Entropy and decisions

C ARSI, o WATRNEG N LT
CSC401/2511 — Natural Language Computing — Spring 2019

Lecture 3, Frank Rudzicz and Chloé Pou-Prom
University of Toronto




This lecture

* Information theory and entropy.
® Decisions.

* Classification.

* Significance.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

* Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
* You don’t know what hée’ll say.

® You have a certain amount of uncertainty — a lack of
information. -

£ N
Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck A3
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Information

* Imagine you then observe Darth Vader saying “no”
® Your uncertainty is gone; you’ve received information.
°* How much mformatlon do you receive about event £

when you ole

o P 1°3¢

B of measurement

1
I(no) = log, = log, === 1 bi
P(no) @ —

&‘;5
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Information

* Imagine Darth Vader is about to roll a fair die.
®* You have more uncertainty about an event because
there are more possibilities.
® You receive more information when you observe it.

| 1
082 P(5)

g@ 2.59 bltS

x‘;i-
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Information is additive

* From kindependent, equally likely events E,

\_/
1 1

I(E*) = log, m = log, P(E) ) I(k binary decisions) =/og,

L L -

® For a unigram model, with each of&OK words w equaIIy likely,

I(w) = log, ~ 15.61 bits z a J
50000

and for a sequence of 1K words in that model 60 K

- K f”%%%@@ ;
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Information with unequal events

U wodls

* An information source .S emits symbols without memory from
a vocabulary {w;,'w,, ..., w, }. Each symbol has its own

probability {p4, p,, ..., P}

°* What is the average amount of
information we get in observing
the output of source S ?

* You still have 6 events that are

m Ves (0.1) possible — but you're fairly

® Maybe (0.04) m Sure (0.03) sure it will be ‘No’.
m Darkside (0.06) m Destiny (0.07)

st
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Entropy

°* Entropy: n. the average amount of information we get in
observing the output of source S.

1) - > glﬁwl)}— Z P 1og2

ENTRO PY

Note that this is very similar to how we define the
expected value (i.e., ‘average’) of something:

= > p()x

»ﬂfﬁ
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Entropy — examples 4/) U/\i( '

H(S) = Z pilogz

 Yes (0.1) @ — 0 7 lno 7)+0110g2(1/0 1) + -
= Maybe (0.04) = 1. 542 bits

® Darkside (0.06) m Destiny (0.07)

TR

‘ H(S) = Epl logzp 6(glogzm
Hl1 E2 E3 N4 HS5 H6 = 2.585 bits
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Entropy characterizes the distribution

* ‘Flatter’ distributions have a higher entropy because the

choices are more equivalent, on average.
* So which of these distributions has a lower entropy?
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Low entropy makes decisions easier

When predicting the next word, e. e.g., we’ '}a/d*rs’en\ n
V\thIo\wer entropy.
Tess uncertainty D NCO L 70 \/\?

* Low entropy =

0.2 o 0.2 -
>
%O.lS E 0.15
(12} (1]
% 0.1 o 0.1
a.

0.05 0.05

WHHIH AR . IIE
Words

o

Words
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Bounds on entropy
ondyrdontd 1 ot

* Maximum: uniform dlstrlbutlon S1. leen M choices,\

H(S —Z 1 Z—l — log, M
(S1) D, ngpl °g21/M log, M 2= _\_‘
; M
* Minimum: only one choice, H(S,) = p; logzi =1log,1=0
s

1

0.1
0.08 0.8
= 2
= 0.06 = 0.6
(1°] (1]
2 0.04 204
a a
0.02 0.2
0 0
Words Words
g’*&
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Coding symbols efficiently

* If we want to transmit Vader’s words efficiently, we can
encode them so that more probable words require fewer bits.

