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In this work, we use Linear Dynamical Models (LDMs) for speech synthesis. We build-up on the existing

work on this topic in the literature. We introduce “second order” LDMs, in which the current state of the

LDM factors through the previous two state vectors. We derive the parameter estimation equations for

second order LDMs using expectation maximization (EM). Second order LDMs, with some constraints,

reduce the number of parameters in the model while not affecting the quality of the speech generated.

We also investigate the subphone segmentation in an LDM-based TTS. A series of experiments were

conducted comparing LDM-based speech synthesis with neural speech synthesis. Although, the quality

of speech generated by LDMs is inferior to the one generated by neural networks, the memory and

computational resources required are less in case of LDM-based synthesis.
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Chapter 1

Introduction

Text-to-speech synthesis or ‘TTS’ is the generation of artificial speech using a computer. Artificially

generated speech has a variety of applications which include a voice for personal assistants, document

readers, interactive voice response systems (IVRS), assistive technology devices, etc. There has been a

gradual improvement in the quality of TTS systems over the last few decades. The factors responsible

for this progress include availability of more powerful computational resources, the availability of more

speech data and development of better mathematical models. Two broad goals for a TTS voice are

intelligibility and naturalness. Intelligibility refers to the ability to convey the original message of the

speaker with clarity to a listener. Naturalness refers to how close the voice characteristics are to a

human voice. These characteristics include the continuity and flow in the utterance, the overall tone

of the speech, nuances induced by accent, etc. An intelligible, yet unnatural voice will sound ‘robotic’.

Present day TTS systems perform well in terms of intelligibility, so the focus is more on producing a

more natural sounding speech.

A TTS system, in general, can be divided into two major components: text analysis, and generation

and synthesis. These components are described as follows:

• Text analysis : Text analysis component, also known as the front-end of a TTS system, is used

for processing the text to be synthesized and convert it into linguistic features or labels. The tasks

delegated to a