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Definition of an HMM

• A hidden Markov model (HMM) is specified by the 
5-tuple {𝑆,𝑊, Π, 𝐴, 𝐵}:
• 𝑆 = {𝑠1, … , 𝑠𝑁} : set of states (e.g., moods)
• 𝑊 = {𝑤1, … , 𝑤𝐾} : output alphabet (e.g., words)

• Π = {𝜋1, … , 𝜋𝑁} : initial state probabilities

• 𝐴 = 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities

• 𝐵 = 𝑏𝑖 𝑤 , 𝑖 ∈ 𝑆,𝑤 ∈ 𝑊 : state output probabilities 
yielding
• 𝑄 = {𝑞0, … , 𝑞𝑇}, 𝑞𝑖 ∈ 𝑆 : state sequence
• 𝒪 = ℴ0, … , ℴ𝑇 , ℴ𝑖 ∈ 𝑊 : output sequence

𝜃
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Fundamental tasks for HMMs

1. Given a model with particular parameters 𝜃 = Π, 𝐴, 𝐵 , 
how do we efficiently compute the likelihood of a 
particular observation sequence, 𝑃(𝒪; 𝜃)?

We previously computed the probabilities of word sequences 
using N-grams.

The probability of a particular sequence is usually useful as a 
means to some other end.
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The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (𝑡 = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ 𝑡 < 𝑇).

• Conclusion: Sum over the nodes in the last
column of the trellis (𝑡 = 𝑇 − 1).
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The Backward procedure

• Initialization
𝛽𝑖 𝑇 − 1 = 1, 𝑖 ≔ 1. . 𝑁

• Induction

𝛽𝑖 𝑡 = σ𝑗=1
𝑁 𝑎𝑖𝑗𝑏𝑗 ℴ𝑡+1 𝛽𝑗 𝑡 + 1 , 𝑖 ≔ 1. . 𝑁

𝑡 ≔ 𝑇 − 1. . 0

• Conclusion

𝑃 𝒪; 𝜃 = σ𝑖=1
𝑁 𝜋𝑖𝑏𝑖(ℴ0)𝛽𝑖(0)
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Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃, 
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪, how do we 
choose the best parameters 𝜃 = Π, 𝐴, 𝐵 that explain 
the data 𝒪?

This is the task of . 

As before, we want our parameters to be set so that the 
available training data is maximally likely, 

But doing so will involve guessing unseen information.
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Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃, 
how do we choose a state sequence 𝑄 = {𝑞0, … , 𝑞𝑇}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Example – PoS state sequences

• Will/MD the/DT chair/NN chair/?? the/DT 
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)
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Task 2: Choosing 𝑸 = {𝒒𝟎…𝒒𝑻}

• The purpose of finding the best state sequence 𝑸∗ out of 
all possible state sequences 𝑄 is that it tells us what is 
most likely to be going on ‘under the hood’.
• E.g., it tells us the most likely part-of-speech tags,
• E.g., it tells us the most likely English words given 

French translations (*in a very simple model).

• With the Forward algorithm, we didn’t care about specific 
state sequences – we were summing over all possible state 
sequences.
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Task 2: Choosing 𝑸 = {𝒒𝟎…𝒒𝑻}

• In other words,
𝑄∗ = argmax

𝑄
𝑃(𝒪, 𝑄; 𝜃)

where 

𝑃 𝒪,𝑄; 𝜃 = 𝜋𝑞0𝑏𝑞0 ℴ0 ෑ

𝑡=1

𝑇

𝑎𝑞𝑡−1𝑞𝑡𝑏𝑞𝑡 ℴ𝑡
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Recall

• Observation likelihoods depend on the 
state, which changes over time

• We cannot simply choose the state
that maximizes the probability of
𝑜𝑡 without considering the state
sequence.

