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• Introduction
• Word-level representations
• Neural language models
• Recurrent neural networks
• Sequence-to-sequence modelling
• Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou
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Artificial neural networks
• Artificial neural networks (ANNs) were (kind of) inspired 

from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).
• The nucleus fires (sends an electric signal along the axon) 

given input from other neurons.
• ‘Learning’ occurs at the synapses that connect neurons, 

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus
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Perceptron: an artificial neuron
• Each neuron calculates a weighted sum of its inputs and 

compares this to a threshold, $. If the sum exceeds the 
threshold, the neuron fires.
• Inputs %& are activations from adjacent neurons, each 

weighted by a parameter '&.
If ( > $, + ≔ 1
Else, + ≔ 0%/
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McCullogh-Pitts model
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Perceptron output
• Perceptron output is determined by activation functions, 
!(), which can be non-linear functions of weighted input.

• Popular activation functions include tanh and the sigmoid:

! $ = & $ = 1
1 + )*+

• The sigmoid’s derivative is the easily computable &, = & ⋅ (1 − &)
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Rectified Linear Units (ReLUs)
• Since 2011, the ReLU ! = # $ = max(0, $) has become 

more popular.
• More biologically plausible, sparse activation, limited (vanishing or 

exploding) gradient problems, efficient computation.

Input

O
ut

pu
t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is
the softplus log(1 + 12), 
which has a simple 
derivative 1/(1 + 142)

• Why do we care about the 
derivatives?
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Perceptron learning
• Weights are adjusted in proportion to the error (i.e., the 

difference between the desired, !, and the actual output, ".
• The derivative #′ allows us to assign blame proportionally.

• Given a small learning rate, % (e.g., 0.05), we repeatedly 
adjust each of the weighting parameters by

)* ≔ )* + % ⋅ .
/01

2
344/ ⋅ #′(6/) ⋅ 8/

where 344/ = (! − "), and we have ; training examples.
!"

# =%&'!'
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+

McCullogh-Pitts model
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Threshold perceptra and XOR
• Some relatively simple logical functions cannot be learned by 

threshold perceptra (since they are not linearly separable).

!"

!#

$% ∧ $'
!"

!#

$% ∨ $'
!"

!#

$%⨁$'
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Artificial neural networks
• Complex functions can be represented by layers of 

perceptra (Multi-Layer Perceptra, MLPs). 

MLP

...

...
• Input are passed to the 

input layer.
• Activations are propagated 

through hidden layers
to the output layer. 

• MLPs are quite robust to noise, 
and are trained specifically to 
reduce error.



CSC401/2511 – Spring 2019 10

Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?
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Words
• Given a corpus with ! (e.g., = 100%) unique words, the 

classical approach is to uniquely assign each word with an 
index in !-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features
to each index in a much denser vector.

• E.g., ‘VBG’, ‘negative’, ‘age-of-acquisition’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
& ≪ !

lugubrious



been feeling lugubrious all day
felt a lugubrious sadness in

…

!(#$ = &'(')*+,'-|#$/0 = 122&+3()

https://code.google.com/p/word2vec/

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model. 
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"You shall know a word by the company it keeps." 
— J.R. Firth (1957)

Learning word semantics

https://code.google.com/p/word2vec/


Continuous bag of words (1 word context)

13

feeling lugubrious all
a lugubrious sadness

…

! "#
(%×') )* "+

('×%) ,

D
 =

 1
00

K

0,0,0, … 1,… , 0
feeling

D
 =

 1
00

K

0,1,0, … , 0, … , 0
lugubrious

Note: we have two
vector representations of 
each word:
)* = !⊺"# (234 row of "#)
5* = "+

⊺, (234 col of "+) 
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6 27 28 = exp(5*=⊺ )*>)
∑*@AB exp(5*⊺)*>)Where 

)* is the ‘input’ vector for word 2,
5* is the ‘output’ vector for word 2,

‘softmax’:

‘embedding’



Continuous bag of words (! words context)
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• If we want to use more context, !, 
we need to change the network 
architecture somewhat.
• Each input word will produce one 

of ! embeddings
• We just need to add an

intermediate layer, usually this 
just averages the embeddings. 

been feeling lugubrious all
felt a lugubrious sadness

…



Skip-grams
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• Skip-grams invert the task – we predict 
context words given the current word.

• According to Mikolov, 
Skip-gram: works well with small amounts 
of training data, represents rare words.

