


Recall our input to ASR

Frequency (Hz)

Am
pl

itu
de

SpectrumFrame

Is the spectrum the best input for our
ASR systems?
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1. The Mel-scale filter bank
• To mimic the response of the human ear (and because it 

empirically improves speech recognition), we often discretize 
the spectrum using ! triangular filters.
• Uniform spacing before 1 kHz, logarithmic after 1 kHz

CSC401/2511 – Spring 2019 3



2. Source and filter
• The acoustics of speech are 

produced by a glottal pulse 
waveform (the source) passing 
through a vocal tract whose shape 
modifies that wave (the filter).

• The shape of the vocal tract is more 
important to phoneme recognition.
• We to separate the source from 

the filter in the acoustics.

CSC401/2511 – Spring 2019 4



2. Source and filter (aside)
• Since speech is assumed to be the output of a linear time 

invariant system, it can be described as a convolution.
• Convolution, ! ∗ #, is beyond the scope of this course, but can 

be conceived as the modification of one signal by another.

• For speech signal ![%], glottal signal ' % , and vocal tract 
transfer ([%] with spectra )[*], +[*], and ,[*], respectively :

! % = ' % ∗ ( %
) * = + * , *

log)[*] = log + * + log ,[*]

We’ve separated the 
source and filter 
into two terms!
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2. The cepstrum
• We separate the source and the filter by pretending the log 

of the spectrum is actually a time domain signal.
• the log spectrum log $[&] is a sum of the log spectra of the

source and filter, i.e., a superposition; 
finding its spectrum will allow us to isolate these components.

• Cepstrum: n. the spectrum of the log of the spectrum.
• Fun fact: ‘ceps’ is the reverse of ‘spec’.

Instead of ‘filters’ we have ‘lifters’…

log log log
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2. The cepstrum

Spectrum Log
spectrum Cepstrum

• The domain of the cepstrum is quefrency (a play on the 
word ‘frequency’). 
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2. The cepstrum

Pictures from 
John Coleman  
(2005)

This is due to the
vocal tract shape

This is due to the
glottis

Spectrum

Cepstrum
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Mel-frequency cepstral coefficients
• Mel-frequency cepstral coefficients (MFCCs) are the most 

popular representation of speech used in ASR.
• They are the spectra of the logarithms of the Mel-scaled 

filtered spectra of the windows of the waveform.

window DFT Mel filter-
bank log DFTSpeech

signal MFCC
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Advantages of MFCCs
• The cepstrum produces highly uncorrelated features (every 

dimension is useful).
• This includes a separation of the source and filter.

• Historically, the cepstrum has been easier to learn than the 
spectrum for phoneme recognition.

• There is an efficient method to compute cepstra called the 
discrete cosine transform.
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MFCCs in practice
• An observation vector of MFCCs often consists of

• The first 13 cepstral coefficients (i.e., the first 13 
dimensions produced by this method), 

• An additional overall energy measure,
• The velocities (!) of each of those 14 dimensions,

• i.e., the rate of change of each coefficient at a given time
• The accelerations (!!) of each of original 14 dimensions.

• The result is that at a timeframe " we have an observation 
MFCC vector of (13+1)*3=42 dimensions.
• This vector is what is used by our ASR systems…
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GAUSSIAN CLUSTERS



CSC401/2511 – Spring 2019 13

Classifying speech sounds

• Speech sounds tend to cluster. This graph shows vowels, 
each in their own colour, according to the 1st two formants.

Note: The vowel trapezoid’s
dimensions were physical
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Classifying speakers
• Similarly, all of the speech produced by one speaker will cluster 

differently in MFCC space than speech from another speaker.
• We can ∴ decide if a given observation comes from one 

speaker or another.

Time, "
0 1 … T

M
FC

C

1 …
2 …
3 …
… … … … …
42 …

Observation matrix

P(  |      ) >

P(  |      )
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Fitting continuous distributions
• Since we are operating with continuous variables, we need to 

fit continuous probability functions to a 
discrete number of observations.

• If we assume the 1-dimensional 
data  in this histogram is 
Normally distributed, we can fit a 
continuous Gaussian function 
simply in terms of the mean !
and variance "#.
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Comparing continuous distributions
• If we observe a particular value in this univariate space, e.g., 
! = 15, we can say which of several distributions is most likely 
to have produced it.
• Here, distribution B is more likely to have produced ! = 15 because 
% !; ' > %(!; *).