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01
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The Viterbi algorithm

• The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

• We define the probability of the most probable path 
leading to the trellis node at (state 𝑖, time 𝑡) as

𝜹𝒊 𝒕 = max
𝑞0…𝑞𝑡−1

𝑃(𝑞0…𝑞𝑡−1, ℴ0…ℴ𝑡−1, 𝒒𝒕 = 𝒔𝒊; 𝜃)

• 𝝍𝒊(𝒕): The best possible previous state, 
if If I’m in state 𝑖 at time 𝑡.
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Viterbi example

• For illustration, we assume a 
simpler state-transition 
topology:

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.4

0.50.1

0.80.21.0
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Step 1: Initialization of Viterbi

• Initialize with 𝛿0 𝑖 = 𝜋𝑖𝑏𝑖(ℴ0) and 𝜓𝑖 0 = 0 for all states. 

𝝅𝒅𝒃𝒅(ℴ𝟎)

𝟎

𝜹: max probability

𝜓: backtrace

Time, 𝑡

0 1 2

𝝅𝒉𝒃𝒉(ℴ𝟎)

𝟎

𝝅𝒔𝒃𝒔(ℴ𝟎)

𝟎



𝟎 ∙ 𝟎. 𝟐𝟓

𝟎
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Step 1: Initialization of Viterbi

• For example, let’s assume 
𝜋𝑑= 0.8, 𝜋ℎ = 0.2, and  𝒪 = 𝑢𝑝𝑠𝑖𝑑𝑒, 𝑓𝑟𝑖𝑒𝑛𝑑, ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

𝟎. 𝟖 ∙ 𝟎. 𝟏

𝟎

𝜹: max probability

𝜓: backtrace

Observations, ℴ𝑡

𝟎. 𝟐 ∙ 𝟎. 𝟑

𝟎

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝜹𝒋 𝒕 = max
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋 𝒃𝒋(ℴ𝒕)

𝝍𝒋 𝒕 = argmax
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋

The best path to state 𝑠𝑗 at time 𝑡, 𝛿𝑗 𝑡 , 

depends on the best path to each 
possible previous state, 𝛿𝑖 𝑡 − 1 , and 

their transitions to 𝑗, 𝑎𝑖𝑗

𝟎

𝟎

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝜹𝒅 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

𝝍𝒅 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝒉 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

𝝍𝒔 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

Specifically…

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝟎 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠𝑑 = 0, ∴ 𝛿𝑠 0 𝑎𝑠𝑑 = 0

𝛿ℎ 0 = 0.06, 𝑎ℎ𝑑 = 0, ∴ 𝛿ℎ 0 𝑎ℎ𝑑 = 0

𝛿𝑑 0 = 0.08, 𝑎𝑑𝑑 = 0.4, ∴ 𝜹𝒅 𝟎 𝒂𝒅𝒅 = 𝟎. 𝟎𝟑𝟐

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔
𝛿𝑑 0 𝑎𝑑𝑑 = 0.032, 𝑏𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.6

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅 ℴ𝟏 = 𝟏. 𝟗𝟐 × 𝟏𝟎−𝟐 = 𝟏. 𝟗𝟐𝑬−𝟐

𝑑 was the most likely previous state

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠ℎ = 0, ∴ 𝛿𝑠 0 𝑎𝑠ℎ = 0

𝛿ℎ 0 = 0.06, 𝑎ℎℎ = 0.8, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒉 = 𝟎. 𝟎𝟒𝟖

𝛿𝑑 0 = 0.08, 𝑎𝑑ℎ = 0.5, ∴ 𝛿𝑑 0 𝑎𝑑ℎ = 0.04

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝟗. 𝟔𝑬−𝟑

𝒉

𝛿ℎ 0 𝑎ℎℎ = 0.048, 𝑏ℎ 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.2

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉 ℴ𝟏 = 𝟗. 𝟔 × 𝟏𝟎−𝟑 = 𝟗. 𝟔𝑬−𝟑

