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Lecture 2 overview

® This lecture:
* Linguistic data,
* Language models
®°j.e. “N-grams”
* Smoothing

* Some slides are based on content from Bob Carpenter, Dan Klein,
Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald
Penn, and Bill MacCartney.
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Word prediction with N-grams

* N-grams: n.pl. token sequences of length N.

* The fragment ‘in this sentence is’ contains the
following 2-grams (i.e., ‘bigrams’):
* (in this), (this sentence), (sentence is)

®* The next bigram must start with is’.

* What word is most likely to follow ‘is’?

2Ea
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Example bigram probabilities

* Obtain likelihoods by dividing bigram counts by unigram
counts.

I want to eat Chinese food lunch spend

Unigram counts:

lunch spend

" 827
T
Count IS end 2
P(spend|l) = v ) —— ~79x%x107%

2533

i
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Example bigram probabilities

* Obtain likelihoods by dividing bigram counts by unigram
counts.

eat Chinese food lunch

2533 | 927 2417 746 | 158

spend

Unigram counts: I 1093 I 341 I 278

Chinese food lunch spend
I 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
Chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0
=
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Mammum estimate

* Maximum likelihood estimate (MLE) of parameters 0
in a model M, given training data T is

the estimate that maximizes the likelihood of the
training data using the model.

° e.g, T is the Brown corpus,
M is the bigram and unigram tables

O tojwant) is P(to|lwant).

* In fact, we have been doing MLE, within the N-gram
context, all along with our simple counting.
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A



Perplexity

* Perplexity of corpus C, PP((C)
* If you have a vocabulary V with || V||
and your LM is uniform (i.e., P(w) = 1/”V|| Vw EV),

®* Then

- (ot P©) _<1°g2[(1/||v||)‘”C”])
PP(C) =2 ICI| = 2 IC]| — 2~ logz(1/1IVI) = plog: |V

[V yPp U
* Perplexity is sort of like a ‘branching factor/‘Q @( (FL

* Minimizing perplexity = maximizing probability of corpus

HRE
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ZIPF AND THE NATURAL DISTRIBUTIONS
IN LANGUAGE

3
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Sparseness

* Problem with N-gram models:

°* New words appear often as we read new data.
* e.g., interfrastic, espepsia, $182,321.09
* New bigrams occur even more often.
* Recall that Shakespeare only wrote ~0.04% of all
the bigrams he could have, given his vocabulary.
® Because there are so many possible bigrams, we
encounter new ones more frequently as we read.

* New trigrams occur even more even-more-often.

UNIVERSITY OF
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Sparseness of unigrams vs. bigrams

* Conversely, we can see lots of every unigram, but still
miss many bigrams:

Chinese food lunch

Unigram counts:

Chinese food lunch

eat

|
I
|
|

K 3 | UMIVERSITY OF
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Why does sparseness happen?

®* The bigram table appears to be filled in non-uniformly.

* Clearly, some words (eg, want) are very popular and will
occur in many bigrams just from random chance.

®* Other words are nOt'SO'pOpUIar (e.g., hippopotomonstrosesquipedalian).
They will occur infrequently, and when they do their
partner word will have its own P(w).

* |s there some phenomenon that describes P(w)

in real language? s
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Patterns of unigrams

. Wor Tom Sawyer by Mark Twain:

Frequency

3332

2972
a 1775
to 1725
of 1440
was 1161
it 1027
in 906
that 877
he 877

CSC401/2511 — Spring 2019

* A few words occur
very frequently.

* Aside: the most frequent 256 English
word types account for 50% of English
tokens.

* Aside: for Hungarian, we need the top
4096 to account for 50%.

°* Many words occur
very infrequently.

T
UMIVEESITY OF

55 @ TORONTO



Frequency of frequencies

°* How many words = in Tom Sawyer?
L\
Hapax legomena: n.pl. d\lord frequency ¢ of word types with that frequmcy

———————— S— 7 S—

words that occur once

: e.g.,
in a corpus.

1292 word types
occur twice

_I_

Notice how many
> word types are
relatively rare!

6 199

51-100 99

&
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Ranking words in Tom Sawyer

®* Rank word types

/

Word Freq.
hame 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
but 410 20 8400 ) friends 10 800 8000 |
be 294 30 8820 / begin 9 900 8100 |
there | 222 40 8880 k family 8 1000 | 8000
one 172 50 8600 /| brushed 4 2000 | 8000
about | 158 60 9480 7 sins 2 3000 6000
more | 138 70 9660 ( Could 2 4000 | 8000
never 124 80 9920 Applausive 1 8000 8000

CSC401/2511 — Spring 2019
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irorder of decreasing frequency.