CBOW: several times faster to train, slightly 
better accuracy for frequent words 

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word 
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf


Actually doing the learning
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! =

#$
#$$%&'$%(

⋮
#*+,-%.+

/$
/$$%&'$%(

⋮
/*+,-%.+

∈ ℝ23×5

• Given 6-dimensional embeddings, and / word types, our 
parameters, !, are:



Actually doing the learning
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We have many options. Gradient descent is popular.
We want to optimize, given ! tokens of training data,

" # =
1
!
&
'()

*

&
+,-.-,,.01

log 5(7'8.|7')

And we want to update vectors ;<=>? then @<= within #
# AB< = # CDE − GHI" #

so we’ll need to take the derivative of the (log of the) 
softmax function:

5 7C 7J =
exp(;<N

⊺ @<P)
∑<()R exp(;<⊺@<P)

Where @< is the ‘input’ vector for word 7,
and ;< is the ‘output’ vector for word 7,



Actually doing the learning
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We need the derivative of the (log of the) softmax function:

!
!"#$

log( )*+, )* = !
!"#$

log
exp(2#$34⊺ "#$)

∑#89: exp(2#⊺"#$)

= !
!"#$

log exp 2#$34⊺ "#$ − log<
#89

:
exp(2#⊺"#$)

= 2#$34 − !
!"#$

log<
#89

:
exp(2#⊺"#$)

[apply the chain rule =>=?@$
= =>

=A
=A
=?@$

]

= 2#$34 −<#89

:
C ) )* 2#

More details: http://arxiv.org/pdf/1411.2738.pdf

http://arxiv.org/pdf/1411.2738.pdf


Using word representations
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! "#

D
 =

 1
00

K

Without a latent space,
lugubrious = 0,0,0, … , 0,1,0, … , 0 , &
sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos(!, ,) = 0.0

In latent space,
lugubrious = 0.8,0.69,0.4, … , 0.05 5, &
sad = 0.9,0.7,0.43, … , 0.05 5 so

Similarity = cos(!, ,) = 0.9

EMBEDDING

89 = !⊺"#
H = 300

Reminder:
cos ;, 8 = ; ⋅ 8

; ×| 8 |



Skip-grams with negative sampling
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• The default process is inefficient.
• For one – what a waste of time! 

We don’t want to update !×# weights! 
• For two – we want to avoid confusion!

‘Hallucinated’ contexts should be 
minimized.

• For the observed pair (lugubrious, sadness), 
only the output neuron for sadness should 
be 1, and all # − 1 others should be 0.



Skip-grams with negative sampling
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• We want to maximize the association of 
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of 
‘hallucinated’ (negative) contexts:

lugubrious happy
lugubrious roof
lugubrious truth



Skip-grams with negative sampling
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• Choose a small number ! of ‘negative’ words, 
and just update the weights for the ‘positive’ 
word plus the ! ‘negative’ words.

• 5 ≤ ! ≤ 20 can work in practice for smaller 
datasets. 

• For & = 100), we only update 0.006% 
of the weights in the output layer.

• The authors suggest choosing the top ! words 
by modified unigram probability:

*∗ ,-./ = 0 ,-./
1
2

∑4 0 ,
1
2



Smell the GloVe
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https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162 

• GloVe (‘Global Vectors’) is an alternative method of 
obtaining word embeddings. 
• Instead of predicting words at particular positions, look 

at the co-occurrence matrix.

Word !" occurs 
#",%(= #%,")

times with word !%, 
within some context 

window (e.g., 10 words,
a sentence, …).

https://nlp.stanford.edu/projects/glove/


Smell the GloVe
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https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162 

• Populating the co-occurrence matrix requires a complete 
pass through the corpus, but needs only be done once. 

• Let !",$ = ! &$ &" = '",$/'",

https://nlp.stanford.edu/projects/glove/


Aside – smell the GloVe
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• Minimize ! = ∑$,&'() * +$,& ,-./-0 + 2$ + 32& − log+$,&
8

where 2$ and 32& are input and output bias terms
associated with 9$ and 9&, respectively



Aside – smell the GloVe

26CSC401/2511 – Spring 2019

• Intrinsic evaluation: popular (though perhaps dishonest) 
method is to cherry-pick a few k-nearest neighbours 
examples that match expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety 
of tasks. 
Spoiler: The authors of GloVe found that GloVe is more 
accurate than word2vec. 

Redacted. See https://github.com/sebastianruder/NLP-progress

https://github.com/sebastianruder/NLP-progress


Linguistic regularities in vector space
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Trained on the Google news corpus with over 300 billion words.



