

CSC401/2511 – Spring 2019 2

Lecture 2 overview

• This lecture:
• Linguistic data,
• Language models
• i.e., “N-grams”
• Smoothing

• Some slides are based on content from Bob Carpenter, Dan Klein,
Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald
Penn, and Bill MacCartney.

CSC401/2511 – Spring 2019 18

Word prediction with N-grams

• N-grams: n.pl. token sequences of length N.

• The fragment ‘in this sentence is’ contains the
following 2-grams (i.e., ‘bigrams’):
• (in this), (this sentence), (sentence is)

• The next bigram must start with ‘is’.

• What word is most likely to follow ‘is’?

CSC401/2511 – Spring 2019 30

Example bigram probabilities

I want to eat Chinese food lunch spend

2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

• Obtain likelihoods by dividing bigram counts by unigram
counts.

𝑃 𝑤𝑎𝑛𝑡 𝐼 ≈
𝐶𝑜𝑢𝑛𝑡(𝐼 𝑤𝑎𝑛𝑡)

𝐶𝑜𝑢𝑛𝑡(𝐼)
=

827

2533
≈ 0.33

𝑃 𝑠𝑝𝑒𝑛𝑑 𝐼 ≈
𝐶𝑜𝑢𝑛𝑡(𝐼 𝑠𝑝𝑒𝑛𝑑)

𝐶𝑜𝑢𝑛𝑡(𝐼)
=

2

2533
≈ 7.9 × 10−4

Unigram counts:

CSC401/2511 – Spring 2019 31

Example bigram probabilities

I want to eat Chinese food lunch spend

2533 927 2417 746 158 1093 341 278

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

Chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0

• Obtain likelihoods by dividing bigram counts by unigram
counts.

Unigram counts:

CSC401/2511 – Spring 2019 47

Maximum likelihood estimate

• Maximum likelihood estimate (MLE) of parameters 𝜃
in a model M, given training data T is

the estimate that maximizes the likelihood of the
training data using the model.

• e.g., 𝑻 is the Brown corpus,
𝑴 is the bigram and unigram tables
𝜽 𝑡𝑜 𝑤𝑎𝑛𝑡 is 𝑃 𝑡𝑜 𝑤𝑎𝑛𝑡 .

• In fact, we have been doing MLE, within the N-gram
context, all along with our simple counting.

CSC401/2511 – Spring 2019 48

Perplexity

• Perplexity of corpus 𝐶, 𝑃𝑃(𝐶) = 2
−

log2 𝑃(𝐶)

𝐶

• If you have a vocabulary 𝒱 with 𝒱 word types,
and your LM is uniform (i.e., 𝑃 𝑤 = ൗ1 𝒱 ∀ 𝑤 ∈ 𝒱),

• Then

𝑃𝑃 𝐶 = 2
−

log2 𝑃(𝐶)
𝐶 = 2

−
log2 ൗ1 𝒱 `

𝐶

𝐶 = 2− log2(Τ1 𝒱) = 2log2 𝒱

= 𝒱

• Perplexity is sort of like a ‘branching factor’.

• Minimizing perplexity ≡ maximizing probability of corpus

ZIPF AND THE NATURAL DISTRIBUTIONS
IN LANGUAGE

CSC401/2511 – Spring 2019 52

Sparseness

• Problem with N-gram models:
• New words appear often as we read new data.

• e.g., interfrastic, espepsia, $182,321.09

• New bigrams occur even more often.
• Recall that Shakespeare only wrote ~0.04% of all

the bigrams he could have, given his vocabulary.
• Because there are so many possible bigrams, we

encounter new ones more frequently as we read.

• New trigrams occur even more even-more-often.

CSC401/2511 – Spring 2019 53

Sparseness of unigrams vs. bigrams

I want to eat Chinese food lunch spend

2533 927 2417 746 158 1093 341 278

• Conversely, we can see lots of every unigram, but still
miss many bigrams:

Unigram counts:

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

Chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

CSC401/2511 – Spring 2019 54

Why does sparseness happen?

• The bigram table appears to be filled in non-uniformly.

• Clearly, some words (e.g., want) are very popular and will
occur in many bigrams just from random chance.

• Other words are not-so-popular (e.g., hippopotomonstrosesquipedalian).

They will occur infrequently, and when they do their
partner word will have its own 𝑃(𝑤).

