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Statistical Machine Translation

• Challenges to statistical machine translation
• Sentence alignment
• IBM model
• Phrase-based translation
• Decoding
• Evaluation
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How to use the noisy channel

• How does this work?
𝐸∗ = argmax

𝐸
𝑃(𝐹|𝐸)𝑃(𝐸)

• 𝑃(𝐸) is a language model (e.g., N-gram) and encodes 
knowledge of word order. 

• 𝑃(𝐹|𝐸) is a word-level translation model that encodes only 
knowledge on an unordered word-by-word basis.

• Combining these models can give us naturalness and fidelity, 
respectively.

3



CSC401/2511 – Spring 2019

Sentence alignment

• Sentences can also be unaligned across translations.
• E.g., He was happy.E1 He had bacon.E2 →

Il était heureux parce qu'il avait du bacon.F1

𝐸1 𝐹1

𝐸2 𝐹2

𝐸3 𝐹3

𝐸4 𝐹4

𝐸5 𝐹5

𝐸6 𝐹6

𝐸7 𝐹7

…

𝐸1 𝐹1

𝐸2

𝐸3 𝐹2

𝐸4 𝐹3

𝐸5 𝐹4

𝐹5

𝐸6 𝐹6

𝐸7 𝐹7
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Sentence alignment

• We often need to align sentences before we can align 
words.

• We’ll look at two broad classes of methods:
1. Methods that only look at sentence length,
2. Methods based on lexical matches, or “cognates”.

5
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1. Sentence alignment by length

We can associate costs with different types
of alignments.

𝑪𝒊,𝒋 is the prior cost of aligning 

𝑖 sentences to 𝑗 sentences.

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡 ℒ𝐸1 + ℒ𝐸2 , ℒ𝐹1 + 𝐶2,1 +

𝐶𝑜𝑠𝑡 ℒ𝐸3 , ℒ𝐹2 + 𝐶1,1 +

𝐶𝑜𝑠𝑡 ℒ𝐸4 , ℒ𝐹3 + 𝐶1,1 +

𝐶𝑜𝑠𝑡 ℒ𝐸5 , ℒ𝐹4 + ℒ𝐹5 + 𝐶1,2 +

𝐶𝑜𝑠𝑡 ℒ𝐸6 , ℒ𝐹6 + 𝐶1,1
Find distribution of sentence breaks with 
minimum cost using dynamic programming

𝐸1 𝐹1

𝐸2

𝐸3 𝐹2

𝐸4 𝐹3

𝐸5 𝐹4

𝐹5

𝐸6 𝐹6

It’s a bit more 
complicated – see 
paper on course 

webpage
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2a. Church’s method

From Manning & Schütze

• Church (1993) 
tracks all 4-graphs
which are identical 
across two texts.

• Each point along 
this path is 
considered to 
represent a match
between 
languages.

English French

English

French

e.g., the 𝑝𝑡ℎ French 
sentence is aligned 
to the 𝑞𝑡ℎ English 

sentence.
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2b. Melamed’s method

• 𝐿𝐶𝑆(𝐴, 𝐵) is the longest common subsequence of 
characters (with gaps allowed) in words 𝐴 and 𝐵. 

• Melamed (1993) measures similarity of words 𝐴 and 𝐵

𝐿𝐶𝑆𝑅 𝐴, 𝐵 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝐶𝑆 𝐴, 𝐵 )

max(𝑙𝑒𝑛𝑔𝑡ℎ 𝐴 , 𝑙𝑒𝑛𝑔𝑡ℎ 𝐵 )
• e.g.,

𝐿𝐶𝑆𝑅 𝒈𝒐𝒗𝒆𝒓𝒏𝒎𝒆𝒏𝒕, 𝒈𝒐𝑢𝒗𝒆𝒓𝒏𝑒𝒎𝒆𝒏𝒕 =
10

12
‘LCS Ratio’
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sentence
alignment

word
alignment
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Word alignment

• Word alignments can be 1:1, N:1, 1:N, 0:1,1:0,… E.g.,

“zero fertility” word: not translated (1:0)

“spurious” words: generated 
from ‘nothing’ (0:1)

One word translated
as several words (1:N)

alignment

Note that this is 
only one possible

alignment
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IBM Model 1

11
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IBM Model 1: the NULL word

• The NULL word is an imaginary word that we need to 
account for the production of spurious words.

