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Recall our input to ASR
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Is the spectrum the best input for our Frequency (Hz)
ASR systems? &
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1. The Mel-scale filter bank

* To mimic the response of the human ear (and because it
empirically improves speech recognition), we often discretize
the spectrum using M triangular filters.

* Uniform spacing before 1 kHz, logarithmic after 1 kHz
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2 Source and filter

°* The of speech are

“I”HHIHHHI m produced by a glottal pulse
waveform (the source) passing

/\/\/\ through a vocal tract whose shape
modifies that wave (the filter).

!
t

| ‘ * The shape of the vocal tract is more
s Ml | important o phoneme recognition
‘ * We to separate the source from

!

| the filter in the acoustics.
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2. Source and filter (aside)

* Since speech is assumed to be the output of a linear time

invariant system, it can be described as a convolution.

* Convolution, x * y, is beyond the scope of this course, but can
be conceived as the modification of one signal by another.

I I 1 1 I I 1 1 L I
]...: ......... . .. Eﬁreaunderf(zhﬂ-:)'

: —f(x)
: . = : - : v
LR R QO0CO0C EETTITIRY RETERER R Gk fecsesenas 1o (f*g)t)

0 l 1 1 1 1 1 1 1
15 -1 05 0 05 1 15 2 25 3

* For speech signal , glottal signal g|n], and vocal tract
transfer v|n| with spectra , G|z], and /| z], respectively :
[Tl] [ ] We’ve separated the |
= G|z]|V|z] source and filter
i |
— l g G[Z] _I_ lOgV[ ] Into two terms!
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2. The cepstrum

* We separate the source and the filter by pretending the log

of the spectrum is actually a time domain signal.

* the log spectrum is a sum of the log spectra of the
source and filter, i.e., a superposition;
finding /1< spectrum will allow us to isolate these components.

* Cepstrum: n. the spectrum of the log of the spectrum.
°* Funfact: ‘ceps’is the reverse of ‘spec.

Instead of filters” we have ‘lifters’...
QN S iy
A Source spectram Iog B Fiker fusction Iog “ .-.,.1.", spectrum
[T AV B e
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2. The cepstrum
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Cepstrum

Spectrum

* The domain of the cepstrum is quefrency (a play on the
word ‘frequency’).

UNIVERSITY OF
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2. The cepstrum

w
S
Spectrum
: FREQUENCY (Hz) ictures from
ohn Coleman
2005)
w
(=]
Cepstrum |5

'
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!
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T

QUEFRENCY (SECONBSI—

This is due to the This is due to the
vocal tract shape glottis
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Mel-frequency cepstral coefficients

* Mel-frequency cepstral coefficients (MFCCs) are the most

popular representation of speech used in ASR.
®* They are the spectra of the logarithms of the Mel-scaled
filtered spectra of the windows of the waveform.

Speech
signal

\. UNIVERSITY OF
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Advantages of MFCCs

* The cepstrum produces highly uncorrelated features (every
dimension is useful).
* This includes a separation of the source and filter.

* Historically, the cepstrum has been easier to learn than the
spectrum for phoneme recognition.

* There is an efficient method to compute cepstra called the
discrete cosine transform.

UNIVERSITY OF
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MFCCs in practice

* An observation vector of MFCCs often consists of
* The first 13 cepstral coefficients (i.e., the first 13
dimensions produced by this method),
°* An additional overall energy measure,

* The velocities (0) of each of those 14 dimensions,
* j.e., the rate of change of each coefficient at a given time

* The accelerations (00) of each of original 14 dimensions.
* The result is that at a timeframe t we have an observation

MFCC vector of (13+1)*3=42 dimensions.
® This vector is what is used by our ASR systems...

E‘.ﬂ UNIVERSITY OF
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GAUSSIAN CLUSTERS
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Classifying speech sounds

b 2800
2400}
2200}
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rpir

2
Note: The vowel trapezoid’s
dimensions were physical

J
1000

* Speech sounds tend to cluster. This graph shows vowels,
each in their own colour, according to the 15t two formants.
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Classifying speakers

* Similarly, all of the speech produced by one speaker will cluster
differently in MFCC space than speech from another speaker.
* We can .. decide if a given observation comes from one
speaker or another.

.n-

2

Observation matrix

CSC401/2511 — Spring 2019 14
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Fitting continuous distributions

* Since we are operating with continuous variables, we need to
fit continuous probability functions to a
discrete number of observations.

* If we assume the 1-dimensional
data in this histogram is
Normally distributed, we can fit a
continuous Gaussian function
simply in terms of the mean u
and variance g?.

UNIVERSITY OF
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Comparing continuous distributions

* |f we observe a particular value in this univariate space, e.g.,
x = 15, we can say which of several distributions is most likely

to have produced it.

* Here, distribution B is more likely to have produced x = 15 because
P(x;B) > P(x; A).