• Is there some phenomenon that describes 𝑃 𝑤
in real language?

CSC401/2511 – Spring 2019 55

Patterns of unigrams

• Words in Tom Sawyer by Mark Twain:

• A few words occur
very frequently.
• Aside: the most frequent 256 English

word types account for 50% of English
tokens.

• Aside: for Hungarian, we need the top
4096 to account for 50%.

• Many words occur
very infrequently.

Word Frequency

the 3332

and 2972

a 1775

to 1725

of 1440

was 1161

it 1027

in 906

that 877

he 877

… …

CSC401/2511 – Spring 2019 56

Frequency of frequencies

• How many words occur 𝑋 number of times in Tom Sawyer?

Word frequency # of word types with that frequency

1 3993

2 1292

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91

11-50 540

51-100 99

>100 102

e.g.,
1292 word types
occur twice

Notice how many
word types are
relatively rare!

Hapax legomena: n.pl.
words that occur once

in a corpus.

CSC401/2511 – Spring 2019 57

Ranking words in Tom Sawyer

• Rank word types in order of decreasing frequency.

Word Freq.
(f)

Rank
(r)

f∙r

the 3332 1 3332

and 2972 2 5944

a 1775 3 5235

he 877 10 8770

but 410 20 8400

be 294 30 8820

there 222 40 8880

one 172 50 8600

about 158 60 9480

more 138 70 9660

never 124 80 9920

Word Freq.
(f)

Rank
(r)

f∙r

name 21 400 8400

comes 16 500 8000

group 13 600 7800

lead 11 700 7700

friends 10 800 8000

begin 9 900 8100

family 8 1000 8000

brushed 4 2000 8000

sins 2 3000 6000

Could 2 4000 8000

Applausive 1 8000 8000

With some
(relatively minor)
exceptions,
f∙r is very
consistent!

CSC401/2511 – Spring 2019 58

Zipf’s Law

• In Human Behavior and the Principle of Least Effort, Zipf
argues(*) that all human endeavour depends on laziness.
• Speaker minimizes effort by having a small vocabulary of

common words.
• Hearer minimizes effort by having a large vocabulary of

less ambiguous words.

• Compromise: frequency and rank are inversely proportional.

𝑓 ∝
1

𝑟
i.e., for some k 𝑓 ∙ 𝑟 = 𝑘

(*) This does not make it true.

CSC401/2511 – Spring 2019 59

Zipf’s Law on the Brown corpus

From Manning & Schütze

CSC401/2511 – Spring 2019 60

Zipf’s Law on the novel Moby Dick

From Wikipedia

CSC401/2511 – Winter 2012 61

Mandelbrot

• In “Structure formelle des textes et communication”.
Word 10:1—27, Benoit Mandelbrot claimed that
Zipf lacks detail.

• With hand-tuneable parameters 𝒫, 𝐵 and 𝜌, he
suggests

𝑓 = 𝒫 ∙ 𝑟 + 𝜌 −𝐵

CSC401/2511 – Spring 2019 62

Zipf vs. Mandelbrot on Brown corpus

Zipf Mandlebrot

graphs from Manning & Schütze

CSC401/2511 – Spring 2019 63

Zipf’s Law in perspective

• Zipf’s explanation of the phenomenon involved human
laziness.

• Simon’s discourse model (1956) argued that the phenomenon
could equally be explained by two processes:
• People imitate relative frequencies of words they hear
• People innovate new words with small, constant probability

• There are other explanations.

CSC401/2511 – Spring 2019 64

Aside – Zipf’s Law in perspective

• Zipf also observed that frequency correlates with several other
properties of words, e.g.:
• Age (frequent words are old)
• Polysemy (frequent words often have many meanings or

higher-order functions of meaning, e.g., chair)
• Length (frequent words are spelled with few letters)

• He also showed that there are hyperbolic distributions in the world
(crucially, they’re not Gaussian), just like:
• Yule’s Law: B = 1 +

• s: probability of mutation becoming dominant in species
• g: probability of mutation that expels species from genus

• Pareto distributions (wealth distribution)

g

s

SMOOTHING

CSC401/2511 – Spring 2019 66

Zero probability in Shakespeare

• Shakespeare’s collected writings account for about
300,000 bigrams out of a possible
𝑉2 ≈ 845𝑀 bigrams, given his lexicon.

