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Revisiting PoS tagging

* Will/MD the/DT chair/NN chair/: - the/DT
meeting/NN from/IN that/DT chair/NN?

Will the chair chair

e
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Now

* (Hidden) Markov models.
* Using them.
® Training them.
* Loving them.
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Observable Markov model

* We've seen this type of model:
* e.g., consider the 7-word vocabulary:
{upside, down, promise, friend, midnight,
monster, halloween}

°* What is the probability of the sequence
upside,down, upside, down, monster?
\ / I

* Assuming a bigram model (i.e., 1st-order Markov),

P(upside|<s>)P(down|upside)P(upside|down)
- P(down|upside)P (monster|down)
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Observable Markov model

® This can be conceptualized

graphically. ﬂ W —

* We start with N states,
S1,So, ..., Sy that represent
unigue observations in the
world.

* Here, N = 7 and each
state represents one of the
words we can observe.
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Observable Markov model

* We have discrete
timesteps, t = 0,t =1, ...

* On the t'" timestep the

/i\

system is in exactly one of
the available states, q;.

® q; € {S1,52, ., SN]

* We could start in any state
The probability of starting
with a particular state s is

P(qo = s) = m(s)
—
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0 |
P(qo, = upside) = n(upsidei
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Observable Markov modeh

* At each step we must LR\
move to a state with some
probability.

* Here, an arrow from ¢; to
LI

qr+1 represents
P(q¢+119¢)

* P(upsidel|upside)

* P(down|upside)
* P(monster|down) =0

3
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Observable Markov model

* Probabilities on all outgoing
arcs must sum to 1.

o P@de) +

P(down|upside) = 1

C

* P(upside|down) +
P(down|down) +
P(promise|down) = 1

&
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A multivariate system

* What if the probabilities of observing words depended only
on some other variable, like mood?

S -

-

—

upside
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upside
down
promise 0.05
friend 0.6
monster 0.05
midnight 0.1
halloween

down 0.25
promise 0.05
friend 0.3
monster 0.05
midnight 0.09
halloween

word P(word)
upside ((F
down 0
promise 0
friend 0.2
monster 0.05
midnight 0.05
halloween 0.4
&
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A multivariate system

* What if that variable changes over time?

upside 0.1
* e.g., I’'m happy one second and down | 005
disgusted the next. promise | 0.05

i friend 0.6
®* Here, state = mood o monster | 0.05

observation = word. dnight | 0.1

halloween 0.05
word P(word)
upside 0.25 upside 0.3
o A ) 0

down 0.25 —) down 0
promise 0.05 promise 0

friend 0.3 ) o friend 0.2
monster 0.05 monster 0.05
midnight 0.09 midnight 0.05
halloween 0.01 halloween 0.4
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Observable multivariate systems

e

* Imagine you have access to my emotional state somehow.
* All your data are completely observable at every timestep.

°E.g,

0 1 2
midnight  friend upside

(midnight, friend, upside), (Q ,Q ,@ )

s
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Observable multivariate systems

* What is the probability of a sequence of ords and states?
. P(WO:t' qO:t) a P(qo:t)P(WO:thO:t) 0) (qllql 1)P(Wl|ql)

N\

—_—

°eg,

P({friend,upside), (9,9)) = P(qO = ) P(friend|9)
TN P@1®) - Plupside] )

%&*
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Observable multivariate systems

°* Q: How do you learn these probabilities?
* P(Wo.t, Qo:t) = f=0 P(qilch'—l)P(WilCIi)‘
AS44)

°* A: When all data arg%rved basically the same as before.
- P(qllql = |s learned withMMLE from training data.

- is also learned with MLE from training data.

&’”&*
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Hidden variables

°* Q: What if you donW%s during testing?
* e.g., compute P({upside, down, monster, friend))

°* Q: What if you don’t know the states during training?

monster  friend
\ —_—

&
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Examples of hidden phenomena

* We want to represent surface (i.e., observable)
phenomena as the output of hidden underlying systemes.

° e.g.,
* Words are the outputs of hidden parts-of-speech,
* French phrases are the outputs of hidden English phrases,

* Speech sounds are the outputs of hidden phonemes.

* in other fields,
° Encrypted symbols are the outputs of hidden messages,

® Genes are the outputs of hidden functional relationships,
* Weather is the output of hidden climate conditions,
* Stock prices are the outputs of hidden market conditions,
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Definition of an HMM

* A hidden Markov model (HMM) is specified by the
5-tuple {S, W, 11, A, 5}:
{S1, ..., SN} . set of states (e.g., moods)
fwq, ..., Wi} : output alphabet (e.g., words)

| . initial state probabilities
@‘ * A= {aij}, i, ES . state transition probabilities
I : state output probabilities

vielding
*Q=1{q0 .97}, q; €S L state sequence
°* 0 ={0y,..,00},0; EW :output sequence

T
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A hidden Markov production process

°* An HMM is a representation of a process in the world.
* We can synthesize data, as in W’s game.