350
00 |
250 |

300

"

é{@
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Good fits

* Given some fixed training data, we want to be able to fit

continuous probability functions that best match our
observations.

* The data in this histogram are more likely to have been
produced from the parameterization on the left.

350
3004

£
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Univariate (1D) Gaussians

* Also known as Normal distributions, N(u, o)

3
x10
10 }

o

N2
exp <—(x2 ;;) )

\2TTOo

* P(x;u,0) =

—_ D W S oM o0 —w o O

-15 -10

®* The parameters we can modify are 8 = (ﬂ, 02)
*u=E(x)=[x-P(x)dx (mean)
* 62 = E((x —w)?) = [(x — u)?P(x)dx (variance)

15

But we don’t have samples for all x... -
i‘g}
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Maximum likelihood estimation

* Given data X = {xq, x5, ..., X,,}, MLE produces an estimate of
the parameters 8 by maximizing the likelihood, L(X,0):
6 = argmax L(X, 6)
0

where L(X,0) = P(X;0) = [[L, P(x;; 8).

* Since L(X, 8) provides a surface over all 8, in order to find the
highest likelihood, we look at the derivative

o
—L(X,0)=0
—L(X,6)

to see at which point the likelihood stops growing.

;.\ UNIVERSITY OF
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MLE with univariate Gaussians

* Estimate u:

n_exp (_ (xiz_gz )2)

L(X,11) = P(X; )=ﬁp(xi;9)=l_[ V2o

i=1 i=1
2
log L(X, 1) = —Z‘( Zlaz ) —nlogVv2no

0 B 2 (g — 1) N
ElogL(X, ) = — =

_ 2 Xi & |

n
* Similarly, 6% = 2iCim)” u

n

0
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Multivariate Gaussians

* When data is d-dimensional, the
input variable is
x = (x[1],x[2], ..., x[d])
the mean is
= EX) = (u[1], u[2], ..., u[d])
the covariance matrix is
2li, j] = ECxelilx[j]) — wliluliD

and

- NTw—17= =
exp (— (X —@) %" (x — ,u)) A' is the transpose of A
2 A~ 1is the inverse of A

P(%) =
d 1 . .
(27‘[)7 |Z|§ |A| is the determinant of A

% UNIVERSITY OF
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Intuitions of covariance

u=[00] u=[00] u=[00]
Y =1 3 = 0.6l 3 = 2.0l

* As values in X become larger, the Gaussian spreads out.
* (Iis the identity matrix — O except for 1s on the diagonal)

UNIVERSITY OF
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Intuitions of covariance

in their respective dimensions

UNIVERSITY OF

» TORONTO

CSC401/2511 — Spring 2019 23




Non-Gaussian observations

* Speech data is generally not unimodal — it’s more complex.
* The observations below are bimodal, so fitting one Gaussian

would not be representative.
* E.g., if you usually keep your phone in your desk or on your table, it
makes no sense looking for them floating in the air between them.

UNIVERSITY OF
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Mixtures of Gaussians

* Gaussian mixture models (GMMs) are a weighted linear
combination of M component Gaussians, (I';, I, ..., Ty):

M
| P@=2 ) |
.

025

0.2

0154

0.1}

N
0.05 j !
fo

-100
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Observation likelihoods

* Assuming MFCC dimensions are independent of one another,
the covariance matrix is diagonal —i.e., 0 off the diagonal.

* Therefore, the probability of an observation vector given a
Gaussian from slide 14 becomes

* We imagine a GMM first chooses a Gaussian, then emits an
observation from that Gaussian.

7"-1:\; UNIVERSITY OF
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Mixtures of Gaussians

* If we knew which Gaussian generated each sample, we could
learn P (I’;) with MLE, but that data is hidden, so we must

use... .
N |

oP@=) ()

025 “ ]=1

0.1}

0.05 J \
fo .

-100

i
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Expectation-Maximization for GMMs

. ‘component observation |

* If w,,, = P(I;,) and ) : likelihood" '
’ ‘weight’ b

é \

Pg (Xt) — E Wm ‘ ‘overall probability’ b

m=1

where 0 = (w,,,, I, Z,,,) form =1..M

° To estimate 6, we solve Vy log L(X,0) = 0 where

T T M
logL(X,0) = 2 log Py (x;) = 2 log z Wy,
t=1 t=1 m=1

\' UNIVERSITY OF
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Expectation-Maximization for GMMs

* We differentiate the log likelihood function w.r.t . u,,|n] and
set this to 0 to find the value of ;1,,,[7]| at which the likelihood
stops growing.

mgii(x ) zpeut) laum =0

UNIVERSITY OF
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Expectation-Maximization for GMMs

°* The expectation step gives us:
= P(%;|Tm)

— Win Proportion of overall |
P(T,|x;0) = | p | '
mi+t - robability contributed by m
Po(xe) '° Y Y

°* The maximization step gives us:

—

,Ll . —
m Zt P(lext; 8)
— —2
— th(rmlxt; H)Xt —,2

—

— Zt P(Fm Ix_{, Q)X_t) ~ Recall from slide
— 20, MLE wants:

Yy = — —u
m th(rmlxt; 3) m
1 T .
Om = = P(Lnlxe; 0)
T £ai—1

UNIVERSITY OF
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Some notes...