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

𝛿𝑠 0 = 0, 𝑎𝑠𝑠 = 1.0, ∴ 𝛿𝑠 0 𝑎𝑠𝑠 = 0

𝛿ℎ 0 = 0.06, 𝑎ℎ𝑠 = 0.2, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒔 = 𝟎. 𝟎𝟏𝟐

𝛿𝑑 0 = 0.08, 𝑎𝑑𝑠 = 0.1, ∴ 𝛿𝑑 0 𝑎𝑑𝑠 = 0.008

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿ℎ 0 𝑎ℎℎ = 0.012, 𝑏𝑠 𝑓𝑟𝑖𝑒𝑛𝑑 = 0.3

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔 ℴ𝟏 = 𝟑. 𝟔 × 𝟏𝟎−𝟑 = 𝟑. 𝟔𝑬−𝟑

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑑 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑑

𝛿ℎ 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖ℎ 𝑏ℎ(ℴ2)

𝜓ℎ 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖ℎ

𝛿𝑠 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑠 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑠

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = max
𝑖

𝛿𝑖 1 𝑎𝑖𝑠 𝑏𝑠(ℴ2)

𝜓𝑑 2 = argmax
𝑖

𝛿𝑖 1 𝑎𝑖𝑑

𝜹𝟐 𝒉 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟐)

𝝍𝒉 𝟐 = argmax
𝒊

𝜹𝒊 𝟏 𝒂𝒊𝒉

𝜹𝟐 𝒔 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟐)

𝝍𝟐 𝒔 = argmax
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔

𝛿𝑠 1 = 3.6𝐸−3, 𝑎𝑠𝑑 = 0,
∴ 𝛿𝑠 1 𝑎𝑠𝑑 = 0

𝛿ℎ 1 = 9.6𝐸−3, 𝑎ℎ𝑑 = 0,
∴ 𝛿ℎ 1 𝑎ℎ𝑑 = 0

𝛿𝑑 1 = 1.92𝐸−2, 𝑎𝑑𝑑 = 0.4,
∴ 𝜹𝒅 𝟏 𝒂𝒅𝒅 = 𝟎. 𝟎𝟎𝟕𝟔𝟖

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

𝛿𝑑 2 = 7.68𝐸−3 ∙ 0.05

𝜓𝑑 2 = 𝑑

𝛿ℎ 2 = 9.6𝐸−3 ∙ 0.4

𝜓ℎ 2 = 𝑑

𝛿𝑠 2 = 3.6𝐸−3 ∙ 0.01

𝜓𝑠 2 = 𝑠

Continuing…

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ

Choose the best final state:

𝑄𝑇
∗ = argmax

𝑖
𝛿𝑖 𝑇

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ

Recursively choose the best 
previous state:

𝑄𝑡−1
∗ = 𝜓𝑄𝑡

∗(𝑡)

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖

𝟎

Observations, ℴ𝑡

𝟎. 𝟎𝟔

𝟎

𝟎

𝟎

𝟏. 𝟗𝟐𝑬−𝟐

𝒅

𝟗. 𝟔𝑬−𝟑

𝒉

𝟑. 𝟔𝑬−𝟑

𝒉

3.84𝐸−4

𝑑

3.84𝐸−3

𝑑

3.6𝐸−5

ℎ Sequence 
probability:

𝑃(𝒪, 𝑄∗; 𝜃)
= max

𝑖
𝛿𝑖(𝑇)

ℴ0 = 𝑢𝑝𝑠𝑖𝑑𝑒 ℴ1 = 𝑓𝑟𝑖𝑒𝑛𝑑 ℴ2 = ℎ𝑎𝑙𝑙𝑜𝑤𝑒𝑒𝑛
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Why did we choose 𝑸∗ = {𝒒𝟎…𝒒𝑻}? 

• Recall the purpose of HMMs:
• To represent multivariate systems where some variable is 

unknown/hidden/latent.