“NULL” word

12
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IBM Model 1: some definitions

• English sentence 𝐸 has 𝐿𝐸 words, 𝑒1…𝑒𝐿𝐸 , 

plus NULL word, 𝑒0.
• French sentence 𝐹 has 𝐿𝐹 words, 𝑓1…𝑓𝐿𝐹 .

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

13
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IBM Model 1: alignments

• An alignment, 𝒂, identifies the English word that
‘produced’ the given French word at each index.
• 𝒂 = {𝒂𝟏, … , 𝒂𝑳𝑭} where 𝑎𝑗 ∈ {0,… , 𝐿𝐸}

• E.g., 𝒂 = {𝟎, 𝟑, 𝟎, 𝟏, 𝟒, 𝟓, 𝟔, 𝟔, 𝟔}

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

𝑎1 = 0 𝑎9 = 6

14
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IBM Model 1: alignments

𝑒1

𝑒3

𝑒4

𝑒5

𝑒6

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8

𝑓9

𝑒0

𝑒0

𝑒6

𝑒6

𝒂 = {𝟎, 𝟑, 𝟎, 𝟏, 𝟒, 𝟓, 𝟔, 𝟔, 𝟔}

15
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IBM Model 1: alignments

• There are 𝐿𝐸 + 1 𝐿𝐹 possible alignments. (since 𝑎 = 𝐿𝐹 ) 

• IBM-1 doesn’t know that some are very bad in reality.
• E.g., 𝒂 = {𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑, 𝟑}

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

16
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IBM Model 1: alignments

• IBM Model 1 assumes that all alignments of 𝐸 are 
equally likely given only the length (not the words) of 𝑭.

∀𝒂, 𝑃 𝑎 𝐸, 𝐿𝐹 =
1

𝐿𝐸 + 1 𝐿𝐹

• This is a major simplifying assumption, but it gets the 
process started.

Uniform over all 
possible 

alignments.

17
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Equally likely alignments a priori

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

𝑃(

𝑃( )

)

18
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IBM Model 1: translation probability

• Given an alignment 𝑎 and an English sentence 𝐸, what 
is the probability of a French sentence 𝐹?

𝑃(𝐹|𝑎, 𝐸)

• In IBM-1,

𝑃 𝐹 𝑎, 𝐸 =ෑ

𝑗=1

𝐿𝐹

𝑃(𝑓𝑗|𝑒𝑎𝑗)

(another simplifying assumption)

The probability of the 𝑗𝑡ℎ

French word, given that it 
was generated from the 

𝑎𝑗
𝑡ℎ English word.

19
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IBM Model 1: translation probability

• 𝐸 = Canada ‘s program has been implemented
• 𝑎 = {0,3,0,1,4,5,6,6,6}
• 𝐹 = Le programme du Canada à été mis en application

• 𝑃 𝐹 𝑎, 𝐸 = 𝑃 𝐿𝑒|∅ 𝑃 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ×
𝑃 𝑑𝑢 ∅ 𝑃 𝐶𝑎𝑛𝑎𝑑𝑎 𝐶𝑎𝑛𝑎𝑑𝑎 𝑃 à ℎ𝑎𝑠 ×
𝑃 é𝑡é 𝑏𝑒𝑒𝑛 𝑃 𝑚𝑖𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ×
𝑃 𝑒𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ×
𝑃(𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑)

20
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IBM Model 1: translation probability

𝒂 = {𝟎, 𝟑, 𝟎, 𝟏, 𝟒, 𝟓, 𝟔, 𝟔, 𝟔}
• 𝑃 𝐹 𝑎, 𝐸 = 𝑃 𝐿𝑒|∅ 𝑃 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ×

𝑃 𝑑𝑢 ∅ 𝑃 𝐶𝑎𝑛𝑎𝑑𝑎 𝐶𝑎𝑛𝑎𝑑𝑎 𝑃 à ℎ𝑎𝑠 ×
𝑃 é𝑡é 𝑏𝑒𝑒𝑛 𝑃 𝑚𝑖𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ×
𝑃 𝑒𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ×
𝑃(𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑)

21

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

𝑎1 = 0 𝑎9 = 6
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IBM Model 1: generation

• To generate a French sentence 𝐹 from English 𝐸,
1. Pick a length of 𝐹 (with probability 𝑃(𝐿𝐹)).