* In the previous slide, the square of a vector, a?, is
elementwise (i.e., numpy.multiply in Python)

* Eg.,[23,4]2 = [4,9,16]

* Since X is diagonal, it can be represented as a vector.

e Can 0_:2’ i th(rm‘x_g; H)X_EZ —,2
Lo P(Dn[Xe; 6)

— W, become negative?

* No.
* This is left as an exercise, but only if you're interested.

?:\:-_\
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Speaker recognition

* Speaker recognition: n. the identification of a speaker
among several speakers given only
some acoustics.

* Each speaker will produce speech according to different
probability distributions.
* We train a Gaussian mixture model for each speaker,
given annotated data (mapping utterances to speakers).
* We choose the speaker whose model gives the highest
probability for an observation.

I\
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Recipe for GMM EM

* For each speaker, we learn a GMM given all T frames of their
training data.

1. Initialize: Guess 0 = (w,,,, [y, 20y) form = 1.. M
either uniformly, randomly, or by k-means
clustering.

2. E-step:  Compute and P(I',,|x;; 0).

3. M-step: Update parameters for (w,,,, [1,,,, 2,,,) @S
described on slide 30.

* (see the Reynolds & Rose (1995) paper on the course webpage for details)

UNIVERSITY OF
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SPEECH RECOGNITION
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Consider what we want speech to do

@ My hands arein \ | Dictation |
the air.

Buy ticket...
AC490...
yes

| Telephony | Q

Put this
there.

[ Multimodal interaction ]

Can we just use GMMs?

CSC401/2511 — Spring 2019 37




Speech databases

® Large-vocabulary continuous ASR is meant to encode full
conversational speech, with a vocabulary of >64K words.
* This requires lots of data to train our models.

* The Switchboard corpus contains 2430 conversations spread
out over about 240 hours of data (~14 GB).
®* The TIMIT database contains 63,000 sentences from 630
speakers.
* Relatively small (~750 MB), but very popular.
* Speech data from conferences (e.g., TED) or from broadcast
news tends to be between 3 GB and 30 GB.

31 UNIVERSITY OF
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Aspects of ASR systems in the world

* Speaking mode: Isolated word (e.g., “yes”) vs. continuous
(e.g., “Siri, ask Cortana for the weather”)

* Speaking style: Read speech vs. spontaneous speech;
the latter contains many dysfluencies
(e.g., stuttering, uh, like, ...)

®* Enrolment: Speaker-dependent (all training data from
one speaker) vs. speaker-independent
(training data from many speakers).

* Vocabulary: Small (<20 words) or large (>50,000 words).

* Transducer: Cell phone? Noise-cancelling microphone?
Teleconference microphone?

< b 62
e
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Speech is dynamic

v v v v v v

U Ny
MW L %

v~y |v|vv‘vvvvyvvvvlvvvvvvvvll'I'v'vvvvvvvvv"vvv[|||'yvvv||lvvv[vvvvlvvvv|
ceconds
5. 600 6. 626 &, 650 5. 675 6. 700 6, 725 !

“l 1y ﬁ 1 M ,.'4 y‘-..,w."'\ ‘ I' ‘,.v"ul__4,,L .
W ! ey N’N U]u‘J o vﬂ 'u'dr | IW. .

* Speech changes over time.
* GMMs are good for high-level clustering, but they encode
no notion of order, sequence, or time.

* Speech is an expression of language.
* We want to incorporate knowledge of how phonemes and
words are ordered with language models.

A
&8
ke
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Speech is sequences of phonemes

@ahndhahpaadbeydaorz/

open (podBay.doors) ;

‘ ﬁhﬁheﬁadbaydm F—

We want to convert a series of MFCC
vectors into a sequence of phonemes.

) not really

&3
AN
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Phoneme dictionaries

®* There are many phonemic dictionaries that map words to
pronunciations (i.e., lists of phoneme sequences).

* The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is
popular.
* 127K words transcribed with the ARPAbet.

® Includes some rudimentary prosody markers.

EVOLUTION EH2

V AHO L UWl SH AHO N
EVOLUTION (2) IYy2 Vv AHO L UWl SH AHO N
EVOLUTION (3) EH2 V OWO L UWl SH AHO N
EVOLUTION (4) IY2 VvV OWO L UWl SH AHO N
EVOLUTIONARY EH2 vV AHO L UWl SH AHO N EH2 R IYO
CSC401/2511 — Spring 2019 42 TLI(;ll\iSlIl\}"E‘lO



http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Putting it together?

