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Neural networks

* Introduction

* Word-level representations

®* Neural language models

® Recurrent neural networks

* Sequence-to-sequence modelling
* Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou
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Artificial neural networks

* Artificial neural networks (ANNs) were (kind of) inspired
from neurobiology (Widrow and Hoff, 1960).
® Each unit has many inputs (dendrites), one output (axon).
* The nucleus fires (sends an electric signal along the axon)
given input from other neurons.
* ‘Learning’ occurs at the synapses that connect neurons,
either by amplifying or attenuating signals.
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Perceptron: an artificial neuron

® Each neuron calculates a weighted sum of its inputs and
compares this to a threshold, 7. If the sum exceeds the
threshold, the neuron fires.
* Inputs a; are activations from adjacent neurons, each
weighted by a parameter w;.

fx>1,5:=1
Else, S :=0

v
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Perceptron output

* Perceptron output is determined by activation functions,
g (), which can be non-linear functions of weighted input.

® Popular activation functions include tanh and the sigmoid:

1
gx) =ox) = T—x

* The sigmoid’s derivative is the easily computable 6’ = o - (1 — a)

sigmoid

Output

Input »
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Rectified Linear Units (RelLUs)

® Since 2011, the RelLU S = g(x) = max(0, x) has become
more popular.

* More biologically plausible, sparse activation, limited (vanishing or
exploding) gradient problems, efficient computation.

* A smooth approximation is . T Sotun
the softplus log(1 + e*),
which has a simple

derivative 1/(1 +e™)

Nonlnearitias

* Why do we care about the
derivatives?

]
2
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3 4

From Wikipedia
X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

CSC401/2511 — Spring 2019

Iﬁput
6

s

&8
=

UNIVERSITY OF

¥ TORONTO



Perceptron learning

* Weights are adjusted in proportion to the error (i.e., the
difference between the desired, v, and the actual output, 5.
* The derivative g’ allows us to assign blame proportionally.

* Given a small learning rate, a (e.g., 0.05), we repeatedly
adjust each of the weighting parameters by

R
wi=w; +a- 2 Err; - g'(x;) - a;
i=1

where Err; = (v — 5), and we have R training examples.

o
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Threshold perceptra and XOR

* Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).
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Artificial neural networks

°* Complex functions can be represented by layers of
perceptra (Multi-Layer Perceptra, MLPs).

® Input are passed to the

* Activations are propagated
through hidden layers
to the output layer.

°* MLPs are quite robust to noise,
MLP and are trained specifically to
reduce error.
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‘hidden’ representations are learned here

Can we find hidden patterns in words?

10

output layer
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Words

e Given a corpus with D (e.g., = 100K) unique words, the

classical approach is to uniquely assign each word with an
index in D-dimensional vectors (‘one-hot’ representation).

WP, o o o . o PEMo . o !
D

* Classic word-feature representation assigns features

to each index in a much denser vector.
 E.g., ‘VBG’, ‘negative’, ‘age-of-acquisition’.

:-mmm_g-.

 Can we learn a dense representation? What will it give us?
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Learning word semantics

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

P(w; = lugubrious|w,_1 = feeling)

[ l—l lﬁ |

been feeling  lugubrious all day

felt a lugubrious sadness in

Here, we're predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model.

https://code.google.com/p/word2vec/

UNIVERSITY OF

% TORONTO

CSC401/2511 — Spring 2019 12


https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

Note: we have two
vector representations of
each word:

% Wo % v, = X W (W row of W,)
o (HXD) o Vi, =Wsy (Wt col of W)
[0,0,0,...1, ...,0] [0,1,0, ...,0, ..., 0]
feeling lugubrious
exp(Vy, Viy,)
( } ‘softmax’: P(W, |lw;) = exWZer )
feeling  lugubrious all Where w=1 EXPLhw Vw;

a lugubrious  sadness v,, is the ‘input’ vector for word w,
I, is the ‘output’ vector for word w,

o UNIVERSITY OF
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Continuous bag of words (¢ words context)

e |f we want to use more context, C,
we need to change the network
architecture somewhat. |

* Each input word will produce one !
of C embeddings |
 We just need to add an

intermediate layer, usually this
just averages the embeddings.