2. Pick an alignment (with uniform probability, 
1

𝐿𝐸+1
𝐿𝐹

).

3. Sample French words with probability

𝑃 𝐹 𝑎, 𝐸 =ෑ

𝑗=1

𝐿𝐹

𝑃(𝑓𝑗|𝑒𝑎𝑗)

𝑃 𝐹, 𝑎 𝐸 = 𝑃 𝑎 𝐸 𝑃 𝐹 𝑎, 𝐸 =
𝑃(𝐿𝐹)

𝐿𝐸 + 1 𝐿𝐹
ෑ

𝑗=1

𝐿𝐹

𝑃(𝑓𝑗|𝑒𝑎𝑗)
So,

This is how we imagine English gets corrupted in the noisy channel.

Slide 19

Slide 17

22
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IBM-1: alignment as hidden variable

• If 𝑃 𝐹, 𝑎 𝐸 describes the process of generating French 
words and alignments from English words…

• Then

𝑃 𝐹 𝐸 = ෍

𝑎∈𝒜

𝑃(𝐹, 𝑎|𝐸)

where 𝒜 is the set of all possible alignments

Remember, the noisy channel model 
states that French words are really 

encoded English words!

23
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IBM-1: training

• Our training data 𝒪 is a set of pairs of corresponding
French and English sentences, 𝒪 = (𝐹𝑖 , 𝐸𝑖) , 𝑖 = 0. . 𝑁.

• If we knew the word alignments, 𝑎, learning 𝑃(𝑓|𝑒)

would be trivial with MLE: 𝑃 𝑓 𝑒 =
𝐶𝑜𝑢𝑛𝑡(𝑓,𝑒)

𝐶𝑜𝑢𝑛𝑡(𝑒)
.

• But the alignments are hidden. We need to use …

# times 
aligned

26
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IBM-1: expectation-maximization

1. Initialize translation parameters 𝑃 𝑓 𝑒 (e.g., randomly).

2. Expectation: Given the current 𝜃𝑘 = 𝑃 𝑓 𝑒 , compute 
the expected value of 𝑪𝒐𝒖𝒏𝒕(𝒇, 𝒆)
for all words in training data 𝒪.

3. Maximization: Given the expected value of 𝑪𝒐𝒖𝒏𝒕 𝒇, 𝒆 ,
compute the maximum likelihood 
estimate of 𝜃𝑘 = 𝑃 𝑓 𝑒

27
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IBM-1 EM: Example

• Imagine our training data is
𝒪 = { 𝑏𝑙𝑢𝑒 ℎ𝑜𝑢𝑠𝑒,𝑚𝑎𝑖𝑠𝑜𝑛 𝑏𝑙𝑒𝑢𝑒 ,

(𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒, 𝑙𝑎 𝑚𝑎𝑖𝑠𝑜𝑛)}

• The vocabularies are 
𝒱𝐸 = {𝑏𝑙𝑢𝑒, ℎ𝑜𝑢𝑠𝑒, 𝑡ℎ𝑒} and 
𝒱𝐹 = {𝑚𝑎𝑖𝑠𝑜𝑛, 𝑏𝑙𝑒𝑢𝑒, 𝑙𝑎}.

• For simplicity, we consider only 1:1 alignments:
there is no NULL word, there are no zero-fertility words.

28
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IBM-1 EM: Example

• First, we initialize our parameters, 𝜽 = 𝑷 𝒇 𝒆 .

• In the Expectation step, we compute expected counts:
• 𝑇𝐶𝑜𝑢𝑛𝑡(𝑓, 𝑒): the total number of times 𝑒

and 𝑓 are aligned.
• 𝑇𝑜𝑡𝑎𝑙(𝑒): the total number of 𝑒.

This has to be done in steps by first computing 
𝑷 𝑭, 𝒂 𝑬 then 𝑷(𝒂|𝑭, 𝑬)

• In the Maximization step, we perform MLE with the 
expected counts.

29
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IBM-1 EM: Example initialization

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 𝑏𝑙𝑢𝑒 =
1

3
𝑃 𝑏𝑙𝑒𝑢𝑒 𝑏𝑙𝑢𝑒 =

1

3
𝑃 𝑙𝑎 𝑏𝑙𝑢𝑒 =

1

3

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

3
𝑃 𝑏𝑙𝑒𝑢𝑒 ℎ𝑜𝑢𝑠𝑒 =

1

3
𝑃 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒 =

1

3

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 𝑡ℎ𝑒 =
1

3
𝑃 𝑏𝑙𝑒𝑢𝑒 𝑡ℎ𝑒 =

1

3
𝑃 𝑙𝑎 𝑡ℎ𝑒 =

1

3

𝜃0:

1. Make a table of 𝑃(𝑓|𝑒) for all possible pairs 𝑓 and 𝑒.

Initialize uniformly across rows.