“open the pod bay doors”

UNIVERSITY OF
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The noisy channel model for ASR

Language model Acoustic model
W Channel

P(X|W)

W <

{ Word
- sequence W

W Observed X
{ Acoustic
sequence X

[W* = argmax P (X |W)P(W)J
7%

How to encode P(X|W)?
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Reminder — discrete HMMs

® Previously we saw discrete HMMs: at
each state we observed a discrete symbol
from a finite set of discrete symbols.

g
(¥ ] UNIVERSITY OF
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Continuous HMMs (CHMM)

* A continuous HMM has observations that are distributed
over continuous variables.

* Observation probabilities, b;, are also continuous.
* E.g., here by (x) tells us the probability of seeing the
(multivariate) continuous observation X while in state O.

T

2.48562
1.08139

=1
I

0.45628

UNIVERSITY OF
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Defining CHMMs

® Continuous HMMs are very similar to discrete HMMs.
. set of states (e.g., subphones)
: continuous observation space

O — {Sl’ ...,SN}
* X = R*2

° I ={my, ..., my}
6 ’A={aij},i,jES
* B = bl(f),l ES,.?_C) e X

vielding

Q=190 - 91} G ES
°* 0 ={0y,..,07}L0;€EX

CSC401/2511 — Spring 2019

. initial state probabilities
. state transition probabilities
. state output probabilities

(i.e., Gaussian mixtures)

. state sequence
: observation sequence

47
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Word-level HMMs?

* Imagine that we want to learn an HMM for each word in our

lexicon (e.g., 60K words - 60K HMMs).
* No, thank you! Zipf’s law tells us that many words occur

very infrequently.
* 1 (or a few) training examples of a word is not enough to
train a model as highly parameterized as a CHMM.

bo L b Lo B
0-0—-0
& 4 7 (W 4

é UNIVERSITY OF
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* |n a word-level
HMM, each state
might be a
phoneme.




Phoneme HMMs

®* Phonemes change over time — we model these dynamics by
building one HMM for each phoneme.
* Tristate phoneme models are popular.
* The centre state is often the ‘steady’ part.

b AL b Lo beoe
O0—-0—-0O
v v O

tristate phoneme model (e.g., /0i/)

UNIVERSITY OF
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Phoneme HMMs

* We train each phoneme HMM using
all sequences of that phoneme.
* Even from different words.

064 85 ae
85 96 sh
96 102 ep1
102 106 m

{ annotation J [ observations ]

CSC401/2511 — Spring 2019 50
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Combining models

®* We can learn an N-gram language model from word-level
transcriptions of speech data.
®* These models are discrete and are trained using MLE.

®* Our phoneme HMMs together constitute our acoustic model.
* Each phoneme HMM tells us how a phoneme ‘sounds’.

* We can combine these models by concatenating phoneme
HMMs together according to a known lexicon.
* We use a word-to-phoneme dictionary.

2::‘ UNIVERSITY OF
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Combining models

* If we know how phonemes combine to make words, we can
simply concatenate together our phoneme models by
inserting and adjusting transition weights.

* e.g., Zipf is pronounced /z ih f/, so...

¢-9-9-0-0-0-9-0-0

N\ W U

(It’s a bit more complicated than this —
normally phoneme HMMs have special ‘handle’ states
at either end that connect to other HMM:s)

é UNIVERSITY OF
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Co-articulation and triphones

® Co-articulation: n. When a phoneme is influenced by
adjacent phonemes.

4 Frequency

* A triphone HMM captures co-articulation.

* Triphone model /a-b+c/ is phoneme b when preceded by a and
followed by c.

[ Two (of many) triphone HMMs for /t/

[s-t+iy/ g—’g—'g /iy-t+eh/ C—’C—'C

& TORONTO
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Combining triphone HMMs

* Triphone models can only connect to other triphone models
that ‘match’.

S
UNIVERSITY OF
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Concatenating phoneme models

Lexicon

We can easily
incorporate unigram
probabilities through

transitions, too.

From Jurafsky &

Martin text

CSC401/2511 — Spring 2019 55



Bigram models

p( one | one )

From Jurafsky &

CSC401/2511 — Spring 2019

Martin text
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Using CHMMs @—@—@

* As before, these HMMs are generative models that encode
statistical knowledge of how output is generated.

* We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as we did before with discrete HMMs.
* Here, the observation parameters, b;(x), are adjusted
using the GMM training ‘recipe’ from earlier.

* We find the best state sequences using Viterbi, as before.
* Here, the best state sequence gives us a sequence of
phonemes and words.

UNIVERSITY OF

% TORONTO
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Audio-visual speech methods

* Observing the vocal tract directly,
rather than through inference, can be
very helpful in automatic speech
recognition.

®* The shape and aperture of the mouth
gives some clues as to the phoneme
being uttered.
* Depending on the level of
Invasiveness, we can even measure
the glottis and tongue directly.