( Y

been feeling lugubrious all

felt a lugubrious  sadness

i
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Skip-grams

* Skip-grams invert the task — we predict
context words given the current word.

* According to Mikolov,
Skip-gram: works well with small amounts
of training data, represents rare words.

CBOW: several times faster to train, slightly
better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://arxiv.org/pdf/1301.3781.pdf
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https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

* Given H-dimensional embeddings, and V word types, our
parameters, 0, are:

— va —

Vaardvark

0 Vzymurgy
= v,

Vaardvark

= ]RZVXH

L szmurgy |
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Actually doing the learning

We have many options. Gradient descent is popular.
We want to optimize, given T tokens of training data,

1(9)=%i D logP(wilw)

t=1 —-c<j<c,j*0

And we want to update vectors th+]- then v, within 0

H(new) — H(Old) — 7 ](9)

so we’ll need to take the of the (log of the)
softmax function: exp (V. )
P(Wolwi) = oW

-
w=1 exp(vwvw,;)

Where v, is the ‘input’ vector for word w,
and I, is the ‘output’ vector for word w,

’;.\’ UNIVERSITY OF
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Actually doing the learning

We need the derivative of the (log of the) softmax function:
5 exp(Vy,, :Vw,)
oeSw 1exp<VTth>

[log exp (VMT,t th — log z eXp(VmTszt)]

0
= Vs — 50y log zwzlexp(VMT,th)

6f _ Of 82]

6th 8z 6vyy,

log P(Wt+j|Wt) =

OV, 6th

=5 Vi,

[apply the chain rule

More details: http://arxiv.org/pdf/1411.2738.pdf
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http://arxiv.org/pdf/1411.2738.pdf

Using word representations

Without a latent space,
lugubrious = [0,0,0, ...,0,1,0, ...,0], &
sad = 10,0,0,...,0,0,1, ...,0] so
Similarity = cos(x,y) = 0.0

EMBEDDING

D = 100K

H =300

In latent space,
lugubrious = [0.8,0.69,0.4, ...,0.05]4, & e dar-
sad = [0.9,0.7,0.43, ..., 0.05], so uew

cos(u,v) =

Similarity = cos(x,y) = 0.9 [lul| ][]

o
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CSC401/2511 — Spring 2019 19 &2 TORONTO




Skip-grams with negative sampling

* The default process is inefficient.
* For one — what a waste of time!
We don’t want to update H XD weights!
* For two — we want to avoid confusion!
‘Hallucinated’ contexts should be
minimized.

* For the observed pair (lugubrious, sadness),

only the output neuron for sadness should
be 1, and all D — 1 others should be O.

CSC401/2511 — Spring 2019 20
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Skip-grams with negative sampling

 We want to maximize the association of
observed (positive) contexts:
lugubrious sad
lugubrious feeling
lugubrious tired

 We want to minimize the association of
‘hallucinated’ (negative) contexts:
lugubrious happy
lugubrious roof
lugubrious truth

UNIVERSITY OF
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Skip-grams with negative sampling

* Choose a small number n of ‘negative’” words,
and just update the weights for the ‘positive’

word plus the n ‘negative’ words.
e 5 <71 < 20 can work in practice for smaller
datasets.
e ForD = 100K, we only update 0.006%
of the weights in the output layer.