® This is how an HMM generates new sequences:
~ \___/
°*t=0

* Start in state gy = s; with probabili@
* Emit observation symbol ¢, = w;, withprobability b, ()

* While (not forever)
* Go from state q; = s; to state q;,; = s; with probability a;
* Emit observation symbol ¢;,; = w;, with probability

(t+1)
*t=t+1
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Fundamental tasks for HMMs
Jﬂ

1. Given a model with particular parameters 8 = (||, A,
how do we efficiently compute the likelihood of a
particular observation sequence, P(W

—

We previously computed the probabilities of word sequences
using N-grams.

The probability of a particular sequence is usually useful as a
means to some other end.
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Fundamental tasks for HMMs

2. Given an observation sequence O and a model G,
how do we choose a state sequence ) = {qq, ..., 7}
that best explains the observations? —— .

This is the task of inference —i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.
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Fundamental tasks for HMMs

3. Given a large observation sequence O, how do we
choose the best parameters @ = (11, A, ) that explain
the data 07

This is the task of training.

As before, we want our parameters to be set so that the
available training data is maximally likely,
But doing so will involve guessing unseen information.
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Task 1: Computing P(O; 0)

9:<W)A .67 k

* We've seen the probability of a joint sequence of

observations and states: & 7
P(0,0;6) £ P(01Q{O)P(Q; |

- aCIoCI1 aCI1CI2

* To get the probability of our observations without seeing
the state, we must sum over all possible state sequences:

e —

_P(0;8) =¥, P(01Q;0)P(Q; 6).
i

T
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. ) |3 T
Computing P(0; 6) naively T—> 0

* To get the total probability of our observations, we could
directly sum over all possible state sequences:

e
P(0;6) = 3, P(01Q; 0)P(Q; 6).

. ° . ———\' . °
ultiplications (1 for each state transition,

—

'F@bservations of length T, each state sequence involves
2

or each , 1 for the @ninus 1).

* There are up to N possible state sequences of length T

given N states:

w~(1+T+7—=1)-NT multiplications Y
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s I L
Computing P(0; 0) cleverly

* To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results. -

* We make a trellis which is an array of states vs. time.
®* The element at (i, t) is a;(t)
the probability of being in state i at time ¢t
after seeing all previous observations:

P(0o.t-1,9: = Si; 0)

T
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Trellis

N

- @ N
\/

al ,,‘9 ‘
i

\é

T-1

.
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Alternative paths through the trellis

P ——
’ N
-
- -
- - \

State

.
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Alternative paths through the trellis

o

eieNe.

* WNATN A
e
)% dp A‘*;!“

My =

m’t

State

.

% UNIVERSITY OF
CSC401/2511 — Spring 2019 W TORONTO




Alternative paths through the trellis

» @ /O @
N

'S
v N
A N A‘t’n‘a

S3
% ‘, Probability of
A ‘ being in state s
attimet =2
: -

0 1 2 T-1
&
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Alternative paths through the trellis

S1 Notice that | already computed a \é

path through this node

A‘

‘uw =l

So ‘
g t'
33 \)\
% ‘, ‘i ' Probability of
A being in state s3

attimet =2 |

0 1 2 T-1
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Alternative paths through the trellis
% WAM N““;T?&Zi‘:i‘iﬁ S:l‘;‘;t” /

*vvmv! |
Ny %
v
)/

v’y ~ Probability of
i

being in state s;
attimet =2

©®

0 1 2 T-1

e
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AND SO ON...

e
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Trellis

' To compute the probabilities of
he black node and the yellow
node, | need (among others) the
probabilities of the orange node
and the purple node:

S2

State

2 T—-1
Time, t/ > i
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The Forward procedure

®* To compute
WZ P(O/O:t:@; 6)

we can compute a;(t — 1)7for possible previous states s,
then use our knowleMaji and
//"’f
* We compute the trellis left-to-right (because of the
convention of time) and top-to-bottom (‘just because’).

°* Remember: ¢; is fixed and known.

a;(t) is agnostic of the Tuture.

\ -
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The Forward procedure

* The trellis is computed left-to-right and top-to-bottom.

®* There are three steps in this procedure:
* Initialization: Compute the nodes in the first
column of the trellis (t = 0).

* Induction: Iteratively compute the nodes in the
rest of the trellis (1 <t <T).

®* Conclusion: Sum over the nodes in the last
column of the trellis (t =T — 1).
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Initialization of Forward procedure

yam) ) (c

(Probability of starting in
state i and reading the first

2: word there)

T-1

T|me t

st
i
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Induction of Forward procedure

N
aj (t + 1) — 2 ai(t)al-jbl- (O’t_l_l) ,

i=1
for j:=1..N,t =0..(T — 2)

(Probability of getting to state j at
timet + 1)

T—-1
&
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Induction of Forward procedure

(. ‘
( a(t) 4

t t+1
UNIVERSITY OF
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Conclusion of Forward procedure

1 AWAV

S

@
S2 ‘"‘i Sum over all poss%ble finz;ll \ = . \

V<]
- }".g.\\ o states.