Sy
& o
et
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Example — Lip aperture and nasals

Frequency (Hz)

Acoustic
spectrograms

Lip apertures
over time

UNIVERSITY OF

% TORONTO
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Coupled HMM

Where Q; is the HMM state, m is the index into a GMM, and o; is the observation at time i.

Nefian AV, Liang L, Pi X, et al. A coupled HMM for audio-visual speech recognition. In: Intertional

Conference on Acoustics, Speech and Signal Processing ICASSP’02. 2002. 2013-6. = UNIVERSITY OF
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NEURAL SPEECH RECOGNITION
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Remember Viterbi

CSC401/2511 — Spring 2019

-

" The best path to state s; at time t, 6;(t),
depends on the best path to each
possible previous state, 6;(t — 1), and

their transitions to j, a;;

D,
6](t) = ml_aX [6l(t = 1)ai]- b](O’t)
Y;(t) = argmax [6i(t — l)a,-j]
l
Do these probabilities need to
be GMMs?
o1 = frock o, = tops
Observations, ¢
62 % TORONTO




Replacing GMMs with DNNs

* Obtain b;(x) = p(x|q;) with a neural network.
* We can’t learn that continuous distribution directly, but we can use
Bayes’ rule:

p(qj|x) - p(x)

/i

=

IIIIIIIIII
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Replacing GMMs with DNNs

* The probability of a word sequence W comes loosely from
P(X|W)

~ max HP(thqt 1) P(x¢|qe) = max HP(CH qt— 1)/ gi;lst)

-e-@

HMM

UNIVERSITY OF
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What are these DNNs learning?

* t-SNE visualizations in 2D. ¢€£ ..
. .:::..‘ '.. "" [’ o
* Deeper layers encode information Reies "“f'-"’f';"""”ﬁl'._é.x

about the speaker; more so given toA
raw spectra than MFCCs (why?)

'3
P
A
—
-
- nh
‘ -
g.:"
“‘:j’-‘ of
T
o 2
.

3 Dye .'.'.,;-ram oy :{“ (O
*""‘dﬂ Mapar® il

R

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding
how deep belief networks perform acoustic modelling. In ICASSP (pp. 6-9).

UNIVERSITY OF
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What are these DNNs learning?

* t-SNE visualizations
of hidden layer.

* Lower layers detect
manner of
articulation

;ﬁwxﬂm

Figure 1: Multilingual BN features of five vowels from
French (+), German ([J) and Spanish (57): /a/ (black), /i/ (blue),
/el (green), /o/ (red), and /u/ (yellow)

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck
features for ASR. Interspeech, 825—829.
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Hybrid HMM and DNN

HMM states
/

R
AN
aL!

q} "
v 7
ql '."" 4 o
n time
4 ,:,‘.;'."' ...... Py x,)
1{2[3lalslel .. k| ... K|
ANN

X, + acoustic context

Bourlard H, Morgan. (1998) Hybrid HMM/ANN systems for speech recognition: Overview and new
research directions. Adapt Process Seq Data Struct 1387:389-417. doi:lO.lOO7/BFbO(§%§OOG
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Hybrid HMM and DNN

train MLP
with TIMT

| MPweights | recogrize | F——
| developmental set Score
viterbi
alignment

Results: Often, it
e rining depends on the

train MLP data and task.

Sometimes, the
hybrid approach is
best. Sometimes,
HMM-GMMs are
still best, and
sometimes...

Done
Fig.6. Embedded Viterbi learning with MLP.

Bourlard H, Morgan. (1998) Hybrid HMM/ANN systems for speech recognition: Overview and new
research directions. Adapt Process Seq Data Struct 1387:389-417. doi:10.1007/BFb04006
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End-to-end neural networks

* End-to-end neural network ASR often depends on two steps:
1. A generalization of RNNs (e.g., GRUs) to be bi-directional.

This allows us to use both Forward and Backward information, as in HMMs.

Outputs s Yt Yt Yeer - -
ht
Backward Layer -+
her( P ~ ) m G 0
X) )
Tt Zt; . $Bt Forward Layer O e Q
o] [o] [tanh]
J
|
) Inputs e T &Iy LTS B

Zl,'tl

Figure 2. Bidirectional Recurrent Neural Network.

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JIMLR
Workshop Conf Proc, 32:1764-1772.
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End-to-end neural networks

* Neural networks are typically trained at the frame-level.
* This requires a separate training target for every frame, which in turn requires the
alignment between the audio and transcription sequences to be known.
* However, the alignment is only reliable once the classifier is trained.

* .., the second step for end-to-end neural network ASR is:

2. An objective function that allows sequence transcription without
requiring prior alignment between the input and target sequences.