With some
(relatively minor)
exceptions,
forisvery
consistent!
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Zipf's Law

* In Human Behavior and the Principle of Least Effort, Zipf

argues!’) that all human endeavour depends on laziness.
* Speaker minimizes effort by having.a small vocabulary of

common words. \1/ LQ E
* Hearer minimizes effort by having a large vocabulary of

less ambiguous words. “% ﬁ \\/ F

°* Compromise: freque inversely proportional.

1
f «— e, forsome k f-rr@
r

(*) This does not make it true.

UNIVERSITY OF
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Zipf’s Law on the Brown corpus

> 10000 100000

1000

frequency

o
—

1 10 100 1000 10000 100000
anning & Schiitze &
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Zipf’s Law on the novel Moby Dick
(-

10000

Rank (log scale)
From Wikipedia &
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Mandelbrot

® In “Structure formelle des textes et communication”.
Word 10:1—27, Benoit Mandelbrot claimed that
Zipf lacks detail.

* With hand-tuneable parameters P, B and p, he

suggests
el

UNIVERSITY OF
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Zipf vs. Mandelbrot on Brown corpus
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graphs from Manning & Schiitze o
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Zipf’s Law in perspective

* Zipf’'s explanation of the phenomenon involved human
laziness.

* Simon’s discourse model (1956) argued that the phenomenon
could equally be explained by two processes:
* People imitate relative frequencies of words they hear
* People innovate new words with small, constant probability

* There are other explanations.

R
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side — Zipf’s Law in perspective

'\ Zipf also observed that frequency correlates with several other
properties of words, e.g.:

* Age (frequent words are old)
(frequent words often have many meanings or
higher-order functions of meaning, e.g., chair)

* Length (frequent words are spelled with few letters)

* He also showed that there are hyperbolic distributions in the world
(crucially, they’re not Gaussian), just like: 8 Q
® Yule’s Law: B = 1+g QB
* s: probability of mutation becoming dommant? ﬁfles
* g: probability of mutation that expels species from genus
* Pareto distributions (wealth distribution)
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Zero probability in Shakespeare

(S

~=~-845M bigrams, given his lexicon.

°* Nowimagine that someone finds a new play and wants
to know whether it is Shakespearean...

* Shakespeare isn’t very predictable! Every time the play
uses one of those 99.96% bigrams, the sentence that
contains it (and the play!) gets O probability.

® This is bad.

2 UNIVERSITY OF
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Zero probability in general

* Some N-grams are just really rare.

°e.g., perhapé’néative press covfefﬁ

* |f we had more data, perhaps we’d see them.

* |f we have no way to determine the distribution
of unseen N-grams, how can we estimate them?

2 UNIVERSITY OF
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Smoothing mechanisms

* Smoothing methods include:
1. Add-0 smoothing (Laplace)
2. Good-Turing smoothing
3. Katz smoothing
4. Simple interpolation (Jelinek-Mercer)
5. Absolute discounting
6. Kneser-Ney smoothing

2 UNIVERSITY OF
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Smoothing as redistribution

* Make the distribution more uniform.

® This moves the probability mass from ‘the rich’ towards
‘the poor’.

10 10

I N/ 6

T
\Z N\ < N~ AN N\ <
o) (,)o ®) K\ (o) (.)O ®) S\
§ 4}‘9 > N 4}{0 L &
A

W Actual counts W Adjusted counts M Imaginary
&
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1. Add-1 smoothing (“Laplace discounting”)
* Given vocab size(||V|| )and corpus size@/}r: IC]].

* Just add 1 to all the counts! No more zefost—

ST D (D

| t
* Laplace estimate PLap (w) 01;,7: |TV|I

* Does this give a proper probability di?t\rysution? Yes:

ZAVAY
?unt(w) +1 ( X, Countt(w) >, 1 N+ V|| B
SNIENT V| N+l

—_—

#
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1. Add-1 smoothing for bigrams

* Same principle for bigrams:
Chunt(w,_ Wl 1

PLap (Welwe_q) =
CO‘LW

* We are essentially holding out and spreading
IVI|/(N + ||[V]]) uniformly over “imaginary” events.

®* Does this work?