• So 99.96% of the possible bigrams were never seen.
• Now imagine that someone finds a new play and wants

to know whether it is Shakespearean…
• Shakespeare isn’t very predictable! Every time the play

uses one of those 99.96% bigrams, the sentence that
contains it (and the play!) gets 0 probability.

• This is bad.

CSC401/2511 – Spring 2019 67

Zero probability in general

• Some N-grams are just really rare.
• e.g., perhaps ‘negative press covfefe’

• If we had more data, perhaps we’d see them.

• If we have no way to determine the distribution
of unseen N-grams, how can we estimate them?

CSC401/2511 – Spring 2019 68

Smoothing mechanisms

• Smoothing methods include:
1. Add-𝛿 smoothing (Laplace)
2. Good-Turing smoothing
3. Katz smoothing
4. Simple interpolation (Jelinek-Mercer)
5. Absolute discounting
6. Kneser-Ney smoothing

CSC401/2511 – Spring 2019 69

Smoothing as redistribution

• Make the distribution more uniform.
• This moves the probability mass from ‘the rich’ towards

‘the poor’.

0

2

4

6

8

10

Adjusted counts Imaginary

0

2

4

6

8

10

Actual counts

CSC401/2511 – Spring 2019 70

1. Add-1 smoothing (“Laplace discounting”)

• Given vocab size 𝒱 and corpus size 𝑁 = 𝐶 .
• Just add 1 to all the counts! No more zeros!

• MLE : 𝑃 𝑤 = Τ𝐶𝑜𝑢𝑛𝑡(𝑤) 𝑁

• Laplace estimate : 𝑃𝐿𝑎𝑝 𝑤 =
𝐶𝑜𝑢𝑛𝑡 𝑤 +1

𝑁+ 𝒱

• Does this give a proper probability distribution? Yes:

෍

𝑤

𝑃𝐿𝑎𝑝 𝑤 =෍

𝑤

𝐶𝑜𝑢𝑛𝑡 𝑤 + 1

𝑁 + 𝒱
=
σ𝑤 𝐶𝑜𝑢𝑛𝑡 𝑤 + σ𝑤 1

𝑁 + 𝒱
=
𝑁 + 𝒱

𝑁 + 𝒱
= 1

CSC401/2511 – Spring 2019 71

1. Add-1 smoothing for bigrams

• Same principle for bigrams:

𝑃𝐿𝑎𝑝 𝑤𝑡 𝑤𝑡−1 =
𝐶𝑜𝑢𝑛𝑡 𝑤𝑡−1𝑤𝑡 + 1

𝐶𝑜𝑢𝑛𝑡 𝑤𝑡−1 + 𝒱

• We are essentially holding out and spreading
𝒱 /(𝑁 + 𝒱) uniformly over “imaginary” events.

• Does this work?

CSC401/2511 – Spring 2019 72

1. Laplace smoothed bigram counts

Count(wt-1,wt)
wt

I want to eat Chinese food lunch spend

wt-1

I 5+1 827+1 1 9+1 1 1 1 2+1

want 2+1 1 608+1 1+1 6+1 6+1 5+1 1+1

to 2+1 1 4+1 686+1 2+1 1 6+1 211+1

eat 1 1 2+1 1 16+1 2+1 42+1 1

Chinese 1+1 1 1 1 1 82+1 1+1 1

food 15+1 1 15+1 1 1+1 4+1 1 1

lunch 2+1 1 1 1 1 1+1 1 1

spend 1+1 1 1+1 1 1 1 1 1

• Out of 9222 sentences in Berkeley restaurant corpus,
• e.g., “I want” occurred 827 times so Laplace gives 828

CSC401/2511 – Spring 2019 73

1. Laplace smoothed probabilities

P(wt|wt-1) I want to eat Chinese food lunch spend

I 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

to 0.00083 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

Chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

𝑃𝐿𝑎𝑝 𝑤𝑡 𝑤𝑡−1 =
𝐶 𝑤𝑡−1𝑤𝑡 + 1

𝐶 𝑤𝑡−1 + 𝒱

CSC401/2511 – Spring 2019 74

1. Add-𝟏 smoothing

• According to this method,
𝑃 𝑡𝑜 𝑤𝑎𝑛𝑡 went from 0.66 to 0.26.

• That’s a huge change!
• In extrinsic evaluations, the results are not great.
• Sometimes ~90% of the probability mass is spread across

unseen events.
• It only works if we know 𝒱 beforehand.