E.g., Connectionist Temporal Classification:
CTC(x) = —logP(y*|x) 4mmm minimize

for desired word-level transcription y~.
H 1S . F R END 'S o

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JIMLR

Workshop Conf Proc, 32:1764-1772. -
:-\ UNIVERSITY OF
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End-to-end spectra-to-characters

® Input: spectrograms
® Qutput: characters (incl. space
and null characters)

°* No phonemes or vocabulary
means no OOV words.

e

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A.
Coates, A. Ng "Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412. 5 67v2,2014.

E‘.'

<

UNIVERSITY OF

CSC401/2511 — Spring 2019 71 TORONTO



End-to-end acoustic/word hybrids

( Softmax ) Cl'riplet Ranking Loss L ) * Get word boundaries from
3
—— ———— "~ some external tool.
Embedding e| | |Embedding w# |Embedding w- ®* Train word/characters and
Deep Neural Deep Neural i i
. s e acou§t|cs simultaneously.
Network ¥ a ®* Obtain upto 0.11%
letter n-grams || letter n-grams improvement in error rates

\ W" Wo’rd Wrong\Nord

Table 2: Word Error Rates for the three compared models, with
two different values of the beam search parameter.
WER
Model beam=11 | beam=15
Baseline 10.16 9.70
Word embedding model 11.2 11.1
Combination 10.07 9.59

Bengio, S., & Heigold, G. (2014). Word Embeddings for Speech Recognition, Interspeech

(% | UNIVERSITY OF
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End-to-end neural networks

DNN/HMM
hybrid

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.
SYSTEM LM 14 HR 81 HR
RNN-CTC NONE 74.2/30.9 | 30.1/9.2
RNN-CTC DICTIONARY | 69.2/30.0 | 24.0/8.0
RNN-CTC MONOGRAM | 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 | 27.3/8.4
RNN-WER DICTIONARY | 69.7/31.0 | 21.9/7.3
RNN-WER MONOGRAM | 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE - -
BASELINE DICTIONARY | 56.1 51.1
BASELINE MONOGRAM | 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION | TRIGRAM - 6.7

Here, lower scores
are better, because
they are error rates.

But how to compute
those error rates?

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JIMLR

Workshop Conf Proc, 32:1764-1772.
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EVALUATING SPEECH RECOGNITION

llllllllllll

TORONTO




Evaluating ASR accuracy

°* How can you tell how good an ASR system at recognizing speech?
°* E.g., if somebody said
Reference: how to recognize speech
but an ASR system heard
Hypothesis: how to wreck a nice beach
how do we quantify the error?

* One measure is word accuracy: #CorrectWords/#ReferenceWords
° E.g., 2/4, above
® This runs into problems similar to those we saw with SMT.
* E.g., the hypothesis ‘how to recognize speech boing boing
boing boing boing’ has 100% accuracy by this measure.
°* Normalizing by #HypothesisWords also has problems...

UNIVERSITY OF
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Word-error rates (WER)

* ASR enthusiasts are often concerned with word-error rate
(WER), which counts different kinds of errors that can be
made by ASR at the word-level.

* Substitution error: One word being mistook for another
e.g., ‘shift’ given ‘ship’

* Deletion error: An input word that is ‘skipped’
e.g. ‘| Torgo’ given ‘I am Torgo’

* Insertion error: A ‘hallucinated’” word that was not in
the input.

e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’

&3
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Evaluating ASR accuracy

* But how to decide which errors are of each type?

° Eg., Reference: how to recognize speech
Hypothesis: how to wreck a nice beach,

* |t’s not so simple: ‘speech’ seems to be mistaken for ‘beach’, except
the /s/ phoneme is incorporated into the preceding hypothesis
word, ‘nice’ (/n ay s/).

* Here, ‘recognize’ seems to be mistaken for ‘wreck a nice’
* Are each of ‘wreck a nice’ substitutions of recognize’?
* |s ‘wreck’ a substitution for ‘recognize’?
* If so, the words ‘a” and ‘nice’ must be insertions.
* |s ‘nice’ a substitution for ‘recognize’?
* If so, the words ‘wreck’ and ‘a’ must be insertions.

et
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Levenshtein distance

* |n practice, ASR people are often more concerned with overall
WER, and don’t care about how those errors are partitioned.
* E.g., 3 substitution errors are ‘equivalent’ to 1 substitution plus
2 insertions.

* The Levenshtein distance is a straightforward algorithm based on
dynamic programming that allows us to compute overall WER.

UNIVERSITY OF
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Levenshtein distance

Allocate matrix R[n + 1,m + 1] // where nis the number of reference words
// and m is the number of hypothesis words
Initialize R[0,0] := 0, and R[i, j] :== oo forallotheri =0orj =0
fori := 1..n // #ReferenceWords
for j := 1..m // #Hypothesis words
R[i,j] = min( R[i-1,j]+1, // deletion
R[i—1,j—1], // if the it" reference word and

// the jt" hypothesis word match
R[i —1,j — 1] + 1, //if they differ, i.e., substitution
R[i,j—1]+1) //insertion

Return 100X R[n,m]/n

UNIVERSITY OF
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Levenshtein distance — initialization

- hypothesis
v o Jwrea] = Lo Do

how 0

recognize
speech

The value at cell (i, j) is the minimum number of errors
necessary to align i with j.