°* On average, fewer bits will need to be transmitted.
Word i.inear Huffman
(sorted) | Code Code
No 0
Yes 001 11
Destiny 010 101
Darkside | 011 1001
Maybe 100 10000

M Yes (0.1)

Sure 101 10001

® Maybe (0.04) m Sure (0.03) &
® Darkside (0.06) m Destiny (0.07)

\ KS
8 IO ( &
-":: UMIVERSITY OF
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v 0D 0 Y (oded

Coding symbols efficiently

* Another way of looking at this is through the (binary) Huffman
tree (r-ary trees are often flatter, all else being equal):

y\ Word Linear Huffman
No (sorted) | Code Code
0 1
0 No 000 } ‘
Y
A = Yes 001 T |

0
1
Destiny 010 101

Destiny
101 Darkside 011 1001
. Darkside Maybe 100 10000
— Sure 101 10001
Maybe Sure

&

0000 10001
UNIVERSITY OF
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Alternative notions of entropy

* Entropy is equivalently:
°* The average amount of information provided
\/ .

by symbols in a vocabulary,

* The average amount of uncertainty you have before
observing a symbol from a vocabulary,

* The average amount of ‘surprise’ you receive when
observing a symbol,

°* The number of bits needed to communicate that alphabet

* Aside: Shannon-showed that you-cannoet-havea coding scheme

that can communicate the vocabulary more efficiently than H(S)

T
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Entropy of several variables

* Joint entropy
* Conditional entropy
®* Mutual information

&
UNIVERSITY OF
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Entropy of several variables

= o
83 -82 81 -80

®* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature = {hot, mild, cold}
°* Wetness = {dry, wet}

P(W =dry) = 0.6,

1 1
H(W) = 0.6log, — + 0.4log, — = 0.970951 bits
P(W = wet) = 0.4 “0.6 “0.4

P(T = hot) = 0.3,

1 1 1 _
P(T _ mild) — (.5, H(T) =0.3 logzﬁ + 0.5log, 0= + 0.2 log, 02 °= 1.48548 bits

P(T = cold) = 0.2

But W and T are not independent,
P(W,T) = P(W)P(T)

Example from Roni Rosenfeld 2 UNIVERSITY OF
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Joint entropy

* Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

® Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.

i
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Entropy of several variables

* Consider joint probability, P(W,T)

(01)

* Joint entropy, H(W,T), computed W

of joint events (W =w,T = t)

H(W, T) 82@@05’2 @: 0.1log, /o1
0

0g, /oo + 0g, 0.1log, 1/, = 2.32193 bits

- o

U ERSITY OF
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Entropy given knowledge

° In our example, joint entropy of two variables together is

lower than the sum of their individual entropies
* HW,T) = 232< 246 = HW) + H(T) Wh(ﬁ

* Why? | Q R M _,HU&%L

* Information is shared among variables >/>
®* There are dﬁenues e.g., between tempera e and
wetnhess.
* E.g., if we knew exactly how wet it is, is there less
confusion about what the temperature is ... ?

UNIVERSITY OF
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Conditional entropy

* Conditional entropy: n. the average amount of information
needed to specify one variable given
that you know another.

* A.k.a ‘equivocation’
Pﬁ—

HOYIX) = ) pOH(YIX = x)

S
* Hint: this is very similar to how we compute expected values in
general distributions.

&‘;5
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Entropy given knowledge H C\

= Congder conditional probability, P(T|W)

e - —

PT W
0.1/0.6 0.4/ "
BT o o

0.1/0.6
0.1/

UMNIVERSITY OF

TORONTO
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v
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Entropy given knowledge

* Consider conditional probability, P(T|W)

TN N T

e EETE
e EEOEEETEEETS

* HT|W = dry) = H ({Z,2,<}) = 1.25163 bits
e H(T|W = wet) = H ({%i%}) — 1.5 bits
* Conditional entropy combines these:

H(T|W) 0.6 0.4

= [p(V drv)H(T|W = dry)] + [p(W_=2Wwet)H (T|W = wet)]

1.350978 bits

e
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Equivocation removes uncertainty

* Remember H(T) =(1.48548 bits Entropy (i.e., confusion) about
o H(W} T) = 2.32193bits temperature is reduced if we know

° H(TlW) 350978 bits how wet it is outside.

* How much does I/ tell us about 7'?