30
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IBM-1 E: compute 𝑷(𝑭|𝒂, 𝑬)

2. Make a grid where
each sentence pair is a row, and
each possible word-alignment is 
a column.

‘S
en

te
n

ce
’ 1

‘S
en

te
n

ce
’ 2

Alignment 1

Alignment 1

Alignment 2

31
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IBM-1 E: compute 𝑷(𝑭|𝒂, 𝑬)

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑚𝑎𝑖𝑠𝑜𝑛|𝑏𝑙𝑢𝑒 ×

𝑃 𝑏𝑙𝑒𝑢𝑒 ℎ𝑜𝑢𝑠𝑒 =
1

3
∙
1

3
=
𝟏

𝟗

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑏𝑙𝑒𝑢𝑒|𝑏𝑙𝑢𝑒 ×

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

3
∙
1

3
=
𝟏

𝟗

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑙𝑎|𝑡ℎ𝑒 ×

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

3
∙
1

3
=
𝟏

𝟗

𝑃 𝐹, 𝑎 𝐸 = 𝑃 𝑚𝑎𝑖𝑠𝑜𝑛|𝑡ℎ𝑒 ×

𝑃 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒 =
1

3
∙
1

3
=
𝟏

𝟗

𝑎 = 𝑎1,1 𝑎 = 𝑎1,2

𝑎 = 𝑎2,1 𝑎 = 𝑎2,2

‘S
en

te
n

ce
’ 1

‘S
en

te
n

ce
’ 2 3. For each sentence pair and 

alignment, compute (slide 19)

𝑃(𝐹|𝑎, 𝐸) =ෑ

𝑓𝑗

𝑃(𝑓𝑗|𝑒𝑎𝑗)

32
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IBM-1 E: compute 𝑷(𝒂|𝑬, 𝑭)

• We want the probability of an alignment 𝒂 so that 
we can compute the expected 𝐶𝑜𝑢𝑛𝑡(𝑓𝑗 , 𝑒𝑖).

𝑃 𝑎 𝐸, 𝐹 =
𝑃(𝐹|𝑎, 𝐸)

σ𝑎𝑖∈𝒜
𝑃(𝐹|𝑎𝑖 , 𝐸)

• This is not the same as the probability 𝑃 𝑎 𝐸, 𝐿𝐹 .
• i.e., it won’t always be uniform.

33
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IBM-1 E: compute 𝑷(𝒂|𝑬, 𝑭)

𝑃 𝑎 𝐸, 𝐹 =
𝑃(𝑎,𝐸,𝐹)

𝑃(𝐸,𝐹)
=

𝑃(𝑎,𝐸,𝐹)

𝑃 𝐸 𝑃(𝐹|𝐸)
=

𝑃(𝐹,𝑎|𝐸)𝑃 𝐸

𝑃 𝐸 𝑃(𝐹|𝐸)

=
𝑃(𝐹,𝑎|𝐸)

σ𝑎𝑖∈𝒜
𝑃(𝐹,𝑎𝑖|𝐸)

=
𝑃(𝐹|𝑎,𝐸)

σ𝑎𝑖∈𝒜
𝑃(𝐹|𝑎𝑖,𝐸)

(**) Rewrite 𝑃 𝐹, 𝑎 𝐸 as on slide 22,

and 
𝑃(𝐿𝐹)

𝐿𝐸+1
𝐿𝐹

cancels out

(**)(*)

(*) Because 𝑃 𝐹 𝐸 =
σ𝑎𝑖∈𝒜

𝑃(𝐹, 𝑎𝑖|𝐸) (slide 23)
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IBM-1 E: compute 𝑷(𝒂|𝑬, 𝑭)

• We want the probability of an alignment 𝒂 so that 
we can compute the expected 𝐶𝑜𝑢𝑛𝑡(𝑓𝑗 , 𝑒𝑖).