15 15

A B
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Good fits
• Given some fixed training data, we want to be able to fit 

continuous probability functions that best match our 
observations.
• The data in this histogram are more likely to have been 

produced from the parameterization on the left.

A B
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Univariate (1D) Gaussians
• Also known as Normal distributions, !(#, %)

• ' (; #, % =
+,- . /01 2

232
456

• The parameters we can modify are 7 = 8, 9:
• # = ; ( = ∫( = ' ( >( (mean)
• %4 = ; ( − # 4 = ∫ ( − # 4' ( >( (variance)

But we don’t have samples for all (…
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Maximum likelihood estimation
• Given data ! = #$, #&, … , #( , MLE produces an estimate of 

the parameters )* by maximizing the likelihood, +(!, *):
)* = argmax

3
+(!, *)

where 4 5, 6 = 7 5; 6 = ∏:;$
( <(#:; *).

• Since +(!, *) provides a surface over all 6, in order to find the 
highest likelihood, we look at the derivative

=
=* + !, * = 0

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians
• Estimate !:

" #, ! = & #; ! =(
)*+

,
&(.); /) =(

)*+

, exp − .) − ! 5
275

287

log " #, ! = −∑) .) − !
5

275 − = log 287
>
>! log " #, ! = ∑) .) − !

75 = 0

! = ∑) .)
=

• Similarly, 75 = ∑@ A@BC D

,



CSC401/2511 – Spring 2019 21

Multivariate Gaussians
• When data is d-dimensional, the 

input variable is
"⃗ = " 1 , " 2 , … , "[)]

the mean is
+⃗ = , "⃗ = + 1 , + 2 , … , +[)]

the covariance matrix is
Σ ., / = , " . " / − + . + / )

and

2 "⃗ =
exp − "⃗ − +⃗ ⊺Σ78 "⃗ − +⃗

2
29

:
; Σ

8
;

<⊺ is the transpose of <
<78 is the inverse of <
< is the determinant of <
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Intuitions of covariance

• As values in Σ become larger, the Gaussian spreads out.
• ( I is the identity matrix – 0 except for 1s on the diagonal)

# = 0 0
Σ = I

# = 0 0
Σ = 0.6I

# = 0 0
Σ = 2.0I
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Intuitions of covariance

• Different values on the diagonal result in different variances 
in their respective dimensions

Σ = 1 0
0 1 Σ = 2 0

0 0.6
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Non-Gaussian observations
• Speech data is generally not unimodal – it’s more complex.
• The observations below are bimodal, so fitting one Gaussian 

would not be representative.
• E.g., if you usually keep your phone in your desk or on your table, it 

makes no sense looking for them floating in the air between them.
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Mixtures of Gaussians
• Gaussian mixture models (GMMs) are a weighted linear 

combination of ! component Gaussians, Γ#, Γ%, … , Γ' :

( *⃗ =,
-.#

'
( Γ- ((*⃗|Γ-)
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Observation likelihoods
• Assuming MFCC dimensions are independent of one another, 

the covariance matrix is diagonal – i.e., 0 off the diagonal.
• Therefore, the probability of an observation vector given a 

Gaussian from slide 14 becomes

! #⃗|Γ& =
exp −12∑/01

2 # 3 − 4& 3 5

Σ&[3]
29

2
5 ∏/01

2 Σ& [3]
1
5

• We imagine a GMM first chooses a Gaussian, then emits an 
observation from that Gaussian.
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Mixtures of Gaussians
• If we knew which Gaussian generated each sample, we could 

learn !(Γ$) with MLE, but that data is hidden, so we must 
use…

! '⃗ =)
$*+

,
! Γ$ !('⃗|Γ$)
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Expectation-Maximization for GMMs
• If !" = $(Γ') and   )" *+ = $(,-|Γ'),

$/ ,- = 0
'12

3
4'5'(,-)

where 6 = !", 8", 9" for : = 1. .=

• To estimate >, we solve ?/ log C D, > = 0 where

log C D, > =0
-12

F
log $/ ,- =0

-12

F
log 0

'12

3
4'5' ,-

‘weight’

‘component observation
likelihood’

‘overall probability’
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Expectation-Maximization for GMMs
• We differentiate the log likelihood function w.r.t . !"[$] and 

set this to 0 to find the value of !" $ at which the likelihood 
stops growing.