* The authors suggest choosing the top 1 words |
by modified unigram probability:

3
C(Wey1)*

D C(W)% ‘ &

P*(Wt+1) =

UNIVERSITY OF
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Smell the GloVe

* GloVe (‘Global Vectors’) is an alternative method of
obtaining word embeddings.
* Instead of predicting words at particular positions, look

at the co-occurrence matrix.
I like enjoy deep learning NLP flying

I 0 2 1 0 0 0 0 07 /
like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0 Word w; occurs
x_ dp [0 1 0 0 1 0 0 0 Xij(= Xj)
" learning | 0 0 0 1 0 0 0 1 times with word wy,

NLP 0 1 0 0 0 0 0 1 within some context

. window (e.g., 10 words,
flying 0 0 1 0 0 0 0 1 a sentence, ...).

0 0 0 0 1 1 1 0 |

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMNLP 2014:1532-43. doi:10.3115/v1/D14-1162 https://nip.stanford.edu/projects/glove/
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https://nlp.stanford.edu/projects/glove/

Smell the GloVe

* Populating the co-occurrence matrix requires a complete
pass through the corpus, but needs only be done once.
* Let Pi,j — P(W]‘Wl) — Xi,j/Xi;

Table |: Co-occurrence probabilities for target words ice and sream with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio | & = solid k = gas k =water k = fashion
P(k|ice) 19x107% 66x107° 30x107° 1.7x10°°
P(k|steam) 22x 107 78 x10°% 22x100° 1.8x10°°

P(klice) P(k|steam) 8.9 8.5 % 10°° 1.36 0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.
Proc EMNLP 2014:1532-43. doi:10.3115/v1/D14-1162 https://nip.stanford.edu/projects/glove/
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https://nlp.stanford.edu/projects/glove/

Aside — smell the GloVe

2
° Minimize]=2- 1f(XJ)( +b +b —logXi,j)
where b; and b are input and output bias terms
assoaated with w; and wj;, respectively

1. f(0) = 0. If f is viewed as a continuous
function, it should vanish as x — 0 fast
enough that the lim,_,¢ f(x) Iog2 x 1s finite.

2. f(x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f(x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

| otherwise .

fx) = { (x/Xmax) if X < Xpax 9)
&p
[ e |
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Aside — smell the GloVe
* Intrinsic evaluation: popular

method is to cherry-pick a few k-nearest neighbours
examples that match expectations.

3. litona 4. leptodactylidae S. rana 7. eleutherodactylus

* Extrinsic evaluation: embed resulting vectors into a variety
of tasks.

Redacted. See https://github.com/sebastianruder
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https://github.com/sebastianruder/NLP-progress

Linguistic regularities in vector space
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Trained on the Google news corpus with over 300 billion words.
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Linguistic regularities in vector space
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Linguistic regularities in vector space

Paris — France + ltaly Rome

Bigger — big + cold Colder
Sushi —Japan + Germany bratwurst
Cu — copper + gold Au

Windows — Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture

UNIVERSITY OF
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Importance of in-domain data
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Wang, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1-21. http: //arX|v org/abs/1802 00400
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http://arxiv.org/abs/1802.00400

Let’s talk abqufc grendYer‘ at t‘he UofT

05F t heiress y
/
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0.1} , et AL

However, in word2vec trained on Google News,
man:woman::programmer:homemaker.

/
!/

I
|
| {emperor
|
|

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. In: NIPS. 2016. 1-9.
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Let’s talk about gender at the UofT

Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi', Kai-Wei Chang’, James Zou’, Venkatesh Saligrama'~’, Adam Kalai’
"Boston University, 8 Saint Mary's Street, Boston, MA
’Microsoft Research New England, 1 Memonial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@ gmail.com, srv@bu.edu, adam Kalai @ microsoft.com

Abstract

The blind application of machine leaming runs the risk of amplifying biases present
in data. Such a danger is facing us with word embedding, a popular framework to
represent text data as vectors which has been used in many machine learning and