U S ®

/‘\ ©:0) =) a(T-1) |

0 1 2 T

Time, t

S3

State

&
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The Forward procedure - Example

* Let’s compute P({midnight, friend, upside))

=
midnight friend upside

We need initial state probabilities
IT and trz tran5|t|on probabilities a;;

o

. 8
o
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The Forward procedure - Example

* Let’s compute P((midnight, friend, upside))

Q/

Q
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‘\

Compute the probability of starting in state
. and reading the first word there

a;(0) == m;b;(0p)

g

\9 a(0) =0.80 x0.10 = 0.08
TN alw
a(0)=0.20 x 0.09 = 0.018

ZQ a(0) =0 x0.05 =0

o
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The Forward procedure - Example

* Let’s compute P({midnight, friend, upside))

/ Induction \

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to

statej at time t+1
= - N
=1

a;j(t+1):= a;(t)a;jbj(o¢41)

/g.—-—

l

s

:\- UMIVERSITY OF
CSC401/2511 — Spring 2019 ¥ TORONTO



The Forward procedure - Example

* Let’s compute P({midnight, friend, upside))

midnight

<
L/

NOrA

"‘0.0078
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friend

upside

<8

e

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to

statej at time t+1

(Xj(t + 1) =

\

<

Induction

~

N
a;(t)a;jbj(o¢s1)
=1

l

L—

D

/

&
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The Forward procedure - Example

* Let’s compute P({midnight, friend, upside))

midnight friendW Conclusion \
Sum over all possible final states
N
i=1

P(0;0)
= 0.00076 + 0.00283 + 0.0048
= 0.00839

DA
Ddhd Y,

&
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T=1< Qb o
The Forward procedure 3&%

* The naive approach needed (27) - NI multiplications.

®* The Forward procedure (using dynamic pwgramming)
needs only 2N T multiplications. &)

* The Forward procedure gives us P(O; 9).

* Clearly, but less intuitively, we can also compute the trellis

from back-to-front, i.e., backwards in time...
e T

T
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Remember the point

* The point was to compute the equivalent of

P(0;0) = ) P(0,Q;0)
7

where r v l
P©.0;0) = POI0:)PQ:0) |

I Ag0q4 449,49,
ai(O) \———— A — —
a;(1)
a;(2) !

The Forward algorithm stores all possible 1-state sequences (from the
start), to store all poWncmstart) to store all
possible 3-state sequences (from the start)... %
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Remember the point

Bi(T —3)

We can still deal with sequences that evolve forward in time, but simply
store temporary results in reverse...

st
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The Backward procedure

* In the (i, t)!" node of the trellis, we store
Bi(t) = P(0t41.719: = Si; 0)

—

which is computed by summing probabilities on outgoing

arcs from that node. B
———a T ~—

s the probability of starting in state i at time t then
observing everything that comes thereafter. I

* The trellis is computed right-to-left and top-to-bottom.-

—
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Step 1: Backward initialization

S1 '
So ‘

S3 | ‘
Q
IS Bi(T —1) =1,
o i:=1..N

(We'll see why, soon)
\
hy —
0 T -3 =7
Time, t

::\: UMIVERSITY OF
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Step 2: Backward induction

W 7

@ ON H)
2 WA i \
| N | )
W/

» RO =) aybionfi(t+ 1),
j = 1..]1\=/,1 t:=(T—-2)..0

State

(Probability of being in state i at
‘ time t, then reading everything

\
s N wﬁMMH >
0 T -3 T -2 T—1
Time, t

st
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Step 3: Backward conclusion

Sum over all possible
initial states.

State

T—-1
i
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The Backward procedure

* |nitialization

pi(T —1) =1,

H\Induction

Bi(t) = TV 1@%1)3,-@ £ 1),
" &——-

. ——

—_——

7'\Conclusmn

P(0;0) = XLy 70 (0%) B (0)

\

———
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[ =1..N
[ =1..N
t=T-—1..0

st
i
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The Backward procedure — so what?

* The combination of Forward and Backward procedures
will be vital for solving parameter re-estimation,

e, training. Q/Bd/ N&U(M/lg /TY g

//—\

* Generally, we can combine a and [ at any point in time to
represent the probability of an entire observation %

sequence...

T
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LorwWor
Combining a and F < :
e

P(O,q; = i;08) = a;(t)B;(t)

—~—~ ~ > N —Aa\—

~ P(0;0) = z a;(t)B;(t) This requires

—_— the current
=1 — word to be

incorporated by
a;(t), but not

@

o
Y V.

—_—

\/

This isn’t merely
for fun — it will
soon become
useful...

%&*

i UNIVERSITY OF
CSC401/2511 — Spring 2019 ¥ TORONTO




Reading

* (optional) Manning & Schiitze: Section 9.2—9.4.1
* Note that they use another formulation...

* Rabiner, L. (1990) A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. In: Readings
in speech recognition. Morgan Kaufmann.

(posted on course website)

* Optional software:
* Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)
2 SCi-kit’S HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)
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http://scikit-learn.sourceforge.net/stable/modules/hmm.html