𝑃 𝑎 𝐸, 𝐹 =
𝑃(𝐹|𝑎, 𝐸)

σ𝑎𝑖∈𝒜
𝑃(𝐹|𝑎𝑖 , 𝐸)

• This is not the same as the probability 𝑃 𝑎 𝐸, 𝐿𝐹 .
• i.e., it won’t always be uniform.
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IBM-1 E: compute 𝑷(𝒂|𝑬, 𝑭)

𝑃 𝑎 𝐸, 𝐹 =
Τ𝟏 𝟗

Τ𝟏 𝟗 + 𝟏/𝟗
=
𝟏

𝟐
𝑃 𝑎 𝐸, 𝐹 =

Τ𝟏 𝟗

Τ𝟏 𝟗 + 𝟏/𝟗
=
𝟏

𝟐

𝑃 𝑎 𝐹, 𝐸 =
Τ1 9

Τ1 9 + 1/9
=
𝟏

𝟐
𝑃 𝑎 𝐸, 𝐹 =

Τ1 9

Τ1 9 + 1/9
=
𝟏

𝟐

‘S
en

te
n

ce
’ 1

‘S
en

te
n

ce
’ 2

4. For each element in your grid, 
divide 𝑃(𝐹|𝑎, 𝐸) by the sum of 
the row (slide 33). 
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IBM-1 E: compute 𝑻𝑪𝒐𝒖𝒏𝒕

𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑏𝑙𝑢𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, 𝑏𝑙𝑢𝑒
=?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑙𝑎, 𝑏𝑙𝑢𝑒 =?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑚𝑎𝑖𝑠𝑜𝑛, ℎ𝑜𝑢𝑠𝑒

=
1

2
+
1

2
= 1

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, ℎ𝑜𝑢𝑠𝑒
=?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑙𝑎, ℎ𝑜𝑢𝑠𝑒
=?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑚𝑎𝑖𝑠𝑜𝑛, 𝑡ℎ𝑒
=?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, 𝑡ℎ𝑒
=?

𝑇𝐶𝑜𝑢𝑛𝑡 𝑙𝑎, 𝑡ℎ𝑒 =?
5. For each possible word pair 𝑒 and 𝑓, 

sum 𝑃 𝑎 𝐸, 𝐹 from step 4 across 
all alignments and sentence pairs for 
each instance that 𝑒 is aligned with 𝑓

maison and blue are aligned only in 
alignment 1, sentence 1.

𝑃 𝑎 = 1 𝐹1, 𝐸1 =
1

2

maison and house are aligned 
in alignment 2, sentence 1.

and
alignment 1, sentence 2

𝑃 𝑎 = 2 𝐹1, 𝐸1 =
1

2

𝑃 𝑎 = 1 𝐹2, 𝐸2 =
1

2

This is a new table,
not the 𝜃 = 𝑃 𝑓 𝑒 table 
from before!
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IBM-1 E: compute 𝑻𝑪𝒐𝒖𝒏𝒕

38

𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑏𝑙𝑢𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, 𝑏𝑙𝑢𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑏𝑙𝑢𝑒)
= 0

𝑇𝐶𝑜𝑢𝑛𝑡 𝑚𝑎𝑖𝑠𝑜𝑛, ℎ𝑜𝑢𝑠𝑒

=
1

2
+
1

2
= 1

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, ℎ𝑜𝑢𝑠𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, ℎ𝑜𝑢𝑠𝑒)

=
1

2
𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑡ℎ𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, 𝑡ℎ𝑒
= 0

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑡ℎ𝑒) =
1

2
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IBM-1 E: compute 𝑻𝒐𝒕𝒂𝒍

E.g., 𝑻𝒐𝒕𝒂𝒍 𝒃𝒍𝒖𝒆 =
𝟏

𝟐
+

𝟏

𝟐
= 𝟏,

𝑻𝒐𝒕𝒂𝒍 𝒉𝒐𝒖𝒔𝒆 = 𝟏 +
𝟏

𝟐
+

𝟏

𝟐
= 𝟐,      …

𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑏𝑙𝑢𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, 𝑏𝑙𝑢𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑏𝑙𝑢𝑒)
= 0

𝑇𝐶𝑜𝑢𝑛𝑡 𝑚𝑎𝑖𝑠𝑜𝑛, ℎ𝑜𝑢𝑠𝑒

=
1

2
+
1

2
= 1

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, ℎ𝑜𝑢𝑠𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, ℎ𝑜𝑢𝑠𝑒)