SRR sh.e EXIEOImS 59 Gender stereotype she-he analogies
I. homemaker 1. maestro 5 ' stered hvsici housewife-shopk
3 nurse 3 ckipper sewing-carpentry - registered nurse-physician usewife-shopkeeper
: o &. SKIppE nurse-surgeon interior designer-architect softball-baseball
3. receptionist 3. protege blond-burly feminism-conservatism cosmetics-pharmaceuticals
4. hbr}“"fm 4. phll0§0pher giggle-chuckle  vocalist-guitarist petite-lanky
5. socialite 5. captain SASSy-SNAppy diva-superstar charming-affable
6. hairdresser 6. architect volleyball-football cupcakes-pizzas lovely-brilliant
7. nanny 7. financier
8. bookkeeper 8. warrior . ngde;‘ up'l:mpriule she-he unaloghics e
9. stylist 9. broadcaster | ueen-king sister-brot er - mother-father |
. S wailress-waiter  ovarian cancer-prostate cancer convent-monastery
10. housckeeper 10. magician

RSITY OF
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Solution?

1. Hand-pick words S, that are ‘gender definitional’.
‘Neutral’ words are the complement, N =V \ S,.

blue

rogrammer
., Pros smart
he . pink
King ™ cute

homemaker

she .
queen ™
218 gender-definitional words ™
Linear SVM

CSC401/2511 — Spring 2019 33

UNIVERSITY OF

TORONTO




Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w - Bforw € N, where B is the gender subspace.

blue

rogrammer
Pros smart

he B pink

king cute
homemaker

UNIVERSITY OF

Y TORONTO
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Solution?

2. Project away gender subspace from gender-neutral words,
w:=w—w - Bforw € N, where B is the gender subspace.

“hard debiasing”
ink
blue
cute
he B smart
homemaker
king 0 er 299 dimensions

UNIVERSITY OF
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Results

* Generate many analogies, see which ones preserve gender

stereotypes. He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother  ::She:?
) * * belore o N . * before
5 H = hrd-detsased Kl BH e hard debiased . ..:_.;"'
# H N * " __4“.'.. T
stereotypig . # appropriate’ P
analogies . - £°
- analogies p.
T V= T v ”_‘;x T T "~ VR
# analogies generated # analogies generated
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NEURAL LANGUAGE MODELS




Trigram models

* CBOW: prediction of current word w; given w;_;.
* Let’s reconsider predicting w; given multiple w;_;?
* |.e., let’s think about language modelling.

trigram '

MLP

Here:

* w; is aone-hot vector,

* p;isadistribution, and

* |wil = lp:l = V|

(i.e., the size of the vocabulary)

h=gWx+c) he = gWi[We_2; we_1] +¢)
y=Woh+b p: = softmax(Woh; + b)
Iw‘fﬂ UNIVERSITY OF
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Sampling from trigram models

* Since p; ~ P(W¢|we_» wi_1), we just feed forward and
sample from the output vector.

were approaching

P

Pt Pt+1

two ridU ride

UNIVERSITY OF
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Training trigram models

* Here’s one approach:

Randomly choose a batch (e.g., 10K consecutive words)
Propagate words through the current model

Obtain word likelihoods (loss)

Back-propagate loss

Gradient step to update model

Go to (1)

S

UNIVERSITY OF
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Training trigram models

* The typical training objective is the cross entropy (see Lecture 3)
of the corpus C given the model M:

F=HC;M) = __logy Py (C)
log, P(wy) = wy logpe

ICll
(et e

hy = gWi[we_2;we_q] +¢)  Here:
P = softmax(Woh, + b) * w; is a one-hot vector, and
* p;isadistribution.

Minimize

Maximize T T
l0g2 Pu(C) =logz [ | Pwe) = )~ logz P(wy)
t=0 B

UNIVERSITY OF

& TORONTO
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Training trigram models

oF 1 ocosty Op;
SWo  lICI L& 6pe 6W,
oF 1 ocosty Opy Ohy
sW;  lICl & 6pe 6he 6W

hy = g(Wi[we—2; we_1] +¢)  Here:
Pt = softmax(Woh, +b)  + w;isaone-hot vector, and
* p;is adistribution.

UNIVERSITY OF
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So what?