Reference

UNIVERSITY OF

¥ TORONTO
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Levenshtein distance

- hypothesis
o [ o e s e oo
0 00 [o'e) (o'} 00 [o'e) 0

Y

o0 0

Reference

recognize
speech

°* R[1,1] = min(co + 1,(0),00 + 1) = 0 (match)
* We put a little arrow in place to indicate the choice.
* ‘Arrows’ are normally stored in a backtrace matrix. .,

UNIVERSITY OF
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Levenshtein distance

- hypothesis
o o [wea] s [ [
9
how 0o 0 B 1 = 2 = 3 B 4 B 5

* We continue along for the first reference word...
* These are all insertion errors

Q
(@)
C
Q
S
Q
Y4—
Q
o
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Levenshtein distance

- hypothesis
v [ o [wrea] o e [oear
0 (0'e) 0'e] (0'e] 0'e] 0'e] (0'e]

Y

0 2 3

Reference

recognize
speech

* And onto the second reference word

e
(%] UNIVERSITY OF

CSC401/2511 — Spring 2019 83 ¥ TORONTO




Levenshtein distance

- hypothesis
o [ o e s e oo
0 00 [o'e) (o'} 00

Q
(@)
C
Q
S
Q
Y4—
Q
o

recognize
speech

* Since recognize #+ wreck, we have a substitution error.
* At some points, you have >1 possible path as indicated.

* We can prioritize types of errors arbitrarily.
CSC401/2511 — Spring 2019 84
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Levenshtein distance

- hypothesis
o o [wea] s [ [
9
how 0‘: =
0
s s
recognize
i iﬁl
St

* And we finish the grid.

* There are R[n,m| = 4 word errors and a WER of 4/4 = 100%.
* WER can be greater than 100% (relative to the reference).

CSC401/2511 — Spring 2019 85 %
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Levenshtein distance

- hypothesis
o [ o e s e oo
0 0 [o'e) (o'} 00 [o'e)
VI
0 = 1 =

00)

“" 0o =

L
recognize ‘
A

* |f we want, we can backtrack using our arrows to find the
proportion of substitution, deletion, and insertion errors.

Reference

UNIVERSITY OF

¥ TORONTO
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Levenshtein distance

- hypothesis
o [ o e s e oo
0 0 [o'e) (o'} 00 [o'e) (o'}
™

0 = 1 =

“o#

Sy
recognize ‘
A

* Here, we estimate 2 substitution errors and 2 insertion errors.
* Arrows can be encoded within a special backtrace matrix.

Q
(@)
C
Q
S
Q
Y4—
Q
o
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NEURAL SPEECH RECOGNITION
(SLIGHT RETURN)
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Speaker adaptation

® Given a neural ASR system trained with many speakers, we
want to adapt to the voice of a new individual.
* We know how to do this with HMMs

* (e.g., with interpolation, or (aside) with MAP or MLLR training).

°* DNNs need /lots of data to be useful, though...

* Conservative: re-train whole DNN, with some constraints
* Transformative: only retrain one layer (or a few)
* Speaker-aware: do not really train the parameters

With notes from Hung-yi Lee

UNIVERSITY OF
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Conservative speaker adaptation

2. Stopping
criterion

* Stopping criteria
can exist on output,
parameters, or
meta-aspects of
training

All of Amazon or Facebook’s secret
recordings of millions of people in
the bathroom

Tiny database of you
in the bathroom

UNIVERSITY OF
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Transformative speaker adaptation

° |nsert a new layer.

- I * Keeping all other
parameters fixed, train the
new ones to normalize
speaker information.

&

hy

Tiny database of you
| — ‘ in the bathroom '
®* There are many
alternatives...
adapted '

UNIVERSITY OF
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Speaker-aware training

Speaker
vector

Data of
Speaker 1

—
—~

@
@
@
O

Data of
Speaker 3

All of A.mazon or. Eacebook’s secrgt Data of O °
recordings of millions of people in
the bathroom Speaker 2

Fixed length low
dimension vectors,
obtained in a
variety of ways.

Note we can
segment things by
recording device,
noise, etc.

This can be used to
remove the
channel effect.