“H(T) S— ﬁ(TlW) = 1.48548 — 1.350978 =~ 0.1345 bits
Y a little bitt N~

st

:': UNMIVERSITY OF
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0l o e - gr e
Perhaps T i |s more informative?

RO(WLT

* Consider another conditional probability, P(W|T)

PUIT) | T—cod | mid | hot
% 0.1/0.3 0.4/0.5 0.1/0.2

- wet  [EPYE 0.1/0.5 0.1/0.2

e H(WI|T = cold) = H ({% %}) — 0.918295 bits
o H(WI|T = mild) = H ({gg}) 0.721928 bits
e H(WI|T = hot) = ({11}) — 1 bit

7/W|T) = 0.8364528 bits

&
C® | UNIVERSITY OF
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Equivocation removes uncertainty

* H(T) = 1.48548 bits
e H(W) = 0.970951 bits
e H(W,T) = 2.32193 bits

* H(T|W) = 1.350978 hits
° ~ - Previousl|
H(T) — H(T|W) = 0.1345 bits { e

&m@k%mgszﬂﬁMﬁ>ﬁ

®* How much does T tell us about I/ on average?
* H(W) — H(W|T) = 0.970951 — 0.8364528 \ /]

L> T Pep-orakyT W

®* Interesting ... is that a coincidence?

B

i UNIVERSITY OF
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Mutual information

®* Mutual information: n. the average amount of information
shared between variables.

I(X;Y) = H(X) — H()@ iii_H(Y/‘;

—= =Ly p(0y) 1o G

® Hint: The amount of uncertainty removed in variable X if you know Y.

* Hint2: If X and Y are independent, p(x,y) = p(x)p(y) then

p(x,y) —OVYe vt} -
log, PO = log, 1 = 0 Vx, y —there is no mutual information!

x‘;ﬁ
UMNIVEESITY OF
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Relations between entropies

l H(X,Y) = H(X) + H(Y) — I(X;Y)

&
C® UNIVERSITY OF
CSC401/2511 — Winter 2019 30 ﬁ TORONTO



Preview — the noisy channel

* Messages can get distorted when passed through a noisy
conduit — how much information is lost/retained?

‘\‘

* Signals A% ~J
’-\
LA

* Symbols -
Channel

®* Languages

Hello, computer 2 Bonjour, ordinateur

st
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Relating corpora

UMNIVERSITY OF
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Relatedness of two distributions

°* How similar are two probability distributions?
°* e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words

Words
Ee
. UNIVERSITY OF
CSC401/2511 — Winter 2019 ee ¥ TORONTO



Relatedness of two distributions

* A Huffman code based on Vader (Q) instead of Kylo (P) will

be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability
Probability

Words

Words
Ee
. UNIVERSITY OF
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Kullback-Leibler divergence

* KL divergence: n. the average log difference between the

distributions P and Q, relative to Q.

a.k.a. relative entropy> =
caveat: we-sssame 0 log 0 = 0

Y

\

Probability
Probability

Words Words

T

% TORONTO
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Kullback-Leibler divergence

D1 (P]|Q) = EP(i)l

Q

)

i, P(i)
‘ og (1)! l;o’g’}_’(/l) log Q(l) = log( (l) logXP(l)
word w; is less probable in Q than P (i.e., it carries more

information), it will be Huffman encoded in more bits, so

when we see w; from P, we need log% more bits.

T

b UNMIVERSITY OF
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Kullback-Leibler divergence

* KL divergence:
* is somewhat like a ‘distance’ :
* D (Pl[Q) =0 VP, 0
®* D1 (P||Q) = 0iff P and Q are identical.
® is not symmetric, Dy; (P||Q) # Dk (Q||P)

* Aside:
I(P; Q) = Dk (P(X,V)|IP(X)P(Y))

/
—

T

UNIVERSITY OF
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Kullback-Leibler divergence

* KL divergence generalizes to continuous distributions.
* Below, Dk, (green||blue) > Dyg; (purple||blue)

04l PUTPI

% | UNIVERSITY OF
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Applications of KL divergence

* Often used towards some other purpose, e.g.,
* In evaluation to say that purple is a better model
than green of the true distribution blue.
* In machine learning to adjust the parameters of
purple to be, e.g., less like green and more like blue.

urple

J\ % TORONTO
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~> ML, PP

Entropy as intrinsic LM evaluation
=

* Cross-entropy measures how difficult it is to encode
an event drawn from a true probability p given a Y
model based on a dit:butlon q. (/;> (] OL‘(\) ]

| , L[] .