• Finding the best hidden-state sequence 𝑄∗ allows us to:
• Identify unseen parts-of-speech given words,
• Identify equivalent English words given French words,
• Identify unknown phonemes given speech sounds,
• Decipher hidden messages from encrypted symbols,
• Identify hidden relationships from gene sequences,
• Identify hidden market conditions given stock prices,
• …
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Working in the log domain

• Our formulation was
𝑄∗ = argmax𝑄 𝑃(𝒪, 𝑄; 𝜃)

this is equivalent to
𝑄∗ = argmin

𝑄
− log2 𝑃(𝒪, 𝑄; 𝜃)

where 
−log2 𝑃 𝒪, 𝑄; 𝜃

= −log 2 𝜋𝑞0𝑏𝑞0 ℴ0 −෍

𝑡=1

𝑇

log2 𝑎𝑞𝑡−1𝑞𝑡𝑏𝑞𝑡 ℴ𝑡
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Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪 for training, but 
not the state sequence, how do we choose the ‘best’ 
parameters 𝜃 = Π, 𝐴, 𝐵 that explain the data 𝒪?

This is the task of . 

As with observable Markov models and MLE, we want our 
parameters to be set so that 

the available training data is maximally likely, 
But doing so will involve guessing unseen information…
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Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

• We want to modify the parameters of our model 
𝜃 = Π, 𝐴, 𝐵 so that 𝑃(𝒪; 𝜃) is maximized for some 
training data 𝒪:

෠𝜃 = argmax
𝜃

𝑃(𝒪; 𝜃)

• Why? E.g., if we later want to choose the best state 
sequence 𝑄∗ for previously unseen test data, the 
parameters of the HMM should be tuned to similar 
training data.



• ෠𝜃 = argmax
𝜃

𝑃(𝒪; 𝜃) = argmax
𝜃

σ𝑄 𝑃(𝒪, 𝑄; 𝜃)

• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0
𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖
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Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

Recall that we 
could use MLE 

when 𝑄 was known

Can we do 
this?



• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞0:𝑡 𝑃 𝑤0:𝑡 𝑞0:𝑡 ≈ ς𝑖=0
𝑡 𝑃(𝑞𝑖|𝑞𝑖−1)𝑃 𝑤𝑖 𝑞𝑖

• If the training data contained state sequences, we could simply 
do maximum likelihood estimation, as before:

• 𝑃 𝑞𝑖 𝑞𝑖−1 =
𝐶𝑜𝑢𝑛𝑡(𝑞𝑖−1 𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖−1)
𝑃 𝑤𝑖 𝑞𝑖 =

𝐶𝑜𝑢𝑛𝑡(𝑤𝑖∧𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)
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Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

• But we don’t know the states; we can’t count them.

• However, we can use an iterative hill-climbing approach if we 
can guess the counts.
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What to do with incomplete data?

• When our training data are incomplete (i.e., one or 
more variables in our model is hidden) we cannot use 
maximum likelihood estimation.

• We have no way of counting the state-transitions 
because we don’t know which sequence of states 
generated our observations.

• We can guess the counts if we have some good
pre-existing model.
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Expecting and maximizing

• If we knew 𝜃, we could make expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝜋𝑖 , 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }
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Expectation-maximization

• Expectation-maximization (EM) is an iterative training 
algorithm that alternates between two steps:

• Expectation (E): guesses the expected counts for
the hidden sequence using the 
current model 𝜃𝑘. 

• Maximization (M): computes a new 𝜃 that maximizes
the likelihood of the data, given the
guesses of the E-step. This 𝜃𝑘+1 is
then used in the next E-step.

• Continue until convergence or stopping condition…
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Baum-Welch re-estimation

• Baum-Welch (BW): n. a specific version of EM for HMMs.
a.k.a.  ‘forward-backward’ algorithm.

