

Neural networks

2CSC401/2511 – Spring 2019

• Introduction
• Word-level representations
• Neural language models
• Recurrent neural networks
• Sequence-to-sequence modelling
• Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

CSC401/2511 – Spring 2019 3

Artificial neural networks
• Artificial neural networks (ANNs) were (kind of) inspired

from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).
• The nucleus fires (sends an electric signal along the axon)

given input from other neurons.
• ‘Learning’ occurs at the synapses that connect neurons,

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus

!()

CSC401/2511 – Spring 2019 4

Perceptron: an artificial neuron
• Each neuron calculates a weighted sum of its inputs and

compares this to a threshold, $. If the sum exceeds the
threshold, the neuron fires.
• Inputs %& are activations from adjacent neurons, each

weighted by a parameter '&.
If (> $, + ≔ 1
Else, + ≔ 0%/

(=1
&2/

3
'&%&

%4

%3

'/
'4
'3

…
+

McCullogh-Pitts model

5()

CSC401/2511 – Spring 2019 5

Perceptron output
• Perceptron output is determined by activation functions,
!(), which can be non-linear functions of weighted input.

• Popular activation functions include tanh and the sigmoid:

! $ = & $ = 1
1 +)*+

• The sigmoid’s derivative is the easily computable &, = & ⋅ (1 − &)

Input

Ou
tp

ut

Input

Ou
tp

ut

From Wikipedia

tanh sigmoid

0

1

CSC401/2511 – Spring 2019
6

Rectified Linear Units (ReLUs)
• Since 2011, the ReLU ! = # $ = max(0, $) has become

more popular.
• More biologically plausible, sparse activation, limited (vanishing or

exploding) gradient problems, efficient computation.

Input

O
ut

pu
t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is
the softplus log(1 + 12),
which has a simple
derivative 1/(1 + 142)

• Why do we care about the
derivatives?

CSC401/2511 – Spring 2019 7

Perceptron learning
• Weights are adjusted in proportion to the error (i.e., the

difference between the desired, !, and the actual output, ".
• The derivative #′ allows us to assign blame proportionally.

• Given a small learning rate, % (e.g., 0.05), we repeatedly
adjust each of the weighting parameters by

)* ≔)* + % ⋅ .
/01

2
344/ ⋅ #′(6/) ⋅ 8/

where 344/ = (! − "), and we have ; training examples.
!"

=%&'!'
(

')"

!*

!(

&"
&*
&(

…
+

McCullogh-Pitts model

,()

CSC401/2511 – Spring 2019 8

Threshold perceptra and XOR
• Some relatively simple logical functions cannot be learned by

threshold perceptra (since they are not linearly separable).

!"

!#

$% ∧ $'
!"

!#

$% ∨ $'
!"

!#

$%⨁$'

CSC401/2511 – Spring 2019 9

Artificial neural networks
• Complex functions can be represented by layers of

perceptra (Multi-Layer Perceptra, MLPs).

MLP

...

...
• Input are passed to the

input layer.
• Activations are propagated

through hidden layers
to the output layer.

• MLPs are quite robust to noise,
and are trained specifically to
reduce error.

CSC401/2511 – Spring 2019 10

Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?

CSC401/2511 – Spring 2019 11

Words
• Given a corpus with ! (e.g., = 100%) unique words, the

classical approach is to uniquely assign each word with an
index in !-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features
to each index in a much denser vector.

• E.g., ‘VBG’, ‘negative’, ‘age-of-acquisition’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
& ≪ !

lugubrious

been feeling lugubrious all day
felt a lugubrious sadness in

…

!(#$ = &'(')*+,'-|#$/0 = 122&+3()

https://code.google.com/p/word2vec/

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model.

12CSC401/2511 – Spring 2019

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

Learning word semantics

https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

13

feeling lugubrious all
a lugubrious sadness

…

! "#
(%×'))* "+

('×%) ,

D
 =

 1
00

K

0,0,0, … 1,… , 0
feeling

D
 =

 1
00

K

0,1,0, … , 0, … , 0
lugubrious

Note: we have two
vector representations of
each word:
)* = !⊺"# (234 row of "#)
5* = "+

⊺, (234 col of "+)

CSC401/2511 – Spring 2019

6 27 28 = exp(5*=⊺)*>)
∑*@AB exp(5*⊺)*>)Where

)* is the ‘input’ vector for word 2,
5* is the ‘output’ vector for word 2,

‘softmax’:

‘embedding’

Continuous bag of words (! words context)

14CSC401/2511 – Spring 2019

• If we want to use more context, !,
we need to change the network
architecture somewhat.
• Each input word will produce one

of ! embeddings
• We just need to add an

intermediate layer, usually this
just averages the embeddings.

been feeling lugubrious all
felt a lugubrious sadness

…

Skip-grams

15CSC401/2511 – Spring 2019

• Skip-grams invert the task – we predict
context words given the current word.