* What if we don’t know the true probability p?

* We’'d have to estimate p.
* We estimate p by estimating the probability of a test
corpus ( using the distribution q:

N By (C)

T

UNIVERSITY OF
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Probability of a corpus?

® The probability P(C) of a corpus C requires similar
assumptions that allowed us to compute the probability
P(s;) of a sentence s;.

T e T e

Chain P(s;) = P(C) =
rule P(wy) [1i=2 P(We|wy. (t— 1)) P(wy) H“ ”P(Wt|W1 :(t— 1))

Approx. P(s;) = | lP(Wt) P(C) = l AP(Si)

i

* Regardless of the LM used for P(s;), we can assume
complete independence between sentences.

&
UNIVERSI
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Intrinsic evaluation — Cross-entropy
* Cross-entropy of a LM Maad a new test corpus C
with size ||C|| (total number of words), where sentence
s; € C, is approximated by:

lng P@(C) Zi logz PM(Si)
R IC] 2illsill

* Perplexity comes from this definition:
PPy (C) = 2H (M)

st
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Decisions

UMNIVERSITY OF
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Deciding what we know

* Anecdotes are often useless except as proofs by contradiction.
* E.g., “I saw Google used as a verb” does not mean that Google is
always (or even likely to be) a verb, JUSt that it is not always a noun.

* Shallow statistics are often not enough to be truly meanmgful.

°* E.g., “My ASR system is 95% accurate on my test data. Yours is only
94.5% accurate, you horrible knuckle-dragging idiot.”
* What if the test data was biased to favor my system?
°* What if we only used a very small amount of data?

* Given all this potential ambiguity, we need a test to see if our
statistics actually mean something.

n
UNIVERSITY OF
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Differences due to sampling

* We saw that KL divergence essentially measures how different
two distributions are from each other.

® But what if their difference is due to randomness in sampling?

°* How can we tell that a distribution is really different from
another?

T
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Hypothesis testing

* Often, we assume a null hypothesig, Hy, which states that the
two distributions are the same (i.e., come from the same
underlying model, population, or phenomenon).

* We reject the null hypothesis if the probability of it being true
is too small.

* This is often our goal —e.g., if my ASR system beats yours by 0.5%,
| want to show that this difference is not a random accident.
° | assume it was an accident, then show how nearly impossible that is.

* As scientists, we have to be very careful to not reject H, too hastily.
°* How can we ensure our diligence?

i
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Confidence H -

* We reject H, if it is too improbable. &
* How do we determine the value of ‘too’?

* Significance level a (0 < a < 1) is the maximum probability that
two distributions are identical allowing us to disregard H,.
° In practice, a < 0.05. Usually, it’s much lower.
* Confidence levelisy =1 —«a
® E.g., a confidence level of 95% (¢ = 0.05) implies that we
expect that our decision is correct 95% of the time,
regardless of the test data.

T
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Confidence

* We will briefly see three types of statistical tests that can tell us
how confident we can be in a claim:

1. A t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the
t-test to more than two groups.

3. The y” test, which evaluates categorical (discrete) outputs.

T
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1. The t-test HO . SZ — M\

* The t-test is a method to compute if distributions are
significantly different from one another.

* Itis based on the knean (¥).4nd variance (o) of N samples.
* |t compares X and o to H, which states that the samples are
drawn from a distribution with a mean L.

° If £ | (the “t-statistic”) iS large enough, we can reject H.
02/
N

An example would be

nice...
There are actually several types of t-tests for different situations...

i
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Example of the t-test: tails —
}v) (A =

* |Imagine the average tweet length of\é McGill ‘student’ is M= 158 chars.

