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Definition of an HMM

* A hidden Markov model (HMM) is specified by the

@ . set of states (e.g., moods)
° —n 2

W4, ..., Wi} : output alphabet (e.g., words)
el . initial state probabilities
0= * A=1{a;},i,jES : state transition probabilities

. state output probabilities

— N

yielding =
° Q ={q,, ...,q}}, g; €S :state sequence
* 0 = {09, ..,07},0{ €W :output sequence

T

.: UMNMIVERSITY OF
CSC401/2511 — Spring 2019 % TORONTO



Fundamental tasks for HMMs

1. Given a model with particular parameters 6 = (11, 4, ©),
how do we efficiently compute the likelihood of a

particular observation sequence, P(0; 0)?

We previously computed the probabilities of word sequences
using N-grams.

The probability of a particular sequence is usually useful as a
means to some other end.
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The Forward procedure

* The trellis is computed left-to-right and top-to-bottom.

®* There are three steps in this procedure:
* Initialization: Compute the nodes in the first
column of the trellis (t = 0).

* Induction: Iteratively compute the nodes in the
rest of the trellis (1 <t <T).

®* Conclusion: Sum over the nodes in the last
column of the trellis (t =T — 1).
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The Backward procedure

* |nitialization
5i(T—-1) =1, i:=1..N

*(Induction

= Y1 a0 (o )Bi(E + 1), i=1..N
t=T—-—1..0

® Conclusion
P(0;6) = XL, ;b (00)B:(0)

st
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Fundamental tasks for HMMs

2. Given an observation sequence O and a model 8,

how do we cho.ose a state sequence Q =190 -, 971}
that best explains the observations?

This is the task of inference —i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.
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Fundamental tasks for HMMs

3. Given a large observation sequence O, how do we
choose the best parameters @ = (11, A, ) that explain
the data 07

This is the task of training.

As before, we want our parameters to be set so that the
available training data is maximally likely,
But doing so will involve guessing unseen information.
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Fundamental tasks for HMMs

2. Given an observation sequence O and a(model—é?,—
how do we choose a state sequence Q = {q,, ..., 7}
that best explains the observations? S

/ —

This is the task of inference —i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.
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Example — PoS state sequences

* Will/MD the/DT chair/NN chair/: - the/DT
meeting/NN from/IN that/DT chair/NN?

Will the chair chair

&
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Task 2: Choosing Q = {qy ... 97}

* The purpose of finding the best state sequence Q™ out of
all possible state sequences Q is that it tells us what is
most likely to be going on ‘under the hood'.

* E.g., it tells us the most likely part-of-speech tags,
° E.g., it tells us the most likely English words given
French translations tinaverysimple model

* With the Forward algorithm, we didn’t care about specific

state sequences — we were summing over all possible state
sequences.
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Task 2: Choosing Q = {q¢ ... q7}
* |n other words,
Q" = aXP((?,Q; 0)
(O

P(0,Q;0) Hﬁqt-ch/\
=

where

&
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QQS)Q{Q prd@ /\JQMQXQ

® Observation likelihoods depend on the —

state, which changes over time down | 0.0
promise 0.05

friend 0.6

* We cannot simply choose the state o monster | 0.05
that maximizes the probability of | gz  midnient 01

halloween 0.05

Recall

0; without considering the state -
sequence. _ m

upside upside 0.3
down 0.25 ~"down 0
promise 0.05 promise 0
friend 0.3 friend 0.2
monster 0.05 monster 0.05
midnight 0.09 midnight 0.05
halloween halloween 0.4
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The Viterbi algorithm

* The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

* We define the probability of the most probable path
leading to the trellis node at (state i, time t) as

ji(t) = max P(qy..-Q¢_1,00 .- Ct_1,q; = S;; 0)

> qo--Adt-1

°* Y;(t): / The best possible previous state,
if If ’'m in state i attime ¢.
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Viterbi example

word P(word)

® For illustration, we assume a
simpler state-transition
topology:

friend

friend friend

midnight

midnight
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Step 1: Initialization of Viterbi

* Initialize with 6,(i) = m;b; (o) and Y;(0) = 0O for all states.