1. Initialize the model.
2. Compute expectations for 𝛼𝑖 𝑡 and 𝛽𝑖(𝑡) for each 

state 𝑖 and time 𝑡, given training data 𝒪.
3. Adjust our start, transition, and observation 

probabilities to maximize the likelihood of 𝒪.

4. Go to 2. and repeat until convergence or stopping 
condition…
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Local maxima

• Baum-Welch changes 𝜃 to climb a `hill’ in 𝑃(𝒪; 𝜃).
• How we initialize 𝜃 can have a big effect.

𝜽

𝑷(𝒪; 𝜽)
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Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
a) All probabilities are uniform

(e.g., 𝑏𝑖 𝑤𝑎 = 𝑏𝑖(𝑤𝑏) for all
states 𝑖 and words 𝑤)

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

word P(word)

upside 0.143

down 0.143

promise 0.143

friend 0.143

monster 0.143

midnight 0.143

halloween 0.143

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.33

0.330.33

0.50.51.0
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Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
b) All probabilities are drawn randomly

(subject to the condition 
that σ𝑖 𝑃 𝑖 = 1)

word P(word)

upside 0.1

down 0.05

promise 0.05

friend 0.6

monster 0.05

midnight 0.1

halloween 0.05

word P(word)

upside 0.3

down 0

promise 0

friend 0.2

monster 0.05

midnight 0.05

halloween 0.4

word P(word)

upside 0.25

down 0.25

promise 0.05

friend 0.3

monster 0.05

midnight 0.09

halloween 0.01

𝑠ℎ

𝑠𝑑

𝑠𝑠

0.4

0.50.1

0.80.21.0
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Step 1: BW initialization

• Our initial guess for the parameters, 𝜃0, can be:
c) Observation distributions are drawn from prior distributions:

e.g., 𝑏𝑖 𝑤𝑎 = 𝑃(𝑤𝑎) for all states 𝑖.
sometimes this involves pre-clustering, e.g. 𝑘-means

word P(word)

upside 0.2

down 0.1

promise 0.03

friend 0.5

monster 0.07

midnight 0.02

halloween 0.08

All blue dots are 
words in state BLUE. 
Their probability 
distribution is
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What to expect when you’re 
expecting
• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }, 𝜋𝑖
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BW E-step (occupation)

• We define
𝜸𝒊 𝒕 = 𝑷(𝒒𝒕 = 𝒊|𝓞; 𝜽𝒌)

as the probability of being in state 𝑖 at time 𝑡, based 
on our current model, 𝜃𝑘, given the entire observation, 𝒪. 

and rewrite as:

𝛾𝑖 𝑡 =
𝑃(𝑞𝑡 = 𝑖, 𝒪; 𝜃𝑘)

𝑃(𝒪; 𝜃𝑘)

=
𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑃(𝒪; 𝜃𝑘)

Remember, 𝛼𝑖 𝑡
and 𝛽𝑖(𝑡) depend 

on values from 

𝜃 = 𝜋𝑖 , 𝑎𝑖𝑗 , 𝑏𝑖 𝑤
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Combining 𝜶 and 𝜷

𝑃 𝒪, 𝑞𝑡 = 𝑖; 𝜃 = 𝛼𝑖 𝑡 𝛽𝑖 𝑡

∴ 𝑃 𝒪; 𝜃 =෍

𝑖=1

𝑁

𝛼𝑖 𝑡 𝛽𝑖(𝑡)

𝑠𝑁
0 1 2

𝑠1

𝑠3

𝑠2

𝑇 − 1
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BW E-step (transition)

• We define
𝝃𝒊𝒋 𝒕 = 𝑷(𝒒𝒕 = 𝒊, 𝒒𝒕+𝟏 = 𝒋|𝓞; 𝜽𝒌)

as the probability of transitioning from state 𝑖 at
time 𝑡 to state 𝑗 at time 𝑡 + 1 based on our current model, 𝜃𝑘, 
and given the entire observation, 𝒪. This is:

𝜉𝑖𝑗 𝑡 =
𝑃(𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗, 𝒪; 𝜃𝑘)

𝑃(𝒪; 𝜃𝑘)

=
𝛼𝑖 𝑡 𝑎𝑖𝑗𝑏𝑗(ℴ𝑡+1)𝛽𝑗(𝑡 + 1)

𝑃(𝒪; 𝜃𝑘)

Again, these 
estimates come 

from our model at 
iteration 𝑘, 𝜃𝑘 .
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BW E-step (transition)

𝑡 𝑡 + 1

𝒔𝒊

𝑡 − 1

𝛼𝑖(𝑡)

𝒔𝒋

𝛽𝑗(𝑡 + 1)
𝑡 + 2

𝑎𝑖𝑗𝑏𝑗(ℴ𝑡+1)
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Expecting and maximizing

• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

• If we knew:
• Expected number of times in state s𝑖,
• Expected number of transitions 𝑠𝑖 → 𝑠𝑗

then we could compute the maximum likelihood estimate of

𝜃 = 𝑎𝑖𝑗 , {𝑏𝑖 𝑤 }, 𝜋𝑖
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BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

ො𝜋𝑖 = 𝛾𝑖(0) for 𝑖 ≔ 1. . 𝑁

II. State-transition probabilities:

ො𝑎𝑖𝑗 =
σ𝑡=0
𝑇−1 𝜉𝑖𝑗(𝑡)

σ𝑡=0
𝑇−1 𝛾𝑖 𝑡

for 𝑖, 𝑗 ≔ 1. . 𝑁

III. Discrete observation probabilities:

෠𝑏𝑗 𝑤 =
σ𝑡=0
𝑇−1 𝛾𝑗 𝑡 |ℴ𝑡=𝑤

σ𝑡=0
𝑇−1 𝛾𝑗 𝑡

for 𝑗 ≔ 1. . 𝑁 and 𝑤 ∈ 𝒱

𝑃 𝑞𝑗 𝑞𝑖

=
𝐶𝑜𝑢𝑛𝑡(𝑞𝑖 𝑞𝑗)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)

𝑃 𝑤𝑖 𝑞𝑖

=
𝐶𝑜𝑢𝑛𝑡(𝑤𝑖 ∧ 𝑞𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑞𝑖)
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Baum-Welch iteration

• We update our parameters after each iteration

𝜃𝑘+1 = ො𝜋𝑖 , ො𝑎𝑖𝑗, ෠𝑏𝑗 𝑤

rinse, and repeat until 𝜃𝑘 ≈ 𝜃𝑘+1 (until change almost stops).

• Baum proved that
𝑃 𝒪; 𝜃𝑘+1 ≥ 𝑃(𝒪; 𝜃𝑘)

although this method does not guarantee a 
global maximum.
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Features of Baum-Welch

• Although we’re not guaranteed to achieve a global 
optimum, the local optima are often ‘good enough’.

• BW does not estimate the number of states, which 
must be ‘known’ beforehand.
• Moreover, some constraints on topology are often 

imposed beforehand to assist training.
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Discrete vs. continuous

• If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities 
𝑏𝑖(𝑋) must also be continuous.

• HMMs generalize to continuous
distributions, or multivariate
observations, 
e.g., 𝑏𝑖( −14.28, 0.85, 0.21 ).
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Adaptation

• It can take a LOT of data to train HMMs.

• Imagine that we’re given a trained HMM but not the data.
• Also imagine that this HMM has been trained with data 

from many sources (e.g., many speakers). 

• We want to use this HMM with a particular new source 
for whom we have some data (but not enough to fully train the 

HMM properly from scratch).
• To be more accurate for that source, we want to 

change the original HMM parameters slightly given the 
new data.
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Deleted interpolation

• For added robustness, we can combine estimates of a 
generic HMM, 𝑮, trained with lots of data

from many sources with a 
specific HMM, 𝑺, trained with a little data

from a single source.