• According to Mikolov,
Skip-gram: works well with small amounts
of training data, represents rare words.

CBOW: several times faster to train, slightly
better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

16CSC401/2511 – Spring 2019

! =

#$
#$$%&'$%(

⋮
#*+,-%.+

/$
/$$%&'$%(

⋮
/*+,-%.+

∈ ℝ23×5

• Given 6-dimensional embeddings, and / word types, our
parameters, !, are:

Actually doing the learning

17CSC401/2511 – Spring 2019

We have many options. Gradient descent is popular.
We want to optimize, given ! tokens of training data,

" # =
1
!
&
'()

*

&
+,-.-,,.01

log 5(7'8.|7')

And we want to update vectors ;<=>? then @<= within #
AB< = # CDE − GHI"

so we’ll need to take the derivative of the (log of the)
softmax function:

5 7C 7J =
exp(;<N

⊺ @<P)
∑<()R exp(;<⊺@<P)

Where @< is the ‘input’ vector for word 7,
and ;< is the ‘output’ vector for word 7,

Actually doing the learning

18CSC401/2511 – Spring 2019

We need the derivative of the (log of the) softmax function:

!
!"#$

log()*+,)* = !
!"#$

log
exp(2#$34⊺ "#$)

∑#89: exp(2#⊺"#$)

= !
!"#$

log exp 2#$34⊺ "#$ − log<
#89

:
exp(2#⊺"#$)

= 2#$34 − !
!"#$

log<
#89

:
exp(2#⊺"#$)

[apply the chain rule =>=?@$
= =>

=A
=A
=?@$

]

= 2#$34 −<#89

:
C))* 2#

More details: http://arxiv.org/pdf/1411.2738.pdf

http://arxiv.org/pdf/1411.2738.pdf

Using word representations

19CSC401/2511 – Spring 2019

! "#

D
 =

 1
00

K

Without a latent space,
lugubrious = 0,0,0, … , 0,1,0, … , 0 , &
sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos(!, ,) = 0.0

In latent space,
lugubrious = 0.8,0.69,0.4, … , 0.05 5, &
sad = 0.9,0.7,0.43, … , 0.05 5 so

Similarity = cos(!, ,) = 0.9

EMBEDDING

89 = !⊺"#
H = 300

Reminder:
cos ;, 8 = ; ⋅ 8

; ×| 8 |

Skip-grams with negative sampling

20CSC401/2511 – Spring 2019

• The default process is inefficient.
• For one – what a waste of time!

We don’t want to update !×# weights!
• For two – we want to avoid confusion!

‘Hallucinated’ contexts should be
minimized.

• For the observed pair (lugubrious, sadness),
only the output neuron for sadness should
be 1, and all # − 1 others should be 0.

Skip-grams with negative sampling

21CSC401/2511 – Spring 2019

• We want to maximize the association of
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of
‘hallucinated’ (negative) contexts:

lugubrious happy
lugubrious roof
lugubrious truth

Skip-grams with negative sampling

22CSC401/2511 – Spring 2019

• Choose a small number ! of ‘negative’ words,
and just update the weights for the ‘positive’
word plus the ! ‘negative’ words.

• 5 ≤ ! ≤ 20 can work in practice for smaller
datasets.

• For & = 100), we only update 0.006%
of the weights in the output layer.

• The authors suggest choosing the top ! words
by modified unigram probability:

*∗ ,-./ = 0 ,-./
1
2

∑4 0 ,
1
2

Smell the GloVe

23CSC401/2511 – Spring 2019

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162

• GloVe (‘Global Vectors’) is an alternative method of
obtaining word embeddings.
• Instead of predicting words at particular positions, look

at the co-occurrence matrix.