& log *(,, .)
&!"[$]

=1
234

5 1
78 92

&
&!" $ :";"(92) = 0
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Expectation-Maximization for GMMs
• The expectation step gives us:

!" #$ = &(()|Γ,)

. /" #$; 1 = 2,3, ()
&4 ()

• The maximization step gives us:

56, = ∑) & Γ, (); 8 ()
∑) & Γ, (); 8

5Σ, = ∑) & Γ, (); 8 ():
∑) & Γ, (); 8

− 56,
:

<2, = 1
>?)@A

B
& Γ, (); 8

Proportion of overall 
probability contributed by C

Recall from slide
20, MLE wants:

6 = ∑D (D
E

F: = ∑D (D − 6 :

E
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Some notes…
• In the previous slide, the square of a vector, "⃗#, is 

elementwise (i.e., numpy.multiply in Python)
• E.g., 2, 3, 4 # = [4, 9, 16]

• Since Σ is diagonal, it can be represented as a vector.

• Can /01# =
∑3 4 Γ1 67; 9 :3;

∑3 4 Γ1 67; 9 − /=1
#

become negative?

• No. 
• This is left as an exercise, but only if you’re interested.
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Speaker recognition
• Speaker recognition: n. the identification of a speaker 

among several speakers given only 
some acoustics.

• Each speaker will produce speech according to different
probability distributions.
• We train a Gaussian mixture model for each speaker, 

given annotated data (mapping utterances to speakers).
• We choose the speaker whose model gives the highest 

probability for an observation.



CSC401/2511 – Spring 2019 33

Recipe for GMM EM
• For each speaker, we learn a GMM given all ! frames of their 

training data.

1. Initialize: Guess " = $%, '%, Σ% for ) = 1. .,
either uniformly, randomly, or by k-means 
clustering.

2. E-step: Compute -%(/0) and 2(Γ%|/0; ").

3. M-step: Update parameters for $%, '%, Σ% as 
described on slide 30.

• (see the Reynolds & Rose (1995) paper on the course webpage for details)
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Consider what we want speech to do

Put this 
there.

My hands are in 
the air.

Buy ticket...
AC490...

yes

Telephony

Dictation

Multimodal interaction

…
Can we just use GMMs?
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Speech databases
• Large-vocabulary continuous ASR is meant to encode full 

conversational speech, with a vocabulary of  >64K words.
• This requires lots of data to train our models.

• The Switchboard corpus contains 2430 conversations spread 
out over about 240 hours of data (~14 GB).

• The TIMIT database contains 63,000 sentences from 630 
speakers.
• Relatively small (~750 MB), but very popular.

• Speech data from conferences (e.g., TED) or from broadcast 
news tends to be between 3 GB and 30 GB.
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Aspects of ASR systems in the world
• Speaking mode: Isolated word (e.g., “yes”) vs. continuous

(e.g., “Siri, ask Cortana for the weather”)
• Speaking style: Read speech vs. spontaneous speech;

the latter contains many dysfluencies
(e.g., stuttering, uh, like, …)

• Enrolment: Speaker-dependent (all training data from 

one speaker) vs. speaker-independent 
(training data from many speakers).

• Vocabulary: Small (<20 words) or large (>50,000 words).

• Transducer: Cell phone? Noise-cancelling microphone? 

Teleconference microphone?
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Speech is dynamic

• Speech changes over time.
• GMMs are good for high-level clustering, but they encode 

no notion of order, sequence, or time.

• Speech is an expression of language.
• We want to incorporate knowledge of how phonemes and 

words are ordered with language models.



CSC401/2511 – Spring 2019 41

Speech is sequences of phonemes

“open the pod bay doors”

open(podBay.doors);

We want to convert a series of MFCC 
vectors into a sequence of phonemes.

/ow p ah n dh ah p aa d b ey d ao r z/

(*)

(*) not really
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Phoneme dictionaries
• There are many phonemic dictionaries that map words to 

pronunciations (i.e., lists of phoneme sequences).

• The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is 
popular.
• 127K words transcribed with the ARPAbet.
• Includes some rudimentary prosody markers.