𝑃𝐷𝐼 ℴ = 𝝀𝑃 ℴ; 𝜃𝐺 + 1 − 𝝀 𝑃(ℴ; 𝜃𝑆)

• This gives us a model tuned to our target source (𝑆), but 
with some general ‘knowledge’ (𝐺) built in.
• How do we pick 𝝀 ∈ [𝟎. . 𝟏] ?
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Deleted interpolation – learning 𝝀

1. Initialize 𝜆 with an empirical or guessed estimate.
2. Given 𝓞𝒂, which is adaptation data of which

𝓞𝒂,𝒋 is the 𝑗𝑡ℎ partition, and there are

𝑴 partitions,
3. Update 𝜆 (the weight of model 𝐺) according to:

መ𝜆 =
1

𝑀
෍

𝑗=1

𝑀
𝑃(𝓞𝒂,𝒋; 𝜃𝐺)

𝑃𝐷𝐼(𝒪𝒂)

We continue until 𝜆 and መ𝜆 are sufficiently close.

𝒪𝒂,𝟏 𝒪𝒂,𝒋 𝒪𝒂,𝟑
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Aside – Maximum a Posteriori (MAP)

• Given adaptation data 𝒪𝑎, the MAP estimate is
෠𝜃 =argmax𝜃𝑃 𝒪𝑎 𝜃 𝑃(𝜃)

• If we can guess some structure for 𝑃(𝜃), we can use EM 
to estimate new parameters (or Monte Carlo).

• For continuous 𝑏𝑖(ℴ), we use Dirichlet distribution that 
defines the hyper-parameters of the model and the 
Lagrange method to describe the change in parameters 

𝜃 ⟹ ෠𝜃.



CSC401/2511 – Spring 2019

Summary

• Important ideas to know:
• The definition of an HMM (e.g., its parameters).
• The purpose of the Forward algorithm.
• How to compute 𝛼𝑖(𝑡) and 𝛽𝑖(𝑡)

• The purpose of the Viterbi algorithm.
• How to compute 𝛿𝑖(𝑡) and 𝜓𝑖(𝑡).

• The purpose of the Baum-Welch algorithm.
• Some understanding of EM.
• Some understanding of the equations.
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State duration

• The probability of staying in a particular state 𝑠𝑖 for a 
specific period of time, 𝜏, diminishes exponentially over 
time, all else being equal.

𝑎𝑖𝑖
𝜏−1(1 − 𝑎𝑖𝑖)

From Philip Jackson at 
University of Surrey
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Combining HMMs

• Often, we link HMMs together.
• E.g., we have lots of speech data for /w/, /ah/, and /n/,

but almost no data for the word ‘one’. 

/w/

/ah/

/n/

Trained only with /w/ data.

Trained only with /ah/ data.

Trained only with /n/ data.

‘one’
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N-best lists

• In our discussion of the Viterbi algorithm, we encountered 
a situation where one state at time 𝑡 was equally likely to 
have been reached from two other states at time 𝑡 − 1.

• Sometimes instead of keeping track of only the single best 
path to state 𝑖 at time 𝑡, we in fact keep track of the
N-best paths to state 𝑖 at time 𝑡. 
• E.g., in our Viterbi trellis:

𝜹: max probability 𝜹: 2nd max probability 𝜹: 3rd max probability

𝜓: best backtrace 𝜓: 2nd best backtrace 𝜓: 3rd best backtrace
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Generative vs. discriminative

• HMMs are generative classifiers. You can generate synthetic 
samples from because they model the phenomenon itself.

• Other classifiers (e.g., artificial neural networks and support 
vector machines) are discriminative in that their probabilities 
are trained specifically to reduce the error in classification. 

ANN SVM

...

...
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Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition. In: Readings 
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software: 
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)

http://htk.eng.cam.ac.uk/
http://scikit-learn.sourceforge.net/stable/modules/hmm.html