Senior, A., & Lopez-Moreno, I. (2014). Improving DNN speaker independence with I-vector inputs. ICASSP,

225-229. https://doi.org/10.1109/ICASSP.2014.6853591

CSC401/2511 — Spring 2019 92

i

o ] UNIVERSITY OF

% TORONTO


https://doi.org/10.1109/ICASSP.2014.6853591

Speaker-aware training

Training data:
Speaker 1

—mamm s train

Speaker 2

Acoustic features augmented with speaker
vectors

Testing data: | || |||/ DD test
DDDDDDD

All speakers use the same DNN model
Different speakers augmented by different features

speaker;

UNIVERSITY OF
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Aside — the open-source Kaldi ASR

@KALDI

* Kaldi is the de-facto open-source ASR toolkit:

http://kaldi-asr.org

* |t has pretrained models, including the ASpIRE chain model trained
on Fisher English, augmented with impulse responses and noises to
create multi-condition training.

* My favourite incarnation uses |-Vectors to account for the speaker.

* |t often (anecdotally) performs better than Google’s SpeechAPI.

* Itis originally in C++, but a wrapper (PyTorch-Kaldi) exists in the
much easier Python.

0
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http://kaldi-asr.org/models.html
https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi

Aside — convolutional neural networks

feature extraction classification

® Spectrograms are kind of images, so lets use the kinds of
neural networks used in computer vision.

UNIVERSITY OF

TORONTO

=2
%

CSC401/2511 — Spring 2019 95




Next...

* We've seen how to:

* extract useful speech features with Mel-frequency
cepstral coefficients.

* cluster multi-modal speech data with Gaussian mixture
models.

® recognize speech with hidden Markov models and
neural networks.

* evaluate ASR performance with Levenshtein distance.

* Next, we’ll see how to synthesize artificial speech.
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APPENDIX: CLUSTERING

(EVERYTHING THAT FOLLOWS IS AN ASIDE. NOT ON THE EXAM.
(THINGS NOT ON THE EXAM MAY BE USEFUL OR AT LEAST INTERESTING))
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Clustering

® Quantization involves turning possibly multi-variate and
continuous representations into univariate discrete symbols.
®* Reduced storage and computation costs.
* Potentially tremendous loss of information.

® Observation X is in Cluster One,
so we replace it with 1.

® Clustering is unsupervised
learning.
®* Number and form of
clusters often unknown.

&3
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Aspects of clustering

* What defines a particular cluster?
* |Is there some prototype representing each cluster?

* What defines membership in a cluster?
* Usually, some distance metric d(x, y) (e.g., Euclidean distance).

°* How well do clusters represent unseen data?
®* How is a new point assigned to a cluster?
* How do we modify that cluster as a result?

UNIVERSITY OF
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K-means clustering

* Used to group data into K clusters, {C;, ..., Cx}.

* Each cluster is represented by the mean of its assigned data.
* (sometimes it’s called the cluster’s centroid).

* |terative algorithm converges to local optimum:
1. Select K initial cluster means {u4, ..., ux} from among data points.
2. Until (stopping criterion),
a) Assign each data sample to closest cluster
x€C; if dlxu) < d(x,/,tj), Vi#]j
b) Update K means from assigned samples
,Lli=E(X)VXECi, 1<i<K

UNIVERSITY OF
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K-means example (K = 3)

* Initialize with a random selection of 3 data samples.
* Euclidean distance metric d(x, u)

:' (] ‘ 8
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K-means stopping condition

* The total distortion, D, is the sum of squared error,

K
D=> > lx—wl?

=1 x€C;

* D decreases between nt" and (n + 1)" iteration.

* We can stop training when D falls below some threshold T'.
D(n+1)

D) <7T
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Acoustic clustering example

® 12 clusters of spectra, after training.

- . A
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Number of clusters

®* The number of true clusters is unknown.
* We can iterate through various values of K.
* As K approaches the size of the data, D approaches O...

® '. - 0 ‘ .0
..‘ﬁ Y 0 .:80
e o a1 Bi%y,
O
I O B
c. N
; K=4
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Hierarchical clustering

* Hierarchical clustering clusters data into hierarchical ‘class’
structures.

* Two types: top-down (divisive) or bottom-up (agglomerative).
* Often based on greedy formulations.

* Hierarchical structure can be used for hypothesizing classes.

4:&
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Divisive clustering

* Creates hierarchy by successively splitting clusters into

smaller groups.

[ Non-uniform ]
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Agglomerative clustering

* Agglomerative clustering starts with N ‘seed’ clusters and
iteratively combines these into a hierarchy.

®* On each iteration, the two most similar clusters are merged
together to form a new meta-cluster.

* After N — 1 iterations, the hierarchy is complete.
* Often, when the similarity scores of new meta-clusters are

tracked, the resulting graph (i.e., dendogram) can yield
insight into the natural grouping of data.
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Dendogram example

A
Q
O
-
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e
D
3
2
® ® O
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Speaker clustering

* 23 female and 53 male speakers from TIMIT.
* Data are vectors of average F1 and F2 for 9 vowels.
* Distance d((;, C;) is average of distances between members.
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Acoustic-phonetic hierarchy
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(this is basically an upside-down dendogram)
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Word clustering