…
EVOLUTION EH2 V AH0 L UW1 SH AH0 N
EVOLUTION(2) IY2 V AH0 L UW1 SH AH0 N 
EVOLUTION(3)  EH2 V OW0 L UW1 SH AH0 N 
EVOLUTION(4)  IY2 V OW0 L UW1 SH AH0 N 
EVOLUTIONARY  EH2 V AH0 L UW1 SH AH0 N EH2 R IY0

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Putting it together?
“open the pod bay doors”

Language model Acoustic model
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The noisy channel model for ASR

Source
!(#)

Language model
Channel
!(%|#)

Acoustic model
W′

Decoder

(′

#∗ Observed %

*∗ = argmax
1

2((|*)2(*)

Word 
sequence *

Acoustic 
sequence (

How to encode 2((|*)?
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Reminder – discrete HMMs
• Previously we saw discrete HMMs: at 

each state we observed a discrete symbol 
from a finite set of discrete symbols.

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01
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Continuous HMMs (CHMM)
• A continuous HMM has observations that are distributed 

over continuous variables.

• Observation probabilities, !", are also continuous.

• E.g., here !#(&⃗) tells us the probability of seeing the 

(multivariate) continuous observation &⃗ while in state 0.

b0 b1 b2
4.32957

2.48562

1.08139

…

0.45628

&⃗ =
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Defining CHMMs
• Continuous HMMs are very similar to discrete HMMs.

• ! = {$%, … , $(} : set of states (e.g., subphones)
• * = ℝ,- : continuous observation space

• Π = {/%, … , /(} : initial state probabilities
• 0 = 123 , 4, 5 ∈ ! : state transition probabilities
• 7 = 82 :⃗ , 4 ∈ !, :⃗ ∈ * : state output probabilities

(i.e., Gaussian mixtures) 
yielding

• ; = {<=, … , <>}, <2 ∈ ! : state sequence
• ? = ℴ=,… , ℴ> , ℴ2 ∈ * : observation sequence

A
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Word-level HMMs?
• Imagine that we want to learn an HMM for each word in our 

lexicon (e.g., 60K words → 60K HMMs).
• No, thank you! Zipf’s law tells us that many words occur 
very infrequently.
• 1 (or a few) training examples of a word is not enough to 

train a model as highly parameterized as a CHMM.

b0 b1 b2
• In a word-level 

HMM, each state 
might be a 
phoneme.
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Phoneme HMMs
• Phonemes change over time – we model these dynamics by 

building one HMM for each phoneme.
• Tristate phoneme models are popular.

• The centre state is often the ‘steady’ part.

tristate phoneme model (e.g., /oi/)

b0 b1 b2
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Phoneme HMMs
• We train each phoneme HMM using 
all sequences of that phoneme.
• Even from different words.

/iy/

Phoneme HMMs

…

...
64 85 ae
85 96 sh
96 102 epi
102 106 m
...

Time, !
… 85 … 96 …

M
FC

C

1 … … …
2 … … …
3 … … …
… … … … … …
42 … … …

/ih/

/eh/

/s/

/sh/
annotation observations
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Combining models
• We can learn an N-gram language model from word-level 

transcriptions of speech data.
• These models are discrete and are trained using MLE.

• Our phoneme HMMs together constitute our acoustic model.
• Each phoneme HMM tells us how a phoneme ‘sounds’.

• We can combine these models by concatenating phoneme 
HMMs together according to a known lexicon.
• We use a word-to-phoneme dictionary.
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Combining models
• If we know how phonemes combine to make words, we can 

simply concatenate together our phoneme models by 
inserting and adjusting transition weights.
• e.g., Zipf is pronounced /z ih f/, so…

(It’s a bit more complicated than this –
normally phoneme HMMs have special ‘handle’ states

at either end that connect to other HMMs)
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Co-articulation and triphones
• Co-articulation: n. When a phoneme is influenced by 

adjacent phonemes.

• A triphone HMM captures co-articulation.
• Triphone model /a-b+c/ is phoneme b when preceded by a and 

followed by c.
Two (of many) triphone HMMs for /t/

/iy-t+eh//s-t+iy/
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Combining triphone HMMs
• Triphone models can only connect to other triphone models 

that ‘match’.