Word !" occurs
#",%(= #%,")

times with word !%,
within some context

window (e.g., 10 words,
a sentence, …).

https://nlp.stanford.edu/projects/glove/

Smell the GloVe

24CSC401/2511 – Spring 2019

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162

• Populating the co-occurrence matrix requires a complete
pass through the corpus, but needs only be done once.

• Let !",$ = ! &$ &" = '",$/'",

https://nlp.stanford.edu/projects/glove/

Aside – smell the GloVe

25CSC401/2511 – Spring 2019

• Minimize ! = ∑$,&'() * +$,& ,-./-0 + 2$ + 32& − log+$,&
8

where 2$ and 32& are input and output bias terms
associated with 9$ and 9&, respectively

Aside – smell the GloVe

26CSC401/2511 – Spring 2019

• Intrinsic evaluation: popular (though perhaps dishonest)
method is to cherry-pick a few k-nearest neighbours
examples that match expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety
of tasks.
Spoiler: The authors of GloVe found that GloVe is more
accurate than word2vec.

Redacted. See https://github.com/sebastianruder/NLP-progress

https://github.com/sebastianruder/NLP-progress

Linguistic regularities in vector space

27CSC401/2511 – Spring 2019

Trained on the Google news corpus with over 300 billion words.

Linguistic regularities in vector space

28CSC401/2511 – Spring 2019 (from GloVe)

Linguistic regularities in vector space

29CSC401/2511 – Spring 2019

Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture

Importance of in-domain data

30CSC401/2511 – Spring 2019

Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400

http://arxiv.org/abs/1802.00400

Let’s talk about gender at the UofT

31CSC401/2511 – Spring 2019

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News,

man:woman::programmer:homemaker.

Let’s talk about gender at the UofT

32CSC401/2511 – Spring 2019

Solution?

33CSC401/2511 – Spring 2019

1. Hand-pick words !" that are ’gender definitional’.
‘Neutral’ words are the complement, # = % \ !".

Solution?

34CSC401/2511 – Spring 2019

2. Project away gender subspace from gender-neutral words,
! ≔ ! −! ⋅ % for ! ∈ ', where % is the gender subspace.

Solution?

35CSC401/2511 – Spring 2019

2. Project away gender subspace from gender-neutral words,
! ≔ ! −! ⋅ % for ! ∈ ', where % is the gender subspace.

Results

36CSC401/2511 – Spring 2019

He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ?

• Generate many analogies, see which ones preserve gender
stereotypes.

NEURAL LANGUAGE MODELS

CSC401/2511 – Spring 2019 38

Trigram models
• CBOW: prediction of current word !" given !"#$.
• Let’s reconsider predicting !" given multiple !"#%?

• I.e., let’s think about language modelling.

&

ℎ

(

MLP

ℎ = * +,- + /
0 = +12 + 3

4"

ℎ"

trigram

ℎ" = * +,[67#8;67#:] + /
<7 = =>?@AB((+127 + 3)

!"#E !"#$

Here:
• !F is a one-hot vector,
• 4" is a distribution, and
• !F = 4" = |H|

(i.e., the size of the vocabulary)

CSC401/2511 – Spring 2019 39

Sampling from trigram models
• Since !" ∼ $(&"|&"() &"(*), we just feed forward and

sample from the output vector.

ℎ"

&"() &"(*

two riders

were

!"
ℎ"-*

&"(* &"

riders were

!"-*

approaching

CSC401/2511 – Spring 2019 40

Training trigram models
• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)

2. Propagate words through the current model

3. Obtain word likelihoods (loss)

4. Back-propagate loss

5. Gradient step to update model

6. Go to (1)

CSC401/2511 – Spring 2019 41

Training trigram models
• The typical training objective is the cross entropy (see Lecture 3)

of the corpus ! given the model ":
ℱ = %(!;") = − *+,- ./ 0

0

12

ℎ2

ℎ2 = 4 56[89:;;89:<] + ?
@9 = ABCDEFG(5HI9 + J)

K2:L K2:M

Here:
• KN is a one-hot vector, and
• 12 is a distribution.

?BAD2

K2

logL RS(!) = logLT
2UV

W

R(K2) =X
2UV

W
logL R K2

Minimize

Maximize

logL R(K2) = K2⊺ log 12

CSC401/2511 – Spring 2019 42

Training trigram models

!"

ℎ"

ℎ" = % &'[)*+,;)*+.] + 1
2* = 3456789(&;<* + =)

?"+@ ?"+A

Here:
• ?B is a one-hot vector, and
• !" is a distribution.