Linguistic regularities in vector space
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Linguistic regularities in vector space
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Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture



Importance of in-domain data
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Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical 
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400

http://arxiv.org/abs/1802.00400


Let’s talk about gender at the UofT

31CSC401/2511 – Spring 2019

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? 
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News, 

man:woman::programmer:homemaker. 



Let’s talk about gender at the UofT
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Solution?
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1. Hand-pick words !" that are ’gender definitional’. 
‘Neutral’ words are the complement, # = % \ !".



Solution?
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2. Project away gender subspace from gender-neutral words,
! ≔ ! −! ⋅ % for ! ∈ ', where % is the gender subspace.  



Solution?
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2. Project away gender subspace from gender-neutral words,
! ≔ ! −! ⋅ % for ! ∈ ', where % is the gender subspace.  



Results
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He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ?

• Generate many analogies, see which ones preserve gender 
stereotypes.



NEURAL LANGUAGE MODELS
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Trigram models
• CBOW: prediction of current word !" given !"#$. 
• Let’s reconsider predicting !" given multiple !"#%?

• I.e., let’s think about language modelling.

&

ℎ

(

MLP

ℎ = * +,- + /
0 = +12 + 3

4"

ℎ"

trigram

ℎ" = * +,[67#8;67#:] + /
<7 = =>?@AB((+127 + 3)

!"#E !"#$

Here:
• !F is a one-hot vector,
• 4" is a distribution, and
• !F = 4" = |H|

(i.e., the size of the vocabulary)
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Sampling from trigram models
• Since !" ∼ $(&"|&"() &"(*), we just feed forward and 

sample from the output vector.

ℎ"

&"() &"(*

two riders

were

!"
ℎ"-*

&"(* &"

riders were

!"-*

approaching
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Training trigram models
• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)

2. Propagate words through the current model

3. Obtain word likelihoods (loss)

4. Back-propagate loss

5. Gradient step to update model

6. Go to (1)
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Training trigram models
• The typical training objective is the cross entropy (see Lecture 3) 

of the corpus ! given the model ":
ℱ = %(!;") = − *+,- ./ 0

0

12

ℎ2

ℎ2 = 4 56[89:;;89:<] + ?
@9 = ABCDEFG(5HI9 + J)

K2:L K2:M

Here:
• KN is a one-hot vector, and
• 12 is a distribution.

?BAD2

K2

logL RS(!) = logLT
2UV

W

R(K2) =X
2UV

W
logL R K2

Minimize

Maximize

logL R(K2) = K2⊺ log 12
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Training trigram models

!"

ℎ"

ℎ" = % &'[)*+,;)*+.] + 1
2* = 3456789(&;<* + =)

?"+@ ?"+A

Here:
• ?B is a one-hot vector, and
• !" is a distribution.

1436"

?"

• Compute our gradients, using ℱ = − EFGH IJ K
K

and 

log@ O(?") = ?"⊺ log !" and backpropagate.

Qℱ
QW;

= −
1
T

U
"

Q1436"
Q!"

Q!"
Q&;

Qℱ
QW'

= −
1
T

U
"

Q1436"
Q!"

Q!"
Qℎ"

Qℎ"
Q&'
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So what?
• J Neural language models of this type:

• Can generalize better than MLE LMs to unseen n-grams, 
• Can be modified to use semantic information as in 

word2vec.

• L Neural language models of this type:
• Can take relatively long to train
• Number of parameters scale poorly with increasing 

context. 

! "ℎ$ %&" '&" () "ℎ$ *+, ≈ !("ℎ$ %&" '&" () "ℎ$ /01)

Let’s improve both of these issues…
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Dealing with that bottleneck
• Traditional datasets for neural language modeling include:

• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Awesome datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types) 

• Much of the computational effort is in the initial 
embedding, and in the softmax.
• Can we simplify and speed up the process?   
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Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b; 
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]
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Hierarchical softmax with grouping

• Group words into distinct classes, !, e.g., by frequency.
• E.g., !" is top 5% of words by frequency, !# is the next 5%, … 

• Factorize $ %& %' = $ ! %' $(%&|%', !)

- %& %' = exp(123⊺ 526)
∑28"9 exp(12⊺526)Where 

52 is the ‘input’ vector for word %,
12 is the ‘output’ vector for word %,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(!:526)
∑; exp(!526)

× exp(123⊺ 526)
∑2∈; exp(12⊺526)



RECURRENT NEURAL NETWORKS



Recurrent neural networks (RNNs)
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• An RNN has feedback connections in its structure so that it 
‘remembers’ previous states, when reading a sequence.
• i.e., it passes information from one step to the next.