/z+ih/ /z-ih+f/ /ih-f/
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Concatenating phoneme models

From Jurafsky &
Martin text

We can easily 
incorporate unigram 
probabilities through 

transitions, too.
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Bigram models

From Jurafsky &
Martin text
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Using CHMMs
• As before, these HMMs are generative models that encode 

statistical knowledge of how output is generated.

• We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as we did before with discrete HMMs.
• Here, the observation parameters, !" $⃗ , are adjusted 

using the GMM training ‘recipe’ from earlier.

• We find the best state sequences using Viterbi, as before.
• Here, the best state sequence gives us a sequence of 

phonemes and words.
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Audio-visual speech methods

• Observing the vocal tract directly, 
rather than through inference, can be 
very helpful in automatic speech 
recognition.

• The shape and aperture of the mouth 
gives some clues as to the phoneme 
being uttered.
• Depending on the level of 

invasiveness, we can even measure 
the glottis and tongue directly.
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Example – Lip aperture and nasals

/m/ /n/ /ng/

Ac
ou

st
ic

sp
ec

tro
gr

am
s

Lip
 a

pe
rt

ur
es

ov
er

 ti
m

e
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Coupled HMM

!"

#

$"

Where !" is the HMM state, # is the index into a GMM, and $" is the observation at time %.

Nefian A V, Liang L, Pi X, et al. A coupled HMM for audio-visual speech recognition. In: International 
Conference on Acoustics, Speech and Signal Processing ICASSP’02. 2002. 2013–6.
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Remember Viterbi

!. !#

!

Observations, ℴ%

!. !&

!

'( ) = max
.

'. ) − 0 1.( 2((ℴ))

5( ) = argmax
.

'. ) − 0 1.(

The best path to state 89 at time :, ;9 : , 
depends on the best path to each 

possible previous state, ;< : − 1 , and 
their transitions to >, ?<9

ℴ@ = 8ℎBC ℴD = EFGHI ℴJ = :GC8

!

!
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Do these probabilities need to 
be GMMs?
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Replacing GMMs with DNNs
• Obtain !" # = %('|)*) with a neural network. 
• We can’t learn that continuous distribution directly, but we can use 

Bayes’ rule:

% ' )* = % )* ' ⋅ -(#)
-(.")

ℎ0

#0
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Replacing GMMs with DNNs
• The probability of a word sequence ! comes loosely from 
" #|!

≈ max)*⋯),
-
./0

1
" 2.|2.30 " 4.|2. ≈ max)*⋯),

-
./0

1
" 2.|2.30

"(2.|4.)
"(2.)

HMM

ℎ.

4.

DNN
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What are these DNNs learning?

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding

how deep belief networks perform acoustic modelling. In ICASSP (pp. 6–9).

• t-SNE visualizations in 2D.

• Deeper layers encode information

about the speaker; more so given

raw spectra than MFCCs (why?)

MFCC 1st layer

8th layer
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What are these DNNs learning?

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck 
features for ASR. Interspeech, 825–829.

• t-SNE visualizations 
of hidden layer.

• Lower layers detect 
manner of 
articulation
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Hybrid HMM and DNN

Bourlard H, Morgan. (1998) Hybrid HMM/ANN systems for speech recognition: Overview and new 
research directions. Adapt Process Seq Data Struct 1387:389–417. doi:10.1007/BFb0054006
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Hybrid HMM and DNN

Bourlard H, Morgan. (1998) Hybrid HMM/ANN systems for speech recognition: Overview and new 
research directions. Adapt Process Seq Data Struct 1387:389–417. doi:10.1007/BFb0054006

Results: Often, it 
depends on the 
data and task.

Sometimes, the 
hybrid approach is 
best. Sometimes, 
HMM-GMMs are 
still best, and 
sometimes…
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End-to-end neural networks

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JMLR 
Workshop Conf Proc, 32:1764–1772. 

• End-to-end neural network ASR often depends on two steps:
1. A generalization of RNNs (e.g., GRUs) to be bi-directional.

This allows us to use both Forward and Backward information, as in HMMs.

http://jmlr.org/proceedings/papers/v32/graves14.pdf
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End-to-end neural networks

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JMLR 
Workshop Conf Proc, 32:1764–1772. 