* © Neural language models of this type:
® Can generalize better than MLE LMs to unseen n-grams,
®* Can be modified to use semantic information as in
word2vec.

P(the cat sat on the mat) =~ P(the cat sat on the rug)

* ® Neural language models of this type:
® Can take relatively long to train
* Number of parameters scale poorly with increasing

context.
Let’s improve both of these issues...

2:“ UNIVERSITY OF
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Dealing with that bottleneck

* Traditional datasets for neural language modeling include:
°* AP News (14M tokens, 17K types)
°* HUB-4 (1M tokens, 25K types)
* Google News (6B tokens, 1M types)
* Wikipedia (3.2B tokens, 2M types)

* Awesome datasets for medical/clinical LM include:
°* EMRALDY/ICES (3.5B tokens, 13M types)

* Much of the computational effort is in the initial
embedding, and in the softmax.

* Can we simplify and speed up the process?
CSC401/2511 — Spring 2019 44 ? Tgli{lé)lll\}”rlo



Dealing with that bottleneck

* Replace rare words with <out-of-vocabulary> token.
* Subsample frequent words.

* Hierarchical softmax. -
®* Noise-contrastive estimation.
* Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

&5
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Hierarchical softmax with grouping

* Group words into distinct classes, ¢, e.g., by frequency.
* E.g., ¢, is top 5% of words by frequency, ¢, is the next 5%, ...

* Factorize p(w,|w;) = p(clw)p(w,|w;, C)

exp(¢;vy,) exp(Vy, ;)
ZC eXp(CvWi) ZWEC exp(VV\EvWi)

exp(Viy, ;)

K//= 1 €XPp (V\/\l vWi)

‘softmax’: P(w,|w;) =
Where

v, is the ‘input’ vector for word w,
1, is the ‘output’ vector for word w,

[Mikolov et al, 2011, Auli et al, 2013]

UNIVERSITY OF

CSC401/2511 — Spring 2019 46 Y TORONTO



RECURRENT NEURAL NETWORKS




Recurrent neural networks (RNNs)

°* An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.
®° j.e., it passes information from one step to the next.

Jordan network (not shown)

Elman network feed hidden units back feed output units back

UNIVERSITY OF

5 TORONTO
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Unrolling the h;

* Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.
* These can be applied to various tasks.

PRP ADJ NN

Y1 Y2
ol

hy h,
-
2

X1 X

lovely person

he = gWi[x; he_q] + )

Yt = WO ht + b % UNIVERSITY OF
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Sampling from a RNN LM

° If |h;] < |V|, we've already reduced the number of
parameters from the trigram NN.
* In ‘theory’, information is maintained in h; across arbitrary
lengths of time...
were

[

approaching

-

(——

riders were
he = g(W;[x; hy_4] +¢)  Karpathy (2015),
y, =Wyh, + b The Unreasonable Effectiveness of Recurrent Neural Networks

UNIVERSITY OF
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

* Unfortunately, catastrophic forgetting is common.
* E.g., the relevant context in “The sushi the sister of your
friend’s programming teacher told you about was...”
has likely been overwritten by the time h,5 is produced.

& & (e

The sushi tasty

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157-66. doi:10.1109/72.279181 _——
b2
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RNNs and retrograde amnesia

®* The challenge with RNNs is that the gradient decays quickly
as one pushes it back in time. Can we build a ‘highway’
through time for relevant information?

& ® ﬁf)

T A
~ N\ 7 N N
—> > —>
A A O
4 A
Neural Network Pointwise
\_ ) VRN ) Layer Operation

—_ > <<

Vector

S Concatenate Copy

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

* In each module, in an LSTM, there are four interacting neural

D,

network layers

&

A
2 T\ a I
>——o—
A | Lebet
\l )_' J
&) )
Ci-1 :x @
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A Neural Network Pointwise
Layer Operation

> —>»
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Vector
C, Concatenate Copy
Transfer
—

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.
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Long short-term memory (LSTM)

* In each module, in an LSTM, there are four interacting neural
network layers.