CSC401/2511 – Spring 2019 75

1. Add-𝛿 smoothing

• Generalize Laplace: Add 𝜹 < 𝟏 to be a bit less generous.

• MLE : 𝑃 𝑤 = Τ𝐶𝑜𝑢𝑛𝑡(𝑤) 𝑁

• Add- 𝛿 estimate : 𝑃𝑎𝑑𝑑−𝛿 𝑤 =
𝐶𝑜𝑢𝑛𝑡 𝑤 +𝛿

𝑁+𝛿 𝒱

• Does this give a proper probability distribution? Yes:

෍

𝑤

𝑃𝑎𝑑𝑑−𝛿 𝑤 =෍

𝑤

𝐶𝑜𝑢𝑛𝑡 𝑤 + 𝛿

𝑁 + 𝛿 𝒱
=
σ𝑤 𝐶𝑜𝑢𝑛𝑡 𝑤 + σ𝑤 𝛿

𝑁 + 𝛿 𝒱

=
𝑁 + 𝛿 𝒱

𝑁 + 𝛿 𝒱
= 1 This sometimes works

empirically (e.g., in text
categorization), sometimes

not…

CSC401/2511 – Spring 2019 76

• Has Zipf taught us nothing?
• We shouldn’t adjust all words uniformly.
• Unseen words should behave more like hapax legomena.
• Words that occur a lot should behave like other words

that occur a lot.

• If I keep reading from a corpus, by the time I see a new
word like ‘zenzizenzizenzic’, I will have seen ‘the’ a lot
more than once more.

Is there another way?

CSC401/2511 – Spring 2019 77

• Define 𝑁𝑐 as the number of N-grams that occur c times.

• For some word in ‘bin’ 𝑁𝑐, the MLEstimate is that I saw that
word 𝑐 times.

• Idea: get rid of zeros by re-estimating 𝑐 using the MLE
estimate of words that occur 𝑐 + 1 times.

2. Good-Turing

Word
frequency

of words (i.e., unigrams)
with that frequency

1 𝑵𝟏 = 3993

2 𝑁2 = 1292

3 𝑁3 = 664

… … (from Tom Sawyer)

CSC401/2511 – Spring 2019 78

2. Good-Turing intuition/example

• Imagine you have this toy scenario:

• What is the MLE prior probability of hearing ‘soccer’?
• 𝑃 𝑠𝑜𝑐𝑐𝑒𝑟 = 1/23

• What is the probability of seeing something new?
• No way to tell, but 3/23 words are hapax legomena (𝑁1 = 3).
• If we use 3/23 to approximate things we’ve never seen, then we

have to also adjust other probabilities (e.g., 𝑃𝐺𝑇 𝑠𝑜𝑐𝑐𝑒𝑟 < 1/23).

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1

= 23 words total

CSC401/2511 – Spring 2019 79

2. Good-Turing adjustments

• 𝑃𝐺𝑇
∗ [𝑢𝑛𝑠𝑒𝑒𝑛] = 𝑁1/𝑁

• Re-estimate count 𝑐∗ =
𝑐+1 𝑁𝑐+1

𝑁𝑐

• Unseen words
• 𝑐 = 0
• MLE: 𝑝 = 0/23

• 𝑃𝐺𝑇
∗ [𝑢𝑛𝑠𝑒𝑒𝑛] =

𝑁1

𝑁

= 3/23

• Seen once (e.g., soccer)
• 𝑐 = 1
• MLE: 𝑝 = 1/23

• 𝑐∗ 𝑠𝑜𝑐𝑐𝑒𝑟 = 2 ⋅
𝑁2

𝑁1

= 2 ⋅ 1/3

• 𝑃𝐺𝑇
∗ 𝑠𝑜𝑐𝑐𝑒𝑟 = (

2

3
)/23

CSC401/2511 – Spring 2019 80

2. Good-Turing limitations

• Q: What happens when you want to estimate 𝑃(𝑤)
when 𝑤 occurs 𝑐 times, but no word occurs 𝑐 + 1 times?
• E.g., what is 𝑃𝐺𝑇

∗ 𝑐𝑎𝑚𝑝 since 𝑁4 = 0 ?

• A1: We can re-estimate count 𝑐∗ =
𝑐+1 𝐸[𝑁𝑐+1]

𝐸[𝑁𝑐]
.