• Neural networks are typically trained at the frame-level.
• This requires a separate training target for every frame, which in turn requires the 

alignment between the audio and transcription sequences to be known.
• However, the alignment is only reliable once the classifier is trained. 

• ∴, the second step for end-to-end neural network ASR is:
2. An objective function that allows sequence transcription without

requiring prior alignment between the input and target sequences.
E.g., Connectionist Temporal Classification:

"#" $ = − log* +∗ $
for desired word-level transcription +∗.

minimize

http://jmlr.org/proceedings/papers/v32/graves14.pdf


CSC401/2511 – Spring 2019 71

End-to-end spectra-to-characters

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. 
Coates, A. Ng ”Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412.5567v2, 2014.

• Input: spectrograms
• Output: characters (incl. space 

and null characters)

• No phonemes or vocabulary 
means no OOV words.
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End-to-end acoustic/word hybrids

Bengio, S., & Heigold, G. (2014). Word Embeddings for Speech Recognition, Interspeech

• Get word boundaries from
some external tool.

• Train word/characters and
acoustics simultaneously.

• Obtain up to 0.11% 
improvement in error rates
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End-to-end neural networks

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JMLR 
Workshop Conf Proc, 32:1764–1772. 

DNN/HMM
hybrid

Here, lower scores 
are better, because 
they are error rates.

But how to compute 
those error rates?

http://jmlr.org/proceedings/papers/v32/graves14.pdf


EVALUATING SPEECH RECOGNITION
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Evaluating ASR accuracy
• How can you tell how good an ASR system at recognizing speech?

• E.g., if somebody said
Reference: how to recognize speech 

but an ASR system heard
Hypothesis: how to wreck a nice beach

how do we quantify the error?

• One measure is word accuracy: #CorrectWords/#ReferenceWords
• E.g., 2/4, above
• This runs into problems similar to those we saw with SMT.

• E.g., the hypothesis ‘how to recognize speech boing boing
boing boing boing’ has 100% accuracy by this measure.

• Normalizing by #HypothesisWords also has problems…
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Word-error rates (WER)
• ASR enthusiasts are often concerned with word-error rate 

(WER), which counts different kinds of errors that can be 
made by ASR at the word-level.
• Substitution error: One word being mistook for another

e.g., ‘shift’ given ‘ship’
• Deletion error: An input word that is ‘skipped’

e.g. ‘I Torgo’ given ‘I am Torgo’
• Insertion error: A ‘hallucinated’ word that was not in 

the input.
e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’
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Evaluating ASR accuracy
• But how to decide which errors are of each type?
• E.g., Reference: how to recognize speech

Hypothesis: how to wreck a nice beach,

• It’s not so simple: ‘speech’ seems to be mistaken for ‘beach’, except 
the /s/ phoneme is incorporated into the preceding hypothesis 
word, ‘nice’ (/n ay s/).
• Here, ‘recognize’ seems to be mistaken for ‘wreck a nice’

• Are each of ‘wreck a nice’ substitutions of ‘recognize’?
• Is ‘wreck’ a substitution for ‘recognize’?

• If so, the words ‘a’ and ‘nice’ must be insertions.
• Is ‘nice’ a substitution for ‘recognize’?

• If so, the words ‘wreck’ and ‘a’ must be insertions.
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Levenshtein distance
• In practice, ASR people are often more concerned with overall

WER, and don’t care about how those errors are partitioned.
• E.g., 3 substitution errors are ‘equivalent’ to 1 substitution plus 

2 insertions.

• The Levenshtein distance is a straightforward algorithm based on 
dynamic programming that allows us to compute overall WER.



CSC401/2511 – Spring 2019 79

Levenshtein distance

Allocate matrix ![# + 1,' + 1] // where # is the number of reference words 
// and ' is the number of hypothesis words

Initialize ! 0,0 ≔ 0, and ! +, , ≔ ∞ for all other + = 0 or , = 0
for + ≔ 1. . # // #ReferenceWords

for , ≔ 1. .' // #Hypothesis words
![+, ,] ≔ min( ! + − 1, , + 1, // deletion

! + − 1, , − 1 , // if the +56 reference word  and 
// the ,56 hypothesis word match

! + − 1, , − 1 + 1, // if they differ, i.e., substitution
! +, , − 1 + 1 ) // insertion

Return 100× ! #,' /#
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Levenshtein distance – initialization

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞
to ∞

recognize ∞
speech ∞

The value at cell (", $) is the minimum number of errors
necessary to align " with $.
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0

to ∞
recognize ∞

speech ∞

• " 1,1 = min ∞ + 1, (0),∞ + 1 = 0 (match)
• We put a little arrow in place to indicate the choice.