L?w

N

S: max probability

gbg(09)

i b

L

1 2
Time, t

&
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Step 1: Initialization of Viterbi

* For example, let’s assume—-—
Tl'd— 0.8, m, = 0.2, and| O = upside, friend, halloween]

| e

w P(word) : backtrace I
, upside .

down

promise

friend

monster

midnight

halloween

oy = upside o1 = friend 0> = halloween

L

Observations, o4

d‘;i
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Step 2: Induction of Viterbi

- The best path to state s; at time ¢, §;(¢t),
depends on the best path to each
possible previous state, §;(t — 1), and
their transitions to j, a;;

\

Li
3
C

Sl(t) — miax [Sl(t — 1)al]] b](O’t-)

P;(t) = argmax [8;( — D)ay]
l

0.08

pa
=

oy = ups@ o1 = friend 0> = halloween

Observations, o4 -

sl
J-"'v-
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Step 2: Induction of Viterbi

Specifically...

/"

65(1) — mlax [6i(0)ais] bs(oll)

\

Y1) = argmax [6:(0)a;]

op(1) = max [6;(0)a;x] by (1)

Pr(1) = argmax [8;(0) a;p]

/ 84(1) = max [6:(0)a;q] bg(cq)

0 Pq(1) = argmax [§;(0)a;q4]

LE
(T
Y

oy = upside o1 = friend 0> = halloween

Observations, ¢

@
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Step 2: Induction of Viterbi

s (0) =0, asqg =0, (O)asd =0
5,(0) = 0.06, a5y = 0, Qmam =0

54(0) = 0.08, ayy = 0.4,\( » 84(0)ayy = 0.032 K

| -

+—

—

max [6:(0)a;q] bg(eq)

argmax [6;(0)a;q]

l

oy = upside o1 = friend 0> = halloween

Observations, ¢ -

114
|‘|"'v-
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Step 2: Induction of Viterbi

4
- | mx

oy = upside o1 = friend 0> = halloween

lé‘d(O)add — OOBZJ |bd(f7"l€nd) =@

~ max [6;(0)a;q] bg(e1) =1.92 X 1072 = 1.92E2
l e—

d was the most likely previous state

Observations, o4 -

sl
J-"'v-
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Step 2: Induction of Viterbi

.\\
1

65(0) = 0,as, =0, ~ 65(0)agp =0
6,(0) = 0.06,a5, = 0.8, | 8,(0) s, = 0.048
— ——\
Sd(O) = 0.08, Agn = 0_5_,/ Sd(O)adh = 0.04

0> = halloween

e
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Step 2: Induction of Viterbi

[6h(0)ahh = 0'048J \Iigriend)j 0.2

~ max [8;(0)a;,] bp(c1) =9.6 X 1073 = 9,.6E~3
\\ l J

VG

L

%

S

G

oy = upside o1 = friend 0> = halloween
'\—P

Observations, ¢
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Step 2: Induction of Viterbi

m?X [Si(o)ais] bs(o1)

argmax [6;(0)a;]
i

\

5,(0) =0,a,, = 1.0,

(7
(,T

Q
Q
@

6h(0) = 006, Aps = 02,

54(0) = 0.08,ay, = 0.1, - 84(0)ays = 0.008
as = O

j oy = upside % 0> = halloween

Observations, ¢

e

114
|‘|"'v-
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Step 2: Induction of Viterbi

6,(0)ay, = 0.012, bs(friend) = 0.3
—_— = —
~ max [8;(0)a;] bs(c¢1) =3.6 X 1073 = 3.6E~3
l

=
Q
Q
&

& . -
oy = upside o1 = friend 0> = halloween

Observations, ¢

iy
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Step 2: Induction of Viterbi

\

/ Sd(z) = miaX [Si(l)ais] bs(”Z)
Ya(2) = argmax [6;(Da;4]

(:T
(T -
oy = upside o1 = friend o> = halloween

Observations, ¢ -
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Step 2: Induction of Viterbi

5,(1) =3.6E73,a,4 =0,
s 6s(Dasgqg =0

Sh(l) — 9.6E_3, Ana = 0,
~6p(Dapg =0

Sd(l) - 1.92E_2,add = 0.4,

| | ~0g(Dayzg = 0.00768 )
h I

]
04(2) = max [6;(1)a;s] bs(02)
a“/ |

Pq(2) = arggnax [6;(1)a;q4]

oy = upside o1 = friend o> = halloween

Observations, ¢

&
' E UNIVERSITY OF

CSC401/2511 — Spring 2019 TORONTO




Step 2: Induction of Viterbi

Continuing...