=
1

2
𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑡ℎ𝑒)

=
1

2

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, 𝑡ℎ𝑒
= 0

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑡ℎ𝑒) =
1

2
6. Sum over the rows of this table to get 

the total estimates for each English 
word, 𝑒.
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IBM-1 M: Recompute 𝑷(𝒇|𝒆)

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 𝑏𝑙𝑢𝑒

=
1/2

1

𝑃 𝑏𝑙𝑒𝑢𝑒 𝑏𝑙𝑢𝑒

=
1/2

1

𝑃 𝑙𝑎 𝑏𝑙𝑢𝑒

=
0

1

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒

=
1

2

𝑃 𝑏𝑙𝑒𝑢𝑒 ℎ𝑜𝑢𝑠𝑒

=
1/2

2
=
1

4

𝑃 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒

=
1/2

2
=
1

4

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 𝑡ℎ𝑒

=
1/2

1

𝑃 𝑏𝑙𝑒𝑢𝑒 𝑡ℎ𝑒

=
0

1

𝑃 𝑙𝑎 𝑡ℎ𝑒

=
1/2

1

𝜃1:

7. Compute 𝑃 𝑓 𝑒 =
𝑇𝐶𝑜𝑢𝑛𝑡(𝑓,𝑒)

𝑇𝑜𝑡𝑎𝑙(𝑒)

This is your model after iteration 1.
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IBM-1 EM: Repeat

• You have finished 1 iteration of EM when you have
completed Step 7,

• Go back to Step 2 and repeat. 
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IBM-1 EM: Repeat

1. Initialize 𝑃 𝑓 𝑒
2. Make grid of all possible alignments

3. Compute 𝑃 𝐹 𝑎, 𝐸 → Products of 𝑃 𝑓 𝑒
4. Compute 𝑃 𝑎 𝐸, 𝐹 → Divide by sum of rows from 

step 3

5. Compute 𝑇𝐶𝑜𝑢𝑛𝑡→ Sum relevant probabilities from 
step 4

6. Compute 𝑇𝑜𝑡𝑎𝑙→ Sum over rows from step 5

7. Compute 𝑃 𝑓 𝑒 =
𝑇𝐶𝑜𝑢𝑛𝑡(𝑓,𝑒)

𝑇𝑜𝑡𝑎𝑙(𝑒)
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IBM-1 E: compute 𝑷(𝑭|𝒂, 𝑬)

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑚𝑎𝑖𝑠𝑜𝑛|𝑏𝑙𝑢𝑒 ×

𝑃 𝑏𝑙𝑒𝑢𝑒 ℎ𝑜𝑢𝑠𝑒 =
1

2
∙
1

4
=
𝟏

𝟖

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑏𝑙𝑒𝑢𝑒|𝑏𝑙𝑢𝑒 ×

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

2
∙
1

2
=
𝟏

𝟒

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑙𝑎|𝑡ℎ𝑒 ×

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

2
∙
1

2
=
𝟏

𝟒

𝑃(𝐹|𝑎, 𝐸) = 𝑃 𝑚𝑎𝑖𝑠𝑜𝑛|𝑡ℎ𝑒 ×

𝑃 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒 =
1

2
∙
1

4
=
𝟏

𝟖

‘S
en

te
n

ce
’ 1

‘S
en

te
n

ce
’ 2

2: make grid
3: compute products of 𝑃(𝑓|𝑒)
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IBM-1 E: compute 𝑷(𝒂|𝑬, 𝑭)

𝑃 𝑎 𝐸, 𝐹 =
1/4

Τ1 8 + 1/4
=
𝟐

𝟑
𝑃 𝑎 𝐸, 𝐹 =

Τ1 8

Τ1 8 + 1/4
=
𝟏

𝟑

𝑃 𝑎 𝐸, 𝐹 =
Τ1 8

1/4 + 1/8
=
𝟏

𝟑
𝑃 𝑎 𝐸, 𝐹 =

Τ1 4

Τ1 4 + 1/8
=
𝟐

𝟑

‘S
en

te
n

ce
’ 1

‘S
en

te
n

ce
’ 2

4: divide by sum of rows in step 3
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IBM-1 E: compute 𝑻𝑪𝒐𝒖𝒏𝒕 & 𝑻𝒐𝒕𝒂𝒍