• ‘Arrows’ are normally stored in a backtrace matrix.
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞
recognize ∞

speech ∞

• We continue along for the first reference word…
• These are all insertion errors
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞ 1 0 1 2 3 4

recognize ∞
speech ∞

• And onto the second reference word
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞ 1 0 1 2 3 4

recognize ∞ 2 1 1 2 3 4

speech ∞

• Since recognize ≠ wreck, we have a substitution error.
• At some points, you have >1 possible path as indicated.

• We can prioritize types of errors arbitrarily.
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞ 1 0 1 2 3 4

recognize ∞ 2 1 1 2 3 4

speech ∞ 3 2 2 2 3 4

• And we finish the grid.
• There are " #,% = 4 word errors and a WER of ⁄4 4 = 100%.

• WER can be greater than 100% (relative to the reference).
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞ 1 0 1 2 3 4

recognize ∞ 2 1 1 2 3 4

speech ∞ 3 2 2 2 3 4

• If we want, we can backtrack using our arrows to find the 
proportion of substitution, deletion, and insertion errors.
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Levenshtein distance

hypothesis

- how to wreck a nice beach

Re
fe

re
nc

e

- 0 ∞ ∞ ∞ ∞ ∞ ∞
how ∞ 0 1 2 3 4 5

to ∞ 1 0 1 2 3 4

recognize ∞ 2 1 1 2 3 4

speech ∞ 3 2 2 2 3 4

• Here, we estimate 2 substitution errors and 2 insertion errors.
• Arrows can be encoded within a special backtrace matrix. 



NEURAL SPEECH RECOGNITION
(SLIGHT RETURN)
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Speaker adaptation

With notes from Hung-yi Lee

• Given a neural ASR system trained with many speakers, we 

want to adapt to the voice of a new individual.

• We know how to do this with HMMs 

• (e.g., with interpolation, or (aside) with MAP or MLLR training).

• DNNs need lots of data to be useful, though…

• Conservative: re-train whole DNN, with some constraints

• Transformative: only retrain one layer (or a few)

• Speaker-aware: do not really train the parameters
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Conservative speaker adaptation

ℎ"

#"

All of Amazon or Facebook’s secret 
recordings of millions of people in 

the bathroom 

ℎ"

#"

Tiny database of you 
in the bathroom

1. initialize

2. Stopping
criterion

• Stopping criteria 
can exist on output, 
parameters, or 
meta-aspects of 
training
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Transformative speaker adaptation

ℎ′#

ℎ#

$#

ℎ#%%

original

ℎ′#

ℎ#

$#

ℎ#%%

adapted

ℎ# Tiny database of you 
in the bathroom

• Insert a new layer.
• Keeping all other

parameters fixed, train the 
new ones to normalize 
speaker information.

• There are many 
alternatives…
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Speaker-aware training

Data of 

Speaker 1 

Data of 

Speaker 2 

Data of 

Speaker 3 

Speaker 
vector

All of Amazon or Facebook’s secret 

recordings of millions of people in 

the bathroom 

Senior, A., & Lopez-Moreno, I. (2014). Improving DNN speaker independence with I-vector inputs. ICASSP, 

225–229. https://doi.org/10.1109/ICASSP.2014.6853591

• Fixed length low 

dimension vectors, 

obtained in a 

variety of ways.

• Note we can

segment things by

recording device,

noise, etc.

• This can be used to 

remove the 

channel effect.

https://doi.org/10.1109/ICASSP.2014.6853591
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Speaker-aware training

Speaker 1

Speaker 2

Training data:

Testing data:

Acoustic features augmented with speaker 
vectors

All speakers use the same DNN model
Different speakers augmented by different features

train

test

ℎ"#

ℎ"

$" %&'()'*"

ℎ"##
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Aside – the open-source Kaldi ASR

• Kaldi is the de-facto open-source ASR toolkit: 
http://kaldi-asr.org
• It has pretrained models, including the ASpIRE chain model trained 

on Fisher English, augmented with impulse responses and noises to 
create multi-condition training.