)

\

5,(2) = 9.6E73-0.4

55(2) = 3.6E73 - 0.01
h )
<
i
'

3.6
1/13(2)=S
h
/ l |
0

oy = upside o1 = friend 0> = halloween

54(2) = 7.68E73 - 0.05

(‘E
)
C/@

Observations, ¢

@
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Step 3: Conclusion of Viterbi

Choose the best final state:

Q1 = argmax 6;(T)
i

oy = upside o1 = friend o, = halloween

Observations, ¢

&
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Step 3: Conclusion of Viterbi

d/ )

Recursively choose the best
previous state:

Qi1 =Yg (O

3.84E~* '
W= upside o1 = friend 02 = hallow@

| Ubservatlons Ot

UMNIVERSITY OF

CSC401/2511 — Spring 2019 J TORONTO



Step 3: Conclusion of Viterbi

Sequence
probability:
P(0,Q%;0)
= max §;(T)
l
oy = upside o1 = friend o, = halloween
Observations, o e
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Why did we choose Q™ = {q¢ ... q7}?

* Recall the purpose of HMMs:
* To represent multivariate systems where some variable is
unknown/hidden/latent.
— 00 6%3
* Finding the best hidden-state sequence Q" allows us to:
* |dentify unseen parts-of-speech given words,
* |dentify equivalent English words given French words,
* |dentify unknown phonemes given speech sounds,
* Decipher hidden messages from encrypted symbols,
* |dentify hidden relationships from gene sequences,
* |dentify hidden market conditions given stock prices,

UNIVERSITY OF
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Working in the log domain

® Our formulation was
Q" = argmax P(0,Q;0)
this is equivalent to D
Q* = argmin —log, P(0, Q;0)
0~

_/‘O o~

where

T
= —lo/g 5 (T[qobqo (j(j)) — Zl log, (aQt—1th@

st
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Fundamental tasks for HMMs

3. Given a large observation sequence O for training, but
not the state sequence, how do we choose the ‘best’
parameters 8 = (I], A, ) that explain the data O~

?<; —_—

This is the task of training.

As with observable Markov models and MLE, we want our
parameters to be set so that
the available training data is maximally likely,
But doing so will involve guessing unseen information...
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Task 3: Choosing 6 = (Il, 4, B)

* We want to modify the parameters of our model
6 = (I1,A, 5)sothat P(0O; 0) is maximized for some
training data O: ‘

0 ; arggnaug’ (0; 8)4

°* Why? E.g., if we later want to choose the best state
sequence Q* for previously unseen test data, the
parameters of the HMM should be tuned to similar
training data.

N
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Task 3: Choosing @ = (I1, A4, B)

) nw
* 6 =argmax P(0;0) = argmaxy, (0 -
! o this:

—— T

* W(L%:MTQHL@P(ZH%—QE%

8 Q

Recall that we
could use MLE |
when Q was known

{;:S'f
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Task 3: Choosing @ = (I1,A4, B )

* P(0,0Q;0) = P(qo.t)P(Wg.t1q0.¢) = f:oP(CIi|CIi—1)P(Wi|CIi)

* If the training data contained state sequences, we could simply
do maximum likelihood estimation, as before:

t(qi-1 4i)
" Count(qi—y)

—

(g,

—

* But we don’t know the states; we can’t count them.

°* However, we can use an iterative hill-climbing approach if we
can guess the counts. y

T
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What to do with incomplete data?

* When our training data are incomplete (i.e., one or
more variables in our model is hidden) we cannot use
maximum likelihood estimation.

* We have no way of counting the state-transitions
because we don’t know which sequence of states
generated our observations.

* We can the counts if we have some good
pre-existing model.
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Expecting and maximizing

* If we knew 68, we could make expectations such as
* Expected number of times in state s;

o Expectedmgf

* If we knew:
* Expected number of times in state s;,
* Expected number of transitions s; — s;

then we could compute the maximum likelihood estimate of

0 = (1, {a;}, )

{&
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Expectation-maximization

* Expectation-maximization (EM) is an iterative training
algorithm that alternates between two steps:

° Expectation (E): guesses the expected counts for
the hidden sequence using the
current model 6,,.

°* Maximization (M): computes a new 6 that maximizes
the likelihood of the data, given the
guesses of the E-step. ThisMs
then used in the next E-step.

* Continue until convergence or stopping condition...
— 5
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Baum-Welch re-estimation

* Baum-Welch (BW): n. a specific version of EM for HMMs.
a.k.a. ‘forward-backward’ algorithm.