𝑇𝑜𝑡𝑎𝑙 𝑏𝑙𝑢𝑒 =
𝟏

𝟑
+

𝟐

𝟑
= 1, 𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑠𝑒 =

4

3
+

1

3
+

1

3
= 2, 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑒 =
1

3
+

2

3
= 1

𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑏𝑙𝑢𝑒)

=
𝟏

𝟑

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, 𝑏𝑙𝑢𝑒)

=
𝟐

𝟑

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑏𝑙𝑢𝑒)
= 0

𝑇𝐶𝑜𝑢𝑛𝑡 𝑚𝑎𝑖𝑠𝑜𝑛, ℎ𝑜𝑢𝑠𝑒

=
2

3
+
2

3
=
4

3

𝑇𝐶𝑜𝑢𝑛𝑡(𝑏𝑙𝑒𝑢𝑒, ℎ𝑜𝑢𝑠𝑒)

=
1

3

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, ℎ𝑜𝑢𝑠𝑒)

=
1

3

𝑇𝐶𝑜𝑢𝑛𝑡(𝑚𝑎𝑖𝑠𝑜𝑛, 𝑡ℎ𝑒)

=
1

3

𝑇𝐶𝑜𝑢𝑛𝑡 𝑏𝑙𝑒𝑢𝑒, 𝑡ℎ𝑒
= 0

𝑇𝐶𝑜𝑢𝑛𝑡(𝑙𝑎, 𝑡ℎ𝑒) =
2

3

5. Compute TCount by summing 
relevant probabilities from step 4

6. Compute Total by summing rows 
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IBM-1 M: Recompute 𝑷(𝒇|𝒆)

• Compute 𝑃 𝑓 𝑒 =
𝑇𝐶𝑜𝑢𝑛𝑡(𝑓,𝑒)

𝑇𝑜𝑡𝑎𝑙(𝑒)

𝑷 𝒎𝒂𝒊𝒔𝒐𝒏 𝒃𝒍𝒖𝒆

=
𝟏/𝟑

𝟏

𝑷 𝒃𝒍𝒆𝒖𝒆 𝒃𝒍𝒖𝒆

=
𝟐/𝟑

𝟏

𝑃 𝑙𝑎 𝑏𝑙𝑢𝑒

=
0

1

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒

=
4/3

2
=
2

3

𝑃 𝑏𝑙𝑒𝑢𝑒 ℎ𝑜𝑢𝑠𝑒

=
1/3

2
=
1

6

𝑃 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒

=
1/3

2
=
1

6

𝑃 𝑚𝑎𝑖𝑠𝑜𝑛 𝑡ℎ𝑒

=
1/3

1

𝑃 𝑏𝑙𝑒𝑢𝑒 𝑡ℎ𝑒

=
0

1

𝑃 𝑙𝑎 𝑡ℎ𝑒

=
2/3

1

Ties have been broken
e.g.,

𝑃(𝑚𝑎𝑖𝑠𝑜𝑛|𝑏𝑙𝑢𝑒)
≠ 𝑃(𝑏𝑙𝑒𝑢𝑒|𝑏𝑙𝑢𝑒)𝜃2:
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Practical note on programming IBM-1

• If you were to code the EM algorithm for IBM-1, you would 
not initialize 𝜃 = 𝑃(𝑓|𝑒) uniformly over the entire vocabulary.
• Don’t make a 𝑉𝐹 × 𝑉𝐸 table with 𝑃 𝑓 𝑒 = 1/ 𝑉𝐸

• This structure would be too large. 
• Probabilities would be too small. 
• It would take too much work to update.

• Rather, initialize a hash table over possible alignments, ℳ. 
For every English word 𝑒, only consider French words 𝑓 in 
sentences aligned with English sentences containing 𝑒.

• e.g., structure P. 𝑒. 𝑓 ≔ 𝑃 𝑓 𝑒 = 1/ ℳ
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Higher IBM models

• Only IBM Model 1 training reaches a global maximum
• Training of each IBM model extends the next lowest model.

• Higher models become computationally expensive.

IBM Model 1 lexical translation

IBM Model 2 adds absolute re-ordering model

IBM Model 3 adds fertility model

… …
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IBM-2

• Unlike IBM Model-1, the placement of a word in, say, Spanish in 
IBM Model-2 depends on where its equivalent word was in English.
• IBM-2 captures the intuition that translations should lie roughly 

“along the diagonal”.