& D, ®

| t |
4 1\ R 4 )
b (X ©, > -
X o O
A I " A Neural Network Pointwise
o] [0 Layer Operation
—> > -»
|, J S\ J

© ® © — >
Vector
_®_ Transfer Concatenate Copy

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise X.
Values near 0 block information; values near 1 pass information.
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LSTM step 1: decide what to forget

* The forget gate layer compares h;_; and the current input x;
to decide which elements in cell state C;_, to keep and which

to turn off.
* E.g., the cell state might ‘remember’ the number (sing./plural) of the
current subject, in order to predict appropriately conjugated verbs,

but decide to forget it when a new subject is mentioned at x;.
* (There’s scanty evidence that such information is so explicit.)

[ =(7(H’f-[h,_1..r,] + by)

-
&8
P
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LSTM step 2: decide what to store

* The input gate layer has two steps.

® First, a sigmoid layer o decides which cell units to update.

* Next, a tanh layer creates new candidate values C;.

°* E.g., the o can turn on the ‘number’ units, and the tanh can push
information on the current subject.

°* The o layer is important — we don’t want to push information on
units (i.e., latent dimensions) for which we have no information.

ir =0 (Wi-lhi—1,2¢] + b;)
Cy = tanh(We-[he—1. 2] + be)
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LSTM step 3: update the cell state

* Update C;_ to C;.
* First, forget what we want to forget: multiply C¢_; by f;.
* Then, create a ‘mask vector’ of information we want to store, i XCj.
* Finally, write this information to the new cell state C;.

OO0 - O0-000-0-000-0~- 000 0O
Ct—1 Xft O0.0 Ct

i, xCy

ftT itr%’% Ct = ftXCt—l + ltxa

UNIVERSITY OF
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LSTM step 4: output and feedback

® Output something, o;, based on the current x; and h;_;.

®* Combine the output with the cell to give your h;.
* Normalize cell C; on [-1,1] using tanh and combine with o

* In some sense, C; is long-term memory and h; is the short-term
memory (hence the name).

he A
E@nh
0y X) O = O-(VVO [ht—llxt] + bO)
h g G
- h: = o Xtanh(C;)

&5
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Variants of LSTMs

® There are various variations on LSTMs.
* ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

learn

PP
(K
5OAGG

(@)

v
v
v

e

(b)

Structure overview

(a) unidirectional RNN
(b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.
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Variants of LSTMs

®* There are various variations on LSTMs.

* Gers & Schmidhuber (2000) add ‘peepholes’ that allow all
sigmoids to read the cell state.

* We can couple the ‘forget’ and ‘input’ gates.
°* E.g., it's a bit of a waste to decide to forget number, then decide
to store a new number.
* Gated Recurrent units (GRUs; Cho et al (2014)) go a step further
and also merge the cell and hidden states.

hy
hey I’ 2t =0 (”: * [hl l--I'f]) Update gate

re = o (W, - [hi—1,2¢]) Reset gate (0: replace units in hy_4
with those in x;)

hy = tanh (W - [ry x hy—y, 24))

h[ - (1 > Z{) *ht—l + 24 *i)t

Are there examples where GRUs are used instead of LSTMs#
CSC401/2511 — Spring 2019 60
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https://arxiv.org/pdf/1406.1078v3.pdf

ENCODER-DECODER MODELS




ENCODE

SMT with RNNs

®* SMT is hard and involves long-term dependencies.
* Solution: Encode entire sentence into a single vector
representation, then decode.
®* GRUs are often used for this purpose Cho et al (2014).

Sentence
representation

Kérlek fecsegj o kemfené <EOQS>

UNIVERSITY OF
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https://arxiv.org/pdf/1406.1078v3.pdf

SMT with RNNs

®* SMT is hard and involves long-term dependencies.
* Solution: Encode entire sentence into a single vector
representation, then decode.
®* GRUs are often used for this purpose Cho et al (2014).