1.@alize the model. @ ('_\‘po /O
j 2. Compute expectations forai\(t)_and ;(t)\for each
s state i and time t, given training data O. \O ook

3. Adjust our start, transition, and ation

_/——\f

probabilities to maximize the likelihood of O.

4. Goto 2. and repeat until convergence or stopping
condition... — |y

T
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Local maxima

* Baum-Welch changes 6 to climb a “hill’ in P(O; 0).

°* How we initialize 6 can have a big effect.

0

&
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Step 1: BW initialization

® Our initial guess for the parameters, ¢, can be:
a) All probabilities are uniform

(e.g., b;(w,) = b;(w,) for all

states i and words w)

upside

down

0.143

promise

0.143

friend

0.143

monster

0.143

midnight

0.143

halloween

CSC401/2511 — Spring 26845-

word P(word)
upside 0.143 |
down 0.143
promise 0.143
friend 0.143
monster 0.143
0.3 midnight 0.143
halloween 0.143

upside
down 0.143
promise 0.143
friend 0.143
monster 0.143
midnight 0.143
halloween 0.143

VERSI'I'Y OF
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Step 1: BW initialization

® Qur initial guess for the parameters, 8,, can be:
b) All probabilities are drawn rand
(subject to the condition

that );; P(i) = 1)_

\
0.5
upside 0.25
down 0.25
promise 0.05
friend 0.3
monster 0.05 0.2
L_ midnight 0.09
en 0.01

CSC401/2511 — Spring 2019

word P(word)
upside 0.1 |
down 0.05
promise 0.05
friend 0.6
monster 0.05
midnight 0.1
halloween 0.05

¥

upside .

down 0

promise 0
friend 0.2
monster 0.05
midnight 0.05
halloween 0.4

UNIVERSITY OF
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Step 1: BW initialization

® Qur initial guess for the parameters, 8,, can be:
c) Observation distributions are drawn from prior distributions:
e.g., b;(w,) = P(w,) for all states i.
sometimes this involves pre-clustering, e.g. k-means

All blue dots are
words in state BLUE. :

] . upside 0.2
Their probability e .
distribution is — promise 0.03

friend 0.5

Z monster 0.07
W midnight 0.02
halloween—|  0.08

s
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What to expect when you’re
expecting

* If we knew g, we could estimate expectations such as
* Expected number of times in state s;,

a——\

* Expected number of transitions s; — s;

* If we knew:
* Expected number of times in state s;,
* Expected number of transitions s; — s;

then we could compute the maximum likelihood estimate of

6 = ({ai]‘}, {bi(w)}, ni)

UNIVERSITY OF
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BW E-step (occupation)

vi(®) = P(q. = i{0)P)

\——; S —
as the probability of being in state i at time ¢, based
on our current model, 8,,, given the entire observation, O.

* We define

and rewrite as:
P(_Qt = i:Q;;é:Q_ls;l  Remember, g;(t)

Vi (t) — T (O, Hk) and f;(t) depend
ai(t),gi(t) on values from

=A__PT’HR) \. 9i<7’[i,al’j,bi(Wl |

st
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65 0
BW E-step (transition) \O@ _\

* We define \
Eij(t) = P(q; = L, qti1 = J|O; 0y)
A

—t

as the probability of transitioning from state i at
time t to state j at time t + 1 based on our current model, 6,
and given the entire observation, 0. This is:

\ P(q¢ =1,qt+1 :]'»Oi@

&i(t) = 0. —
a: () a: 20 1)—"Again, these
v\ R l( ) 2l ’B]( ) estimates come
@\ | P(0; 0y) from our model at
\J) iteration k, 6.

@3( l—% ]L(OM\S\%YS'\OV\ s
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Expecting and maximizing

* If we knew 8, we could estimate expectations such as
* Expected number of times in state s;,
* Expected number of transitions s; = s;

* If we knew:
* Expected number of times in state s;,
* Expected number of transitions s; — s;
then we could compute the maximum likelihood estimate of
0 = ({a;;}, (bi(W)}, m;)

w

%&*
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BW M-step

We update our parameters as if we were doing MLE:
——

|. Initial-state probabilities:

= y;(0) fori :=1..N
72= -
. Statq—transitio probabilities: o O Q
=0y 0 L ..
a;j = = fori,j:=1..N

Ill. Discrete observation probabilities: °

T~ \/

Zt 0 Y](t)|0t=w .
= Ty forj:=1..Nandw €V

x‘;ﬁ
UMNIVEESITY OF
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Baum-Welch iteration

* We update our parameters after each iteration

Biesg = {75,841, 0, (W)
rinse, and repeat until Qk *797(4_1 (until change almost stops).