• My favourite incarnation uses I-Vectors to account for the speaker.
• It often (anecdotally) performs better than Google’s SpeechAPI. 
• It is originally in C++, but a wrapper (PyTorch-Kaldi) exists in the 

much easier Python.

http://kaldi-asr.org/
http://kaldi-asr.org/models.html
https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi
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Aside – convolutional neural networks

• Spectrograms are kind of images, so lets use the kinds of 
neural networks used in computer vision. 



Next…
• We’ve seen how to:

• extract useful speech features with Mel-frequency 
cepstral coefficients.

• cluster multi-modal speech data with Gaussian mixture 
models.

• recognize speech with hidden Markov models and
neural networks.

• evaluate ASR performance with Levenshtein distance.

• Next, we’ll see how to synthesize artificial speech.

CSC401/2511 – Spring 2019 96



APPENDIX: CLUSTERING 
(EVERYTHING THAT FOLLOWS IS AN ASIDE. NOT ON THE EXAM. 
(THINGS NOT ON THE EXAM MAY BE USEFUL OR AT LEAST INTERESTING))
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Clustering
• Quantization involves turning possibly multi-variate and 

continuous representations into univariate discrete symbols.
• Reduced storage and computation costs.
• Potentially tremendous loss of information.

X

• Observation X is in Cluster One, 
so we replace it with 1.

• Clustering is unsupervised
learning.
• Number and form of 

clusters often unknown.

1

2

3
4
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Aspects of clustering
• What defines a particular cluster?

• Is there some prototype representing each cluster?

• What defines membership in a cluster?
• Usually, some distance metric !(#, %) (e.g., Euclidean distance).

• How well do clusters represent unseen data?
• How is a new point assigned to a cluster?
• How do we modify that cluster as a result?
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K-means clustering
• Used to group data into ! clusters, {#$, … , #'}.

• Each cluster is represented by the mean of its assigned data.
• (sometimes it’s called the cluster’s centroid).

• Iterative algorithm converges to local optimum:
1. Select ! initial cluster means {)$, … , )'} from among data points.
2. Until (stopping criterion),

a) Assign each data sample to closest cluster
* ∈ #, -. / *, ), ≤ / *, )1 , ∀- ≠ 4

b) Update ! means from assigned samples
), = 6 * ∀ * ∈ #,, 1 ≤ - ≤ !
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K-means example (! = #)
• Initialize with a random selection of 3 data samples.
• Euclidean distance metric $(&, ()
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K-means stopping condition
• The total distortion, !, is the sum of squared error,

! =#
$%&

'
#
(∈*+

, − .$ /

• ! decreases between 012 and 0 + 1 12 iteration.

• We can stop training when ! falls below some threshold 5.

1 − ! 0 + 1
! 0 < 5
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Acoustic clustering example
• 12 clusters of spectra, after training.
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Number of clusters
• The number of true clusters is unknown.
• We can iterate through various values of !.

• As ! approaches the size of the data, " approaches 0…
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Hierarchical clustering
• Hierarchical clustering clusters data into hierarchical ‘class’ 

structures.

• Two types: top-down (divisive) or bottom-up (agglomerative).

• Often based on greedy formulations.

• Hierarchical structure can be used for hypothesizing classes.
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Divisive clustering
• Creates hierarchy by successively splitting clusters into 

smaller groups.

uniformNon-uniform
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Agglomerative clustering
• Agglomerative clustering starts with ! ‘seed’ clusters and 

iteratively combines these into a hierarchy.

• On each iteration, the two most similar clusters are merged
together to form a new meta-cluster.

• After ! − 1 iterations, the hierarchy is complete.

• Often, when the similarity scores of new meta-clusters are 
tracked, the resulting graph (i.e., dendogram) can yield 
insight into the natural grouping of data.
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Dendogram example

12

3

4

5
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Speaker clustering
• 23 female and 53 male speakers from TIMIT.
• Data are vectors of average F1 and F2 for 9 vowels.
• Distance !(#$, #&) is average of distances between members.
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Acoustic-phonetic hierarchy

(this is basically an upside-down dendogram)
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Word clustering

numbers
Time,
price

modifiers
city

names