T
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1. Laplace smoothed bigram counts

® Out of 9222 sentences in Berkeley restaurant corpus,
* e.g., “Iwant” occurred 827 times so Laplace gives 828

Count(w, ,w,)

|
5+1

T

eat
9+1

W,

Chinese
1

food
1

spend
1 2+1

lunch

want 2+1

5081

1+1

6+1

6+1

5+1 1+1

I to 2+1
| eat

it | oI I- I 1+1
| food
|
|

spend

CSC401/2511 — Spring 2019

1

1

686+1

1

72

2+1

1

1

82+1

unch  EEE S Y NS W AR T

6+1 211+1

1+1 1

| UMIVERSITY OF

% TORONTO



1. Laplace smoothed probabilities

PLap (Wt |Wt—1) —

C(we_qwe) +

to
eat
Chinese
food
lunch

spend

CSC401/2511 — Spring 2019

C(we_q) K[V

spend
0.0015 0.21 0.00025 | 0.0025 0.00025 0.00025 0.00025 0.00075
0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
0.00083 | 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
0.00046 | 0.00046 0.0014 | 0.00046 0.0078 0.0014 0.02 0.00046
0.0012 0.00062 | 0.00062 | 0.00062 0.00062 0.052 0.0012 0.00062
0.0063 0.00039 0.0063 | 0.00039 0.00079 0.002 0.00039 0.00039
0.0017 0.00056 | 0.00056 | 0.00056 0.00056 0.0011 0.00056 0.00056
0.0012 0.00058 0.0012 | 0.00058 0.00058 0.00058 0.00058 0.00058




1. Add-1 smoothing

* According to this method, q
P(to|want) went from 0.66 to 0.26.

* That’s a huge change!
* |In extrinsic evaluations, the results are not great.
* Sometimes “Ws is spread across
unseen events.
* It only works if we knowv\beforehand.

A
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1. Add-6 smoothing —> ;| |(
U‘) %Y
* Generalize Laplace: Add 6 < 1 to be a bit less ge

° MLE : Count(w)/N

* Add- § estimate P gq_s(W) = Count(w)+9
i N+5|V| W b
I Gt
* Does this give a proper probability distributien? Yes:
ZP (w) £ ount(w)+5_ @
e N+§Ivi N + 8|V

N T 5||V|| This sometimes works
N + 5||V|| empirically (e.g., in text

categorization), sometimes
not...

5
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Is there another way? | vy Qﬂ SO Lo
* Has Zipf taught us nothing? /\\ ON C/Q

* We shouldn’t adjust all words uniformly.
* Unseen words should behave more like hapax legomena.

 Words that occur a lot should behave like other words
that occur a lot.

* If | keep reading from a corpus, by the time | see a new
word like ‘zenzizenzizenzic’, | will have seen ‘the’ a lot
more than once more.

R

2 UNIVERSITY OF
CSC401/2511 — Spring 2019 76 ¥ TORONTO



2. Good-Turing =0

. Define@x the number of N-grams that occur ¢ times.
Word # of words (i.e., unigrams)

=
frequency with that frequency -
— |1 N;=3993 7 C——ﬁqp( LJ> h J
_— |2 N, =1292 7N _
— I3 N; =664  — q\)

(from Tom Sawyer)

* For some word in ‘bin” N, the MLEstimate is that | saw that
word ¢ times.

* Ildea: get rid of zeros by re-estimating ¢ using the MLE
estimate of words that occur ¢ + 1 times.

o
UNIVERSITY OF

CSC401/2511 — Spring 2019 77 @ TORONTO



2. Good-Turing intuition/example

* Imagine you have this toy scenario: [ m
m ship pass camp frock soccer mother tops W

= 23 words total

* What is the MLE prior probability of hearing ‘soccer’?
* P(soccer) =1/23

—

* What is the probability of seeing something new?
°* No way to tell, but 3/23 words are hapax legomena (N; = 3).
° If we use 3/23 to approximate things we’ve never seen, then we
have to also adjust other probabilities (e.g., Pcr(soccer) < 1/23).

FCunseon-wol §)=3 / 234

CSC401/2511 — Spring 2019 % TO RONTO



2. Good-Turing adjustments

D
* P.r([lunseen]) = N, /N
(c+1)Ncyq

®* Re-estimate count ¢c* =

N¢

* Unseen words
cec=1(

* MLE:p = 0/23

* Pir(Junseen]) = m

CSC401/2511 — Spring 2019

N4

=3/23

* Seen once (e.g., soccer)
*c=1
°* MLE:p = 1/23
* c*(soccer) = 2 -
=2-1/3
! 2
* Prr(soccer) = (5) /23

N

1

ity
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2. Good-Turing limitations

° Q: What happens when you want to estimate P(w)
when w occurs ¢ times, but no word occurs ¢ + 1 times?
* E.g., whatis P-(camp) since N, = 0 ?

—
mmip pass camp frock soccer mother tops
(c+1)E[Nc4

* Al: We can re-estimate count ¢* =

* We can use Expectation-Maximization, whicmlaten

°* A2: We can interpolate linearly, in log-log, between
values of ¢ that we do have.