Elman network feed hidden units back Jordan network (not shown)
feed output units back 



Unrolling the !"
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• Copies of the same network can be applied (i.e., unrolled) at 
each point in a time series.
• These can be applied to various tasks.

#$

ℎ$

&$

→
#(

ℎ(

&(

#)

ℎ)

&)
You lovely person

PRP ADJ NN

ℎ* = , -.[0; !234] + 7
82 = -9!2 + :



Sampling from a RNN LM
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• If ℎ" < |%|, we’ve already reduced the number of 
parameters from the trigram NN.
• In ‘theory’, information is maintained in ℎ" across arbitrary 

lengths of time…

&'

ℎ'

('

&)

ℎ)

()

ℎ* = , -.[0; 2345] + 8
93 = -:23 + ;

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs and retrograde amnesia
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• Unfortunately, catastrophic forgetting is common.
• E.g., the relevant context in “The sushi the sister of your 

friend’s programming teacher told you about was…” 
has likely been overwritten by the time ℎ"# is produced.

$%

ℎ%

&%

$"

ℎ"

&"

$"#

ℎ"#

&"#
The sushi tasty

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…



RNNs and retrograde amnesia
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• The challenge with RNNs is that the gradient decays quickly 
as one pushes it back in time. Can we build a ‘highway’  
through time for relevant information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short-term memory (LSTM)
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• In each module, in an LSTM, there are four interacting neural 
network layers.

The cell state is a special vector stream that 
runs through the entire chain and stores the 
long-term information.



Long short-term memory (LSTM)
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• In each module, in an LSTM, there are four interacting neural 
network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×. 
Values near 0 block information; values near 1 pass information.



LSTM step 1: decide what to forget
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• The forget gate layer compares ℎ"#$ and the current input %"
to decide which elements in cell state &"#$ to keep and which 
to turn off.
• E.g., the cell state might ‘remember’ the number (sing./plural) of the 

current subject, in order to predict appropriately conjugated verbs, 
but decide to forget it when a new subject is mentioned at %".

• (There’s scanty evidence that such information is so explicit.)



LSTM step 2: decide what to store
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• The input gate layer has two steps.
• First, a sigmoid layer ! decides which cell units to update.
• Next, a tanh layer creates new candidate values "#$.
• E.g., the ! can turn on the ‘number’ units, and the tanh can push 

information on the current subject.
• The ! layer is important – we don’t want to push information on 

units (i.e., latent dimensions) for which we have no information.



LSTM step 3: update the cell state
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• Update !"#$ to !". 
• First, forget what we want to forget: multiply !"#$ by %".
• Then, create a ‘mask vector’ of information we want to store, &"× (!".
• Finally, write this information to the new cell state !".

... →
!*#$

... →
×%"

... →

...
&"× (!"

+
...

!*

!" = %"×!"#$ + &"× (!"



LSTM step 4: output and feedback 
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• Output something, !", based on the current #" and ℎ"%&.
• Combine the output with the cell to give your ℎ".

• Normalize cell '" on [-1,1] using tanh and combine with !"

• In some sense, '" is long-term memory and ℎ" is the short-term 
memory (hence the name).

!" = ) *+ ℎ"%&, #" + .+
ℎ" = !"×tanh('")



Variants of LSTMs
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• There are various variations on LSTMs.
• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally), 

learn 

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal 
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.



Variants of LSTMs

60CSC401/2511 – Spring 2019

• There are various variations on LSTMs.
• Gers & Schmidhuber (2000) add ‘peepholes’ that allow all 

sigmoids to read the cell state.
• We can couple the ‘forget’ and ‘input’ gates.

• E.g., it’s a bit of a waste to decide to forget number, then decide 
to store a new number. 

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step further 
and also merge the cell and hidden states.

Reset gate (0: replace units in ℎ"#$
with those in %")

Update gate

Are there examples where GRUs are used instead of LSTMs?

https://arxiv.org/pdf/1406.1078v3.pdf


ENCODER-DECODER MODELS



SMT with RNNs
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• SMT is hard and involves long-term dependencies.
• Solution: Encode entire sentence into a single vector 

representation, then decode.
• GRUs are often used for this purpose Cho et al (2014).

EN
CO

D
E

Sentence 
representation

ℎ"

#"
Kérlek

ℎ$

#$
fecsegj

ℎ%

#%
ò

ℎ&

#&
kemfené

ℎ'

#'
<EOS>

Its just Python

https://arxiv.org/pdf/1406.1078v3.pdf


SMT with RNNs
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• SMT is hard and involves long-term dependencies.
• Solution: Encode entire sentence into a single vector 

representation, then decode.
• GRUs are often used for this purpose Cho et al (2014).