°* Wesample N = 200 Uoﬂ' students and find that our average tweet is
x = 169 chars (with 0% = 2600).

* Are UofT tweets 5|g—|—ﬂ\t‘|“l"— cantly fonger than much worse McGill tweets?

* We use a ‘one-tailed’ test because we want to see if UofT tweet lengths
are significantly higher.
* |f we just wanted to see if UofT tweets were significantly different,
we’d use a two-t |I(X%test

Sos

i
gc R
HEH
3

X

=~

a

4]

=

UNIVERSITY OF
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Example of the t-test: freedom

* Imagine the average tweet length of a McGill ‘student’ is u = 158 chars.

* We sample N = 200 UofT students and find that our average tweet is
% = 169 chars(witho? = 2600).

* Are UofT tweets significantly longer than much worse McGill tweets?

* Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the
number of observations in each group,
minus 2 (because there are two groups).

* In our example, we have Ny, = 200 for DCS students, but because we

don’t sample at McGillﬂMm@\"’?ﬁ) d.f.= oo.
* (this example is adapted from ™Manning & Schiitze)

fr obys - + gfovpy .
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Example of the t-test

* Imagine the average tweet length of a McGill ‘student’ is u = 158 chars.

* We sample N = 200 UofT students and find that our averm
X = 169 chars (with/azm

* Are UofT tweets significantly longer than much worse McGill tweets?

e Sot mJt _ 269158 305

* |n a t-test table, we look up the minimum value of t necessary to reject
Hyata = 0.005 (we want to be quite confident) fOF a 1-tailed test...

ST

x‘;ﬁ
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Example of the t-test

= 169—158
° Sot = ~ 3.05
0'2/N /2600/200

° |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2.576.

* Since 3.05 > 2.576, we can reject H, at the 99.5% level of confidence
(¥ =1 —a = 0.995) ; UofT students are significantly more verbose.

_Leeon | oo Loos |oni L oms oo Lsoms
63.66

6.314 12.71 31.82 318.3 636.6
10 1.812 2.228 2.764 3.169 4.144 4.587
20 1.725 2.086 2.528 2.845 3.552 3.850
1.645 1.960 2.326 2.576 | 3.091 3.291

d.f.

».ﬂﬁ:i'f
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AL = 0bS ~34€Vg> (

Example of the t-test

* Some things to observe about the t-test table:

* We need more evidence, t, if we want to be
more confident (left-right dimension).
* We need more evidence, t, if we have

fewer measurements (top-down dimension).

* A common criticism of the t-test is that picking a is ad-hoc.
There are ways to correct for the selection of a. %

N -m

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
\ 00 1.645 1.960 2.326 2.576 3.091 3.291

».z‘ﬂii'
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Another example: collocations

* Collocation: n. a ‘turn-of-phrase’ or usage where a
sequence of words is ‘perceived’ to have a
meaning ‘beyond’ the sum of its parts.

> ¥9\ A
* E.g., ‘disk drive’, ‘video recorder’, and * dr/nk’are
collocations. ‘cylinder drive’, ‘video storer’, drink’ V W
are not despite some near-synonymy between alternatives.

* Collocations are not just highly frequent bigrams, otherwise
‘of the’, and ‘and the’ would be collocations.

®* How can we test if a bigram is a collocation or not?

d:‘.q:a
UNIVERSITY OF

CSC401/2511 — Winter 2019 55 @ TORONTO



Hypothesis testing collocations

* For collocations, the null hypothesis H is that there is no
association between two given words beyond pure chance.

* |.e., the bigram’s actual distribution and pure chance are the same.
* We compute the probability of those wordmgether
if Hy were true. If that probability is too low, we reject H,.

* E.g., we expect ‘of the’ to occur together, because they’re both likely

words to draw randomly
* We could probably not reject H, in that case.