—

e ——

°* Baum proved that
- | P(0;0).1) =2 P(0; 0)

——— T

although this method does not guarantee a
global maximum.

T
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Features of Baum-Welch

* Although we’re not guaranteed to achieve a global
optimum, the local optima are often ‘good enough’.

* BW does not estimate the number of states, which
must be ‘known’ beforehand.

°* Moreover, some constraints on topology are often
imposed beforehand to assist training.

(5‘):1 2 —{29
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Discrete vs. continuous

* If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities
must also be continuous.

" -y N

* HMMs generalize to continuous 00 ) -
distributions, or multivariate \“)

observations, m
<8 1) T o
A N
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* |t can take a LOT of data to train H

° Imagine that we’re given a trained HMM but not the data.
* Also imagine that this HMM has been trained with data
from many sources (e.g., many speakers).

Adaptation @

* We want to use this HMM with a particular new source
for whom we have some data (but not enough to fully train the
HMM properly from scratch).

* To be more accurate for that source, we want to
change the original HMM parameters slightly given the
new data. P

UNIVERSITY OF
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Deleted interpolation

* For added robustness, we can combine estimates of a
generic HMM, G, trained with lots of data
—  from many sources with a
specific HMM, §, trained with a little data

-

— — from a single source.

QkPDI(O/) @((f}@j@i@ﬂ )\

* This gives us a model tuned to our target source (5), but
with some general ‘knowledge’ () built in.
°* How do we pick 4 € [0..1]?

T
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Deleted interpolation — learning A

1. Initialize A with an empirical or guessed estimate.

2. Given Og,, which is adaptation data of which
?Tafis the jt" partition, and there are
Wﬁrtitions, |

3. Update A (the weight of model G) according to:

\ \/1_ ZF ‘”’M

DI (Oa)

—

We continue unt|I A and 1 are sufficiently close.

.

iy UMNMIVERSITY OF
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Aside — Maximum a Posteriori (MAP)

®* Given adaptation data 0,, the MAP estimate is
6 =argmaxyP(0,]|0)P(6)

* If we can guess some structure for P(0), we can use EM
to estimate new parameters (or Monte Carlo).

® For continuous b;(¢), we use Dirichlet distribution that
defines the hyper-parameters of the model and the
Lagrange method to describe the change in parameters

0= 0.

T
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Summary

* Important ideas to know:

* The definition of an HMM (e.g., its parameters).

®* The purpose of the Fard algori
* How to comput

* The purpose of the Viterbi a :
°* How to comﬁut@,-(t)_andii(t).

®* The purpose of the Baum-Welch algorithm.
®* Some understanding of EM. )
* Some understanding of the equations.
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Bxtras
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State duration

* The probability of staying in a particular state s; for a
specific period of time, 7, diminishes exponentially over
time, all else being equal.

02 - ------------- -------- ——a,= 0.8 |7
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Combining HMMs

* Often, we link HMMs together.
* E.g., we have lots of speech data for /w/, /ah/, and /n/,
but almost no data for the word ‘one’.

/w/é—’é—’é Trained only with /w/ data.

/ah/ QHQMO Trained only with /ah/ data.

=!_-_ /n/ eﬁe—}e Trained only with /n/ data.

~8-8-8—9 ¢ €9 9 ¢

7
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N-best lists

* In our discussion of the Viterbi algorithm, we encountered
a situation where one state at time t was equally likely to
have been reached from two other states at time t — 1.

* Sometimes instead of keeping track of only the single best
path to state i at time ¢, we in fact keep track of the
N-best paths to state i at time t.

* E.g., in our Viterbi trellis:

Y: best backtrace Y: 2" best backtrace  : 3" best backtrace I
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Generative vs. discriminative

°* HMMs are generative classifiers. You can generate synthetic
samples from because they model the phenomenon itself.

* Other classifiers (e.g., artificial neural networks and support
vector machines) are discriminative in that their probabilities
are trained specifically to reduce the error in classification.
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Reading

* (optional) Manning & Schiitze: Section 9.2—9.4.1
* Note that they use another formulation...

* Rabiner, L. (1990) A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. In: Readings
in speech recognition. Morgan Kaufmann.

(posted on course website)

* Optional software:
* Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)
2 SCi-kit’S HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)
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