• We can use Expectation-Maximization, which we’ll see later.

• A2: We can interpolate linearly, in log-log, between
values of 𝑐 that we do have.

Word ship pass camp frock soccer mother tops

Frequency 8 7 3 2 1 1 1

CSC401/2511 – Spring 2019 81

2. Good-Turing limitations

• Q: What happens when 𝐶𝑜𝑢𝑛𝑡 𝑀𝑐𝐺𝑖𝑙𝑙 𝑔𝑒𝑛𝑖𝑢𝑠 = 0
and 𝐶𝑜𝑢𝑛𝑡 𝑀𝑐𝐺𝑖𝑙𝑙 𝑏𝑟𝑎𝑖𝑛𝑏𝑜𝑥 = 0, and we smooth
bigrams?

• A: 𝑃 𝑔𝑒𝑛𝑖𝑢𝑠 𝑀𝑐𝐺𝑖𝑙𝑙 = 𝑃(𝑏𝑟𝑎𝑖𝑛𝑏𝑜𝑥|𝑀𝑐𝐺𝑖𝑙𝑙)
• But we’d expect
𝑃 𝑔𝑒𝑛𝑖𝑢𝑠 𝑀𝑐𝐺𝑖𝑙𝑙 > 𝑃 𝑏𝑟𝑎𝑖𝑛𝑏𝑜𝑥 𝑀𝑐𝐺𝑖𝑙𝑙
(context notwithstanding) because ‘genius’ is a more
common word than ‘brainbox’).

• The solution may be to combine bigram and unigram
models…

CSC401/2511 – Spring 2019 82

3. Katz backoff

• 𝑁-grams with non-zero count, e.g., 𝑐 = 𝐶(𝑤𝑡−1𝑤𝑡), are
discounted according to a ratio 𝑑𝑐, similar to Good-Turing.

• ‘Count mass’ subtracted from existing 𝑁-grams are
redistributed to 𝑁 − 1 -grams.

𝐶𝑘𝑎𝑡𝑧(𝑤𝑡−1𝑤𝑡) = ቊ
𝑑𝑐 ⋅ 𝐶(𝑤𝑡−1𝑤𝑡) if 𝐶 𝑤𝑡−1𝑤𝑡 > 0 ; 𝑑𝑐 ≤ 1

𝛼 𝑤𝑡−1 𝑃(𝑤𝑡) otherwise

𝑃𝑘𝑎𝑡𝑧 𝑤𝑡 𝑤𝑡−1 =
𝐶𝑘𝑎𝑡𝑧(𝑤𝑡−1𝑤𝑡)

σ𝑤𝑖
𝐶𝑘𝑎𝑡𝑧(𝑤𝑖−1𝑤𝑖)

CSC401/2511 – Spring 2019 83

3. Katz backoff

• We set 𝛼(𝑤𝑡−1) so σ𝑤𝑡
𝐶𝑘𝑎𝑡𝑧(𝑤𝑡−1𝑤𝑡) = σ𝑤𝑡

𝐶(𝑤𝑡−1𝑤𝑡).
• The solution is non-trivial (but close), and left as an exercise.

• Katz suggests ‘large’ counts (𝑐 > 5) are reliable; 𝑑𝑐>5 = 1.
• Otherwise, we set 𝑑𝑐 so that the total discount equals the

fictional counts given by Good-Turing to unseen events.
• I.e., solve for σ𝑐=1

𝑘 𝑛𝑐 1 − 𝑑𝑐 ⋅ 𝑐 = 𝑛1

• Katz generalizes to higher-order 𝑁-grams, recursively.

𝐶𝑘𝑎𝑡𝑧(𝑤𝑡−1𝑤𝑡) = ቊ
𝑑𝑐 ⋅ 𝐶(𝑤𝑡−1𝑤𝑡) if 𝐶 𝑤𝑡−1𝑤𝑡 > 0; 𝑑𝑐 ≤ 1

𝛼 𝑤𝑡−1 𝑃(𝑤𝑡) otherwise

CSC401/2511 – Spring 2019 84

4. Simple interpolation (Jelinek-Mercer)

• Combine trigram, bigram, and unigram probabilities.