. _0liWs A
o D((’J@wl > V(IDCN (>

UNIVERSITY OF
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Example of the t-test on collocations

* |s ‘new companies’ a collocation?
* |n our corpus of 14,307,668 word tokens, new appears 15,828 times

and companies appemes.
* Our null hypothesis, Hyisthat they are independent, i.e.,
) e
Ho:g P(new companies) = WP(CWL'%)
Y /ito;_?ﬂ)( — 675+
14307668 ) /14307668

st
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Example of the/ t-gst on collocations

* The Manning & Schiitze text claims that if the process of randomly
generating bigrams follows a Bernoulli distribution.

° j.e., assigning 1 whenever new companies appears and 0 otherwise

gives X = p = P(new companies) — v\)él/([/\/h)

* For Bernoulli dlstrlbut|ons 0 = p(1 — p). Manning fchutz claim
that we can assume g2 = p(l p) = p, since for most bigrams, p is

very small.
( Ny ‘ )
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Example of the t-test on collocations

A
° So, )= 3.615x 1077 js the expected mean in Hy.
* We actually co occurrences of new companies in our corpus

‘__\’-——\
° ¥y — 8 ~ 5.591 X 10—7 There is 1 fewer bigram instance
14307667 - | than word tokens in the corpus |
nol~p=x=>5591x10"7
. E ‘ _ 5.591x1077-3.615x107" _—
, 2 -7 — S
o /N \/5'591X10 /14307667

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2. 576.
* Since < 2.576, we cannot reject H, at the 99.5% level of
confidence. T
* We don’t have enough evidence to think that new companies
is a collocation (we can’t say that it definitely isn’t, though!).

d‘.q:a
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2. Analysis of variance (aside)

* Analyses of variance (ANOVAS) (there are several types) can be:
* A way to generalize t-tests to more than two groups.
* A way to determine which (if any) of several variables are responsible
for the variation in an observation (and the interaction between them).

* E.g., we measure the accuracy of an ASR system for different settings of
empirical parameters M and Q (more on these later in the course...).

\Q |
Accuracy (%) M=2 M=4 M=16 Hy: no effect of source variables.

02 SO 6y gm—
0.179 Accept H,

26.67 53.33 40.00

: 40.00 26.67
0.106 Accept H,

Q=5 . 26.67 100.00
66.67 13.33 80.00
40.00 0.00 60.00

[Tnteraction | 0.006 Reject Hyata = 0.01

’ A completely fictional example

»ﬂ-
UMNIVEESITY OF
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3. Pearson’s y* test (details aside)

* The yx“ test applies to categorical data, like the output of a
classifier.

* Like the t-test, we decide on the degrees of freedom (number of

~— T~ .
categories minus number of parameters), compute the test-statistic, then
. . ~——

look it up in a table. Lo

* The test statistic | |

0.8

0 0.6
3 L

04

where O, and E, are the observed .}

and expected number of ool
[ O D

Observatlons Of type C, respectlvely. X? = Pearson'’s cumulative test statistic

T
UMNIVEESITY OF
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3.P ’s y2
earson’s y“ test p:Q \/é

®* For example, is our die from Lecture 2 fair or not?
* Imagine we throw it 60 times. The expected number of
appearances of each side is 10.

* Withdf =6-1=5,

(Oc — Ec)z (Oc — EC)Z/EC
25 2.5

; Z i 4 04 the critical value is
3 | 9 1 1 0.1 13.4, SO we
4 | 8| 10 2 4 0.4 throw away Hy:

ol N O 0 0 0 the die is biased.

° 0] o We'll see y? again

soon...

&
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Reading

®* Manning & Schitze: 2.2, 5.3-5.5

s
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Entropy and decisions

~* Information theory is a vast ocean that provides statistical
: models of communication at the heart of cybernetics.

°* We've only taken a first step on the beach.

* See the ground-breaking work of Shannon & Weaver, e.g.

* So far, we’ve mainly dealt with random variables that the
world provides — e.g., words tokens, mainly.

* What if we could transform those inputs into new random =
variables, or features, that are directly engineered to be
useful to decision tasks...