1436"

?"

• Compute our gradients, using ℱ = − EFGH IJ K
K

and

log@ O(?") = ?"⊺ log !" and backpropagate.

Qℱ
QW;

= −
1
T

U
"

Q1436"
Q!"

Q!"
Q&;

Qℱ
QW'

= −
1
T

U
"

Q1436"
Q!"

Q!"
Qℎ"

Qℎ"
Q&'

CSC401/2511 – Spring 2019 43

So what?
• J Neural language models of this type:

• Can generalize better than MLE LMs to unseen n-grams,
• Can be modified to use semantic information as in

word2vec.

• L Neural language models of this type:
• Can take relatively long to train
• Number of parameters scale poorly with increasing

context.

! "ℎ$ %&" '&" () "ℎ$ *+, ≈ !("ℎ$ %&" '&" () "ℎ$ /01)

Let’s improve both of these issues…

CSC401/2511 – Spring 2019 44

Dealing with that bottleneck
• Traditional datasets for neural language modeling include:

• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Awesome datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types)

• Much of the computational effort is in the initial
embedding, and in the softmax.
• Can we simplify and speed up the process?

CSC401/2511 – Spring 2019 45

Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

CSC401/2511 – Spring 2019 46

Hierarchical softmax with grouping

• Group words into distinct classes, !, e.g., by frequency.
• E.g., !" is top 5% of words by frequency, !# is the next 5%, …

• Factorize $ %& %' = $! %' $(%&|%', !)

- %& %' = exp(123⊺ 526)
∑28"9 exp(12⊺526)Where

52 is the ‘input’ vector for word %,
12 is the ‘output’ vector for word %,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(!:526)
∑; exp(!526)

× exp(123⊺ 526)
∑2∈; exp(12⊺526)

RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs)

48CSC401/2511 – Spring 2019

• An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.
• i.e., it passes information from one step to the next.

Elman network feed hidden units back Jordan network (not shown)
feed output units back

Unrolling the !"

49CSC401/2511 – Spring 2019

• Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.
• These can be applied to various tasks.

#$

ℎ$

&$

→
#(

ℎ(

&(

#)

ℎ)

&)
You lovely person

PRP ADJ NN

ℎ* = , -.[0; !234] + 7
82 = -9!2 + :

Sampling from a RNN LM

50CSC401/2511 – Spring 2019

• If ℎ" < |%|, we’ve already reduced the number of
parameters from the trigram NN.
• In ‘theory’, information is maintained in ℎ" across arbitrary

lengths of time…

&'

ℎ'

('

&)

ℎ)

()

ℎ* = , -.[0; 2345] + 8
93 = -:23 + ;

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

51CSC401/2511 – Spring 2019

• Unfortunately, catastrophic forgetting is common.
• E.g., the relevant context in “The sushi the sister of your

friend’s programming teacher told you about was…”
has likely been overwritten by the time ℎ"# is produced.

$%

ℎ%

&%

$"

ℎ"

&"

$"#

ℎ"#

&"#
The sushi tasty

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

RNNs and retrograde amnesia

52CSC401/2511 – Spring 2019

• The challenge with RNNs is that the gradient decays quickly
as one pushes it back in time. Can we build a ‘highway’
through time for relevant information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

53CSC401/2511 – Spring 2019

• In each module, in an LSTM, there are four interacting neural
network layers.

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.

Long short-term memory (LSTM)

54CSC401/2511 – Spring 2019

• In each module, in an LSTM, there are four interacting neural
network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×.
Values near 0 block information; values near 1 pass information.

LSTM step 1: decide what to forget

55CSC401/2511 – Spring 2019

• The forget gate layer compares ℎ"#$ and the current input %"
to decide which elements in cell state &"#$ to keep and which
to turn off.
• E.g., the cell state might ‘remember’ the number (sing./plural) of the

current subject, in order to predict appropriately conjugated verbs,
but decide to forget it when a new subject is mentioned at %".

• (There’s scanty evidence that such information is so explicit.)

LSTM step 2: decide what to store

56CSC401/2511 – Spring 2019

• The input gate layer has two steps.
• First, a sigmoid layer ! decides which cell units to update.
• Next, a tanh layer creates new candidate values "#$.
• E.g., the ! can turn on the ‘number’ units, and the tanh can push

information on the current subject.
• The ! layer is important – we don’t want to push information on

units (i.e., latent dimensions) for which we have no information.