Where is the railway station

DECODE

® But this approach is a bit naive regarding how language
works. Can we pay attention to any aspects of the input?
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https://arxiv.org/pdf/1406.1078v3.pdf

SMT with RNNs and attention

* Attention mechanisms shortcuts the source and the target by
considering the former during translation.
* Specifically, when decoding p;, consider the entire
encoded sequence, but concentrate on particular sections.

Network B focuses on different
information from network A at
every step

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .
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https://distill.pub/2016/augmented-rnns/

SMT with RNNs and attention

®* Decide the distribution of attention based on content.

The attending RNN generates a :
query describing what it wants B |
to focus on.

®
\ @\ \ @\ Each item is dot producted with the

query to produce a score, describing
how well it matches the query. The

scores are fed into a softmax to
create the attention distribution.

Imagery from the excellen
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https://distill.pub/2016/augmented-rnns/

SMT with RNNs and attention

® Each output word attends to different words in the input.
* A by-product is alignment graphs similar to the ones we like.

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .
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Deep contextualized representations

* What does the word play mean?

AllenNLP

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/%s/1802.05365
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http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

* Instead of a fixed embedding for each word type, ELMo

considers the entire sentence before embedding each token.
® |t uses a bi-directional LSTM trained on a specific task.

® QOutputs are softmax probabilities on words, as before.

The play exhausted the actors
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ELMo: Embeddings from Language Models

* Producing the final embedding for word token k.
L

ELMO;‘,Cask: _ E(Rk, (_)task:) _ ,ytask Z S;QSkhé,]]\/[
7=0

where Ry is the set of all L hidden layers, hk,j

?ask
J)

y is a weight on the entire task

S is the task’s weight on the layer, and

task ;

\' UNIVERSITY OF
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ELMo: Embeddings from Language Models
iF "

1. Concatenate

play 2. Multiply by weight vectors

hll hll % Sgask
task
1 X - ) X S1
< ’ p % Sgask

3. Sum

ELMO™f

play UNIVERSITY OF
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ELMo: Embeddings from Language Models

* What does the word play mean?

Source | Nearest Neighbors

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik s | for his ability to hit in the clutch , as well as his all-round
grounder {...} excellent play .

Olivia De  Havilland 7 .. } they were actors who had been handed fat roles in
signed to do a Broadway | a successful play , and had talent enough to fill the roles
play for Garson {... } - competently , with nice understatement .

GloVe play

biLM

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/%s/lSOz.OSBGS
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http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

. INCREASE
TASK PrREVIOUS SOTA OuR ELMo + (ABSOLUTE/

BASELINE BASELINE RELATIVE)

Q&A SQuAD | Liuetal. (2017) 84.4 | 81.1 85.8 4.7/249%
Textual entailment SNLI Chen et al. (2017) 88.6 | 88.0 88.7+0.17 0.7/58%
Semantic role labelling SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coreference resolution Coref | Leeetal. (2017) 67.2 | 67.2 70.4 3.2/9.8%
Name entity resolution NER Petersetal. (2017) 9193 +0.19 | 90.15 9222 +0.10 2.06/21%
Sentiment analysis SST-5 | McCann et al. (2017) 53.7 || 51.4 547+05  3.3/68%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F, for
SQuAD, SRL and NER; average F, for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase™ column lists both the absolute
and relative improvements over our baseline,

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/ s/1802.05365
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http://arxiv.org/abs/1802.05365

BERT: Bidirectional encoder
representations from transformers

* Unlike ELMo, BERT is deeply bidirectional.
° j.e., every embedding conditions every other in the next
layer.

* This is difficult, because when predicting word x;, you would
already have ‘seen’ that word in modelling its own contexts.

3 Google Al

Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. http://arxiv.org/abs/1810.04805

Code and models: https://github.com/google-research/bert

.;—{i: UNIVERSITY OF
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http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert

BERT: Bidirectional encoder
representations from transformers

ELMo
e Wane

I’'ve seen
me
alread ‘

[ | UNIVERSITY OF
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BERT: Bidirectional encoder
representations from transformers

* This can be solved by masking the word being predicted.

