢𝑛𝑡(𝑤𝑖 ∧ 𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)

CSC401/2511 – Spring 2019

Baum-Welch iteration

• We update our parameters after each iteration

𝜃𝑘+1 = ො𝜋𝑖 , ො𝑎𝑖𝑗 , 𝑏𝑗 𝑤

rinse, and repeat until 𝜃𝑘 ≈ 𝜃𝑘+1 (until change almost stops).

• Baum proved that
𝑃 𝒪; 𝜃𝑘+1 ≥ 𝑃(𝒪; 𝜃𝑘)

although this method does not guarantee a
global maximum.

CSC401/2511 – Spring 2019

Features of Baum-Welch

• Although we’re not guaranteed to achieve a global
optimum, the local optima are often ‘good enough’.

• BW does not estimate the number of states, which
must be ‘known’ beforehand.
• Moreover, some constraints on topology are often

imposed beforehand to assist training.

CSC401/2511 – Spring 2019

Discrete vs. continuous

• If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities
𝑏𝑖(𝑋) must also be continuous.

• HMMs generalize to continuous
distributions, or multivariate
observations,
e.g., 𝑏𝑖(−14.28, 0.85, 0.21).

CSC401/2511 – Spring 2019

Adaptation

• It can take a LOT of data to train HMMs.

• Imagine that we’re given a trained HMM but not the data.
• Also imagine that this HMM has been trained with data

from many sources (e.g., many speakers).

• We want to use this HMM with a particular new source
for whom we have some data (but not enough to fully train the

HMM properly from scratch).
• To be more accurate for that source, we want to

change the original HMM parameters slightly given the
new data.

CSC401/2511 – Spring 2019

Deleted interpolation

• For added robustness, we can combine estimates of a
generic HMM, 𝑮, trained with lots of data

from many sources with a
specific HMM, 𝑺, trained with a little data

from a single source.

𝑃𝐷𝐼 ℴ = 𝝀𝑃 ℴ; 𝜃𝐺 + 1 − 𝝀 𝑃(ℴ; 𝜃𝑆)

• This gives us a model tuned to our target source (𝑆), but
with some general ‘knowledge’ (𝐺) built in.
• How do we pick 𝝀 ∈ [𝟎. . 𝟏] ?

CSC401/2511 – Spring 2019

Deleted interpolation – learning 𝝀

1. Initialize 𝜆 with an empirical or guessed estimate.
2. Given 𝓞𝒂, which is adaptation data of which

𝓞𝒂,𝒋 is the 𝑗𝑡ℎ partition, and there are

𝑴 partitions,
3. Update 𝜆 (the weight of model 𝐺) according to:

መ𝜆 =
1

𝑀

𝑗=1

𝑀
𝑃(𝓞𝒂,𝒋; 𝜃𝐺)

𝑃𝐷𝐼(𝒪𝒂)

We continue until 𝜆 and መ𝜆 are sufficiently close.

𝒪𝒂,𝟏 𝒪𝒂,𝒋 𝒪𝒂,𝟑

CSC401/2511 – Spring 2019

Aside – Maximum a Posteriori (MAP)

• Given adaptation data 𝒪𝑎, the MAP estimate is
𝜃 =argmax𝜃𝑃 𝒪𝑎 𝜃 𝑃(𝜃)

• If we can guess some structure for 𝑃(𝜃), we can use EM
to estimate new parameters (or Monte Carlo).

• For continuous 𝑏𝑖(ℴ), we use Dirichlet distribution that
defines the hyper-parameters of the model and the
Lagrange method to describe the change in parameters

𝜃 ⟹ 𝜃.

CSC401/2511 – Spring 2019

Summary

• Important ideas to know:
• The definition of an HMM (e.g., its parameters).
• The purpose of the Forward algorithm.
• How to compute 𝛼𝑖(𝑡) and 𝛽𝑖(𝑡)

• The purpose of the Viterbi algorithm.
• How to compute 𝛿𝑖(𝑡) and 𝜓𝑖(𝑡).

• The purpose of the Baum-Welch algorithm.
• Some understanding of EM.
• Some understanding of the equations.

CSC401/2511 – Spring 2019

CSC401/2511 – Spring 2019

State duration

• The probability of staying in a particular state 𝑠𝑖 for a
specific period of time, 𝜏, diminishes exponentially over
time, all else being equal.

𝑎𝑖𝑖
𝜏−1(1 − 𝑎𝑖𝑖)

From Philip Jackson at
University of Surrey

CSC401/2511 – Spring 2019

Combining HMMs

• Often, we link HMMs together.
• E.g., we have lots of speech data for /w/, /ah/, and /n/,

but almost no data for the word ‘one’.

/w/

/ah/

/n/

Trained only with /w/ data.

Trained only with /ah/ data.

Trained only with /n/ data.

‘one’

CSC401/2511 – Spring 2019

N-best lists

• In our discussion of the Viterbi algorithm, we encountered
a situation where one state at time 𝑡 was equally likely to
have been reached from two other states at time 𝑡 − 1.

• Sometimes instead of keeping track of only the single best
path to state 𝑖 at time 𝑡, we in fact keep track of the
N-best paths to state 𝑖 at time 𝑡.
• E.g., in our Viterbi trellis:

𝜹: max probability 𝜹: 2nd max probability 𝜹: 3rd max probability

𝜓: best backtrace 𝜓: 2nd best backtrace 𝜓: 3rd best backtrace

CSC401/2511 – Spring 2019

Generative vs. discriminative

• HMMs are generative classifiers. You can generate synthetic
samples from because they model the phenomenon itself.

• Other classifiers (e.g., artificial neural networks and support
vector machines) are discriminative in that their probabilities
are trained specifically to reduce the error in classification.

ANN SVM

...

...

CSC401/2511 – Spring 2019

Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. In: Readings
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software:
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)

http://htk.eng.cam.ac.uk/
http://scikit-learn.sourceforge.net/stable/modules/hmm.html