Buenos dias , me gusta papas frías

Good X

day X

, X

I X

like X

cold X

potatoes X
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IBM-2

• IBM Model 2 builds on Model 1 by adding a re-ordering model 
defined by distortion parameters regardless of actual words.

𝐷 𝑖 𝑗, ℒ𝐸 , ℒ𝐹 =   the probability that the 𝑖𝑡ℎ English slot
is aligned to the 𝑗𝑡ℎ French slot, 
given sentence lengths ℒ𝐸 and ℒ𝐹.

• In IBM Model 2:

𝑃 𝑎 𝐸, ℒ𝐸 , ℒ𝐹 = ෑ

𝑗=1

ℒ𝐹

𝐷(𝑎𝑗|𝑗, ℒ𝐸 , ℒ𝐹)

• Recall that in IBM Model 1,

𝑃 𝑎 𝐸, ℒ𝐸 , ℒ𝐹 =
𝑃(ℒ𝐹)

ℒ𝐸 + 1 ℒ𝐹
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IBM-2 – Probability of alignment

• 𝐸 = And the program has been implemented
• 𝐹 = Le programme a été mis en application
• ℒ𝐸 = 6
• ℒ𝐹 = 7
• 𝑎 = {2,3,4,5,6,6,6} (i.e., 𝑓1 ← 𝑒2, 𝑓2 ← 𝑒3,…)

• 𝑃(𝑎|𝐸, ℒ𝐸 , ℒ𝐹)= 𝐷 2 1,6,7 × 𝐷 3 2,6,7 × 𝐷 4 3,6,7 ×
𝐷 5 4,6,7 ×
𝐷 6 5,6,7 × 𝐷 6 6,6,7 × 𝐷(6|7,6,7)

D(2nd English word|1st French word,…)

This is independent of the actual words.
This cares only about position.
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IBM-2: generation

• To generate a French sentence 𝐹 from English 𝐸,
1. Pick an alignment with probability 

ς𝒋=𝟏
𝓛𝑭 𝑫(𝒂𝒋|𝒋, 𝓛𝑬, 𝓛𝑭)

3. Sample French words with probability

𝑃 𝐹 𝑎, 𝐸 =ෑ

𝑗=1

ℒ𝐹

𝑃(𝑓𝑗|𝑒𝑎𝑗)

𝑃 𝐹, 𝑎 𝐸 = 𝑃 𝑎 𝐸 𝑃 𝐹 𝑎, 𝐸 =ෑ

𝑗=1

ℒ𝐹

𝑫(𝒂𝒋|𝒋, 𝓛𝑬, 𝓛𝑭)𝑃(𝑓𝑗|𝑒𝑎𝑗)

So,

This is the same 𝑃(𝑓|𝑒)
as in IBM-1.
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IBM-2: training

• We use EM, as before with IBM-1 except that we need to 
take the distortion into account when computing the 
probability of an alignment.

• We also need to learn the distortion function.

• Aren’t you glad that you don’t need to know how to 
compute EM for IBM-2?
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IBM-3

• IBM Model 3 extends Model 2 by adding a fertility model that 
describes how many French words each English word can produce.
• In the example below, implemented appears to be more fertile 

than program.

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0
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IBM-3: The generation model

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑒0

• First, we replicate each word according to a new hidden parameter, 
𝑵(𝒏|𝒆), which is the probability that word 𝒆 produces 𝒏 words.
• We then re-align (with distortion) and translate as we did in 

IBM-2. 

𝑁(𝑛|𝑒)
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IBM models

IBM Model 1 lexical translation

IBM Model 2 adds absolute re-ordering model

IBM Model 3 adds fertility model
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Reading
• Entirely optional: Vogel, S., Ney, H., and Tillman, C. (1996). HMM-based 

Word Alignment in Statistical Translation. In: Proceedings of the 16th 
International Conference on Computational Linguistics, pp. 836-841, 
Copenhagen.

• (optional) Gale & Church “A Program for Aligning Sentences in Bilingual 
Corpora” (on course website)

• Useful reading on IBM Model-1: Section 25.5 of the 
2nd edition of the Jurafsky & Martin text. 
• 1st edition available at Robarts library.

• Other: Manning & Schütze Sections 13.0, 13.1.2 
(Gale&Church), 13.1.3 (Church), 13.2, 13.3, 14.2.2
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