• ෠𝑃 𝑤𝑡 𝑤𝑡−2𝑤𝑡−1 = 𝜆1𝑃 𝑤𝑡 𝑤𝑡−2𝑤𝑡−1

+𝜆2𝑃 𝑤𝑡 𝑤𝑡−1

+𝜆3𝑃(𝑤𝑡)

• With σ𝑖 𝜆𝑖 = 1, this constitutes a real distribution.

• 𝜆𝑖 determined from held-out (aka development) data:
• Fix N-gram probabilities on training set.
• Adjust 𝜆𝑖 that give highest probability to held-out data.

• (again, we can use “expectation-maximization”, to be discussed later)

CSC401/2511 – Spring 2019 85

5. Absolute discounting

• Instead of multiplying highest 𝑁-gram by a 𝜆𝑖, just subtract
a fixed discount 0 ≤ 𝛿 ≤ 1 from each non-zero count.

𝑃𝑎𝑏𝑠 𝑤𝑡 𝑤𝑡−𝑛+1:𝑡−1 =
max(𝐶 𝑤𝑡−𝑛+1:𝑡 − 𝛿, 0)

𝐶(𝑤𝑡−𝑛+1:𝑡−1)
+ 1 − 𝜆𝑤𝑡−𝑛+1:𝑡−1

𝑃𝑎𝑏𝑠(𝑤𝑡|𝑤𝑡−𝑛+2:𝑡−1)

The n-1 words
of context The discounted ML estimate

The weighting factor
for the n-1 words

of context

And recurse using
the n-2 words

of context

• Once again, you need to learn 𝜆 and 𝛿 using held-out data.

CSC401/2511 – Spring 2019 86

6. Kneser-Ney smoothing
• In interpolation, lower-order (e.g., 𝑁 − 1) models should

only be useful if the 𝑁-gram counts are close to 0.
• E.g., unigram models should be optimized for when

bigrams are not sufficient.
• Imagine the bigram ‘San Francisco’ is common ∴ ‘Francisco’

has a very high unigram probability because it occurs a lot.
• But ‘Francisco’ only occurs after ‘San’.

• Idea: We should give ‘Francisco’ a low unigram probability,
because it only occurs within the well-modeled ‘San Francisco’.

CSC401/2511 – Spring 2019 87

6. Kneser-Ney smoothing

• Let the unigram count be the number of different words
that it follows. I.e.:

𝑁1+ ⦁ 𝑤𝑡 = 𝑤𝑡−1: 𝐶 𝑤𝑡−1𝑤𝑡 > 0

𝑁1+ ⦁⦁ =෍
𝑤𝑖

𝑁1+(⦁𝑤𝑖)

• So, the unigram probability is 𝑃𝐾𝑁 𝑤𝑡 =
𝑁1+ ⦁ 𝑤𝑡

𝑁1+ ⦁⦁
, and:

𝑃𝐾𝑁 𝑤𝑡 𝑤𝑡−𝑛+1:𝑡−1 =
max(𝐶 𝑤𝑡−𝑛+1:𝑡 − 𝛿, 0)

σ𝑖 𝐶(𝑤𝑖−𝑛+1:𝑖)
+
𝛿 𝑁1+ 𝑤𝑡−𝑛+1:𝑤−1⦁

σ𝑤𝑖
𝐶 𝑤𝑖−𝑛+1:𝑖

𝑃𝐾𝑁(𝑤𝑡|𝑤𝑡−𝑛+2:𝑡−1)

Where 𝑁1+ 𝑤𝑡−𝑛+1:𝑤−1⦁ is the number of possible words that follow the context.

←The total number of bigram types.

CSC401/2511 – Spring 2019 88

Smoothing over smoothing

• Interpolation and backoff involve combining higher- and
lower-order models.

• Only interpolation includes information from lower-order
models when higher-order models have non-zero counts.

• Jelinek-Mercer performs better on small training sets; Katz
performs better on large training sets.

• Katz smoothing performs well on N-grams with large counts;
Kneser-Ney is best for small counts.

• Interpolated models are superior to backoff models for low
(nonzero) counts.

CSC401/2511 – Spring 2019 89

Announcements and reading

• Chen & Goodman (1996) An Empirical Study of
Smoothing Techniques for Language Modeling,
Proceedings of the 34th annual meeting of the
Association for Computational Linguistics, Pages 310-
318.

• Jurafsky & Martin (2nd ed): 4.1-4.7

• Manning & Schutze: 6.1-6.2.2, 6.2.5, 6.3

http://aclweb.org/anthology/P96-1041