0
UMIVEESITY OF
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2. Good-Turing limitations
®* Q: What happens when Caunt{McGill = 0
and Count( cGill = 0, and we smooth

brainbox|McGill)

P(genius|McGill) > P(brainbox|McGill)
(context notwithstanding) because ‘genius’is a more
common word than ‘brainbox’). .

° A; P(genluSIMcGlll) = @

* The solution may be to combine bigram and unigram
models...

A
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3. Katz backoff

* N-grams with non-zero count, e.g., ¢ = C(W;_1W;), are
discounted according to a ratio d ., similar to Good-Turing.

* ‘Count mass’ subtracted from existing N-grams are
redistributed to (N — 1)-grames.

¢ CWe_qwy) \ifCwi_qwy) > 05 d. <1
a(we_1)P(wy) otherwise

Cratz(We—1We) = {

p e ) = Cratz(We—1W¢)
K 3w Cratz (Wi W)

R
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3. Katz backoff

—1 Vﬂr)_ ifC(Wt_lwt) > O, dC <1
a(Wi_1) PXw;) otherwise

* We set 50 2w, Cratz(We—1We) = 2w, C(We_qwy).
* The sotutio

1on-trivial (but close), and left as an exercise.

Cratz(We—1Wy) =

* Katz suggests ‘large’ counts (¢ > 5) are reliable; d%,:_l
* Otherwise, we set d . so that the total discount equals the

fictional counts given by Good-Turing to unseen events.
* le.,solveforY¥_n.(1—-d.) -c=ny

* Katz generalizes to higher-order N-grams, recursively.

UNIVERSITY OF
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4. Simple interpolation (Jelinek-Mercer)

®* Combine trigram, bigram, and unigr
* P(welweawe 1) = 44

/UA Y/

L A
* With };; 1; = 1 this constitutes a real istribution. M

robabilities.

* /1; determined from held-out (aka development) E

® Fix N-gram probabilities on training set.

* Adjust A; that give highest probability to held-out data.
* (again, we can use “expectation-maximization”, to be discussed later)

\/1@\@1 0l = W:UQ\) 1O
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[

5. Absolute discounting ~ —_ %" o)
o

* Instead of multiplying highest N-gram by @Just subtract
a fixed discount 0 from each non-zero count.

) = 5,9)
Pabs(thwt—n+1:t—1) 7 Seontlit -+ ( N ;Lwt_n+1:t_1) a (thwt—n+2:t—1)
Wi n+1.t—1) / S
I { .~ t

The n-1 woxds

of context e discounted ML estimate
The weighting factor And recurse using
for the n-1 words the n-2 words
of context of context

® Once again, you need to learn 4 and o using held-out data.
e
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6. Kneser-Ney smoothing

* |In interpolation, lower-order (e.g., N — 1) models should
only be useful if the N-gram counts are close to 0.
® E.g., unigram models should be optimized for when
bigrams are not sufficient.
* Imagine the bigram ‘San Francisco’ is common .. ‘Francisco’
has a very high unigram probability because it occurs a lot.
® But ‘Francisco’ only occurs after ‘San’.

* Idea: We should give ‘Francisco’ a low unigram probability,
because it only occurs within the well-modeled ‘San Francisco’.

UNIVERSITY OF
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6. Kneser-Ney smoothing

* Let the unigram count be the number of different words
that it follows. l.e.:
Nip (o we) = [we1: C(we_qwy) > 0

N1_|_(“) — N1_|_('Wl') «The total number of bigram types.
Wi

* So, the unigram probability is Py (W) = NAl,J’('(W)t), and:
1+\°°

Py Welwe_pi1:6-1) =
max(CWe—pt1.6) —6,0) 6 NpyWe—pt1.w—1°)

Zi C(Wi—n+1:i) Zwi C(Wi—n+1:i)

Py (WelWe_ng2:6-1)

Where N; . (W;_p4+1.w—1°) is the number of possible words that follow the context.
S UNIVERSITY OF
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Smoothing over smoothing

* Interpolation and backoff involve combining higher- and
lower-order models.

* Only interpolation includes information from lower-order
models when higher-order models have non-zero counts.

* Jelinek-Mercer performs better on small training sets; Katz
performs better on large training sets.

* Katz smoothing performs well on N-grams with large counts;
Kneser-Ney is best for small counts.

* Interpolated models are superior to backoff models for low
(nonzero) counts.
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Announcements and reading

®* Chen & Goodman (1996) An Empirical Study of
Smoothing Techniques for Language Modeling,
Proceedings of the 34th annual meeting of the

Association for Computational Linguistics, Pages 310-
318.

* Jurafsky & Martin (279 ed): 4.1-4.7

®* Manning & Schutze: 6.1-6.2.2, 6.2.5, 6.3

2
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http://aclweb.org/anthology/P96-1041