DE
CO

DE

ℎ"

#$
Where

ℎ% ℎ& ℎ' ℎ(

Its just Python

#) #* #+ #"
is the railway station

• But this approach is a bit naïve regarding how language 
works. Can we pay attention to any aspects of the input?

https://arxiv.org/pdf/1406.1078v3.pdf


SMT with RNNs and attention
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• Attention mechanisms shortcuts the source and the target by 
considering the former during translation.
• Specifically, when decoding !", consider the entire 

encoded sequence, but concentrate on particular sections. 

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/


SMT with RNNs and attention
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• Decide the distribution of attention based on content. 

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/


SMT with RNNs and attention
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• Each output word attends to different words in the input.
• A by-product is alignment graphs similar to the ones we like.

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/


RECENT BREAKTHROUGHS



Deep contextualized representations
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

http://arxiv.org/abs/1802.05365


ELMo: Embeddings from Language Models
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• Instead of a fixed embedding for each word type, ELMo
considers the entire sentence before embedding each token.
• It uses a bi-directional LSTM trained on a specific task.
• Outputs are softmax probabilities on words, as before.
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• Producing the final embedding for word token !.

where "# is the set of all $ hidden layers, h&,(
)(*+,& is the task’s weight on the layer, and
-*+,& is a weight on the entire task

ELMo: Embeddings from Language Models



ELMo: Embeddings from Language Models
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis

http://arxiv.org/abs/1802.05365
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Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding. http://arxiv.org/abs/1810.04805

BERT: Bidirectional encoder 
representations from transformers

Code and models: https://github.com/google-research/bert

• Unlike ELMo, BERT is deeply bidirectional.
• i.e., every embedding conditions every other in the next 

layer.

• This is difficult, because when predicting word !", you would 
already have ‘seen’  that word in modelling its own contexts. 

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
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BERT: Bidirectional encoder 
representations from transformers
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BERT: Bidirectional encoder 
representations from transformers
• This can be solved by masking the word being predicted.

• (actually, 80% we use [MASK]. 10% we replace the target word with another 
actual word; 10% we keep the word as-is, to bias ‘towards the observation’.)

• We can also predict other relationships, like whether one 
sentence follows another. 

• (actually, you can fine-tune on many different tasks)



77CSC401/2511 – Spring 2019

BERT: Bidirectional encoder 
representations from transformers

(From http://jalammar.github.io/illustrated-bert/) 

http://jalammar.github.io/illustrated-bert/
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BERT: Bidirectional encoder 
representations from transformers
• The age of humans is over?

Humans

BERT
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Aside – ClosedAI

• There are, of course, alternatives.

• FastText: Represent each word as a bag of character-grams
Paper: https://arxiv.org/abs/1607.04606
Code: https://fasttext.cc

• ULMFit: Model fine-tuning for classification tasks
Paper: https://arxiv.org/abs/1801.06146
Code: Here

• GPT-2: Spooky uni-directional model
Paper: Here
Blog: Here

https://arxiv.org/abs/1607.04606
https://fasttext.cc/
https://arxiv.org/abs/1801.06146
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://blog.openai.com/better-language-models/


OTHER APPLICATIONS



Sentiment analysis
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Best movie of the year

Slick and entertaining, despite a weak script

Fun and sweet but ultimately unsatisfying

• The traditional bag-of-words approach to sentiment analysis 
used dictionaries of happy and sad words, simple counts, and 
either regression or binary classification.

• But consider these:



Tree-based sentiment analysis
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• We can combine pairs of words into phrase structures.
• Similarly, we can combine phrase and word structures 

hierarchically for classification.
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Tree-based sentiment analysis
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(currently broken) demo: 
http://nlp.stanford.edu/sentiment/ 



• Research in neural networks is exciting, expansive, and 
explorative.

• We have many hyperparameters we can tweak 
(e.g., activation functions, number and size of layers).

• We have many architectures we can use 
(e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific 
skepticism. 
• What are our biases and expectations?
• When are neural networks the wrong choice?
• How are we actually evaluating these systems? 

Neural networks
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Pseudo-homework
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• Consider the following online tutorials:

• LSTMs for language modeling: 
https://www.tensorflow.org/tutorials/recurrent

• Encoder-decoder (seq2seq) for machine translation: 
https://www.tensorflow.org/tutorials/seq2seq
(incl. attention mechanism)

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/seq2seq