LSTM step 3: update the cell state

57CSC401/2511 – Spring 2019

• Update !"#$ to !".
• First, forget what we want to forget: multiply !"#$ by %".
• Then, create a ‘mask vector’ of information we want to store, &"× (!".
• Finally, write this information to the new cell state !".

... →
!*#$

... →
×%"

... →

...
&"× (!"

+
...

!*

!" = %"×!"#$ + &"× (!"

LSTM step 4: output and feedback

58CSC401/2511 – Spring 2019

• Output something, !", based on the current #" and ℎ"%&.
• Combine the output with the cell to give your ℎ".

• Normalize cell '" on [-1,1] using tanh and combine with !"

• In some sense, '" is long-term memory and ℎ" is the short-term
memory (hence the name).

!" =) *+ ℎ"%&, #" + .+
ℎ" = !"×tanh('")

Variants of LSTMs

59CSC401/2511 – Spring 2019

• There are various variations on LSTMs.
• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

learn

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

Variants of LSTMs

60CSC401/2511 – Spring 2019

• There are various variations on LSTMs.
• Gers & Schmidhuber (2000) add ‘peepholes’ that allow all

sigmoids to read the cell state.
• We can couple the ‘forget’ and ‘input’ gates.

• E.g., it’s a bit of a waste to decide to forget number, then decide
to store a new number.

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step further
and also merge the cell and hidden states.

Reset gate (0: replace units in ℎ"#$
with those in %")

Update gate

Are there examples where GRUs are used instead of LSTMs?

https://arxiv.org/pdf/1406.1078v3.pdf

ENCODER-DECODER MODELS

SMT with RNNs

62CSC401/2511 – Spring 2019

• SMT is hard and involves long-term dependencies.
• Solution: Encode entire sentence into a single vector

representation, then decode.
• GRUs are often used for this purpose Cho et al (2014).

EN
CO

D
E

Sentence
representation

ℎ"

#"
Kérlek

ℎ$

#$
fecsegj

ℎ%

#%
ò

ℎ&

#&
kemfené

ℎ'

#'
<EOS>

Its just Python

https://arxiv.org/pdf/1406.1078v3.pdf

SMT with RNNs

63CSC401/2511 – Spring 2019

• SMT is hard and involves long-term dependencies.
• Solution: Encode entire sentence into a single vector

representation, then decode.
• GRUs are often used for this purpose Cho et al (2014).

DE
CO

DE

ℎ"

#$
Where

ℎ% ℎ& ℎ' ℎ(

Its just Python

#) #* #+ #"
is the railway station

• But this approach is a bit naïve regarding how language
works. Can we pay attention to any aspects of the input?

https://arxiv.org/pdf/1406.1078v3.pdf

SMT with RNNs and attention

64CSC401/2511 – Spring 2019

• Attention mechanisms shortcuts the source and the target by
considering the former during translation.
• Specifically, when decoding !", consider the entire

encoded sequence, but concentrate on particular sections.

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/

SMT with RNNs and attention

65CSC401/2511 – Spring 2019

• Decide the distribution of attention based on content.

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/

SMT with RNNs and attention

66CSC401/2511 – Spring 2019

• Each output word attends to different words in the input.
• A by-product is alignment graphs similar to the ones we like.

Imagery from the excellent https://distill.pub/2016/augmented-rnns/#attentional-interfaces .

https://distill.pub/2016/augmented-rnns/

RECENT BREAKTHROUGHS

Deep contextualized representations

68CSC401/2511 – Spring 2019

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

69CSC401/2511 – Spring 2019

• Instead of a fixed embedding for each word type, ELMo
considers the entire sentence before embedding each token.
• It uses a bi-directional LSTM trained on a specific task.
• Outputs are softmax probabilities on words, as before.

!"

ℎ"

$"

!%

ℎ%

$%
The play

ℎ′" ℎ′%
LSTMs

!"

ℎ'(%

$'(%

!%

ℎ'

$'
the actors

ℎ′'(% ℎ′'

exhausted

70CSC401/2511 – Spring 2019

• Producing the final embedding for word token !.

where "# is the set of all $ hidden layers, h&,(
)(*+,& is the task’s weight on the layer, and
-*+,& is a weight on the entire task

ELMo: Embeddings from Language Models

ELMo: Embeddings from Language Models

71CSC401/2511 – Spring 2019

!"