Input: The man went to the [MASK], . He bought a [MASK], of milk .
Labels: [MASK]. store; [MASK], gallon

* (actually, 80% we use [MASK]. 10% we replace the target word with another
actual word; 10% we keep the word as-is, to bias ‘towards the observation’.)

* We can also predict other relationships, like whether one
sentence follows another.

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = tie bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

* (actually, you can fine-tune on many different tasks)

UNIVERSITY OF
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BERT: Bidirectional encoder
representations from transformers

What is the best contextualized embedding for “Help”™ in that context?
For named-entity recognition task CoNLL-2003 NER

Dev F1 Score
oTE First Layer CETT 91.0
o350 Last Hidden Layer [=v == 94.9
|55 5 i [— == =]
EEE Sum All 12 11
ors e 95.5
|
3 L NS A | _—
nzaw
e S Second-to-L
ond-to-Last
(T T 1] Hidden Layer — e
- iz ws > =]
Sum Last F —
m Last rour -
e i i 95.9
CETT] B
=aEm
Concat Last L e S 96.1

Four Hidden

From http://jalammar.github.io/illustrated-bert
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http://jalammar.github.io/illustrated-bert/

BERT: Bidirectional encoder
representations from transformers

®* The age of humans is over?
SQuAD1.1 Leaderboard
Rank Model EM F1

Human Performance 82.304 91.221
Stanford Universily

(Rapurkar et al. "16)

1 BERT {ensembic) 87.433
(000 Al Larniauae

s Sandv.ocg/abs/ 181004805

ninet [ensembie) 85,356

QANet lensembie)
Caoatle Rrain £& MU
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Aside — ClosedAl

®* There are, of course, alternatives.

* FastText: Represent each word as a bag of character-grams
Paper: https://arxiv.org/abs/1607.04606
Code: https://fasttext.cc
* ULMFit: Model fine-tuning for classification tasks
Paper: https://arxiv.org/abs/1801.06146
Code: Here

* GPT-2: Spooky uni-directional model

Paper: Here
Blog: Here
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https://arxiv.org/abs/1607.04606
https://fasttext.cc/
https://arxiv.org/abs/1801.06146
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://blog.openai.com/better-language-models/

OTHER APPLICATIONS
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Sentiment analysis

* The traditional bag-of-words approach to sentiment analysis
used dictionaries of happy and sad words, simple counts, and
either regression or binary classification.

®* But consider these:

Best movie of the year b
Slick and entertaining, despite a weak script L. 0040

Fun and sweet but ultimately unsatisfying 8.0 0.0
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Tree-based sentiment analysis

* We can combine pairs of words into phrase structures.
* Similarly, we can combine phrase and word structures
hierarchically for classification.

2x300
300

D
D

14
H = 300 %] UNIVERSITY OF
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Tree-based sentiment analysis

(currently broken) demo:
N http://nlp.stanford.edu/sentiment/

" = \k‘&
This ﬁ%; ®
VA & : N
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Neural networks

B

® Research in neural networks is exciting, expansive, and
explorative.
* We have many hyperparameters we can tweak
(e.g., activation functions, number and size of layers).
°* We have many architectures we can use
(e.g., deep networks, LSTMs, attention mechanisms).

-

Fwﬁ ® Given the fevered hype, it’s important to retain our scientific
skepticism. )

°* What are our biases and expectations?

°* When are neural networks the wrong choice? &

®* How are we actually evaluating these systems? ‘



Pseudo-homework

® Consider the following online tutorials:

® LSTMs for language modeling:
https://www.tensorflow.org/tutorials/recurrent

* Encoder-decoder (seg2seq) for machine translation:
https://www.tensorflow.org/tutorials/seq2seq
(incl. attention mechanism)

-
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P
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