ℎ"

$"
play

ℎ′"

!&

ℎ"

$"
play

ℎ′"

ℎ′" ℎ′"

ℎ" ℎ"

1. Concatenate

2. Multiply by weight vectors

3. Sum

$"

ℎ′" ℎ′"

ℎ" ℎ"

$"

× ()*+,-

× ("*+,-

× (&*+,-

./01-2"*+,-

72CSC401/2511 – Spring 2019

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365

73CSC401/2511 – Spring 2019

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis

http://arxiv.org/abs/1802.05365

74CSC401/2511 – Spring 2019

Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. http://arxiv.org/abs/1810.04805

BERT: Bidirectional encoder
representations from transformers

Code and models: https://github.com/google-research/bert

• Unlike ELMo, BERT is deeply bidirectional.
• i.e., every embedding conditions every other in the next

layer.

• This is difficult, because when predicting word !", you would
already have ‘seen’ that word in modelling its own contexts.

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert

75CSC401/2511 – Spring 2019

BERT: Bidirectional encoder
representations from transformers

!"

ℎ"

$"

!%

ℎ%

$%

ℎ′" ℎ′%

ℎ" ℎ%

ℎ′" ℎ′%

ELMo

ℎ"

$"

ℎ%

$%

ℎ'(% ℎ'

BERT

$'(% $'

I’ve seen
me

already

76CSC401/2511 – Spring 2019

BERT: Bidirectional encoder
representations from transformers
• This can be solved by masking the word being predicted.

• (actually, 80% we use [MASK]. 10% we replace the target word with another
actual word; 10% we keep the word as-is, to bias ‘towards the observation’.)

• We can also predict other relationships, like whether one
sentence follows another.

• (actually, you can fine-tune on many different tasks)

77CSC401/2511 – Spring 2019

BERT: Bidirectional encoder
representations from transformers

(From http://jalammar.github.io/illustrated-bert/)

http://jalammar.github.io/illustrated-bert/

78CSC401/2511 – Spring 2019

BERT: Bidirectional encoder
representations from transformers
• The age of humans is over?

Humans

BERT

79CSC401/2511 – Spring 2019

Aside – ClosedAI

• There are, of course, alternatives.

• FastText: Represent each word as a bag of character-grams
Paper: https://arxiv.org/abs/1607.04606
Code: https://fasttext.cc

• ULMFit: Model fine-tuning for classification tasks
Paper: https://arxiv.org/abs/1801.06146
Code: Here

• GPT-2: Spooky uni-directional model
Paper: Here
Blog: Here

https://arxiv.org/abs/1607.04606
https://fasttext.cc/
https://arxiv.org/abs/1801.06146
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://blog.openai.com/better-language-models/

OTHER APPLICATIONS

Sentiment analysis

81CSC401/2511 – Spring 2019

Best movie of the year

Slick and entertaining, despite a weak script

Fun and sweet but ultimately unsatisfying

• The traditional bag-of-words approach to sentiment analysis
used dictionaries of happy and sad words, simple counts, and
either regression or binary classification.

• But consider these:

Tree-based sentiment analysis

82CSC401/2511 – Spring 2019

• We can combine pairs of words into phrase structures.
• Similarly, we can combine phrase and word structures

hierarchically for classification.

x1 x2

x1,2

!"

#$

D
=
2×
30
0

!+

,
=
tan

h

! "
,+

D
=
30
0

H = 300

Tree-based sentiment analysis

83CSC401/2511 – Spring 2019

(currently broken) demo:
http://nlp.stanford.edu/sentiment/

• Research in neural networks is exciting, expansive, and
explorative.

• We have many hyperparameters we can tweak
(e.g., activation functions, number and size of layers).

• We have many architectures we can use
(e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific
skepticism.
• What are our biases and expectations?
• When are neural networks the wrong choice?
• How are we actually evaluating these systems?

Neural networks

84CSC401/2511 – Spring 2019

Pseudo-homework

85CSC401/2511 – Spring 2019

• Consider the following online tutorials:

• LSTMs for language modeling:
https://www.tensorflow.org/tutorials/recurrent

• Encoder-decoder (seq2seq) for machine translation:
https://www.tensorflow.org/tutorials/seq2seq
(incl. attention mechanism)

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/seq2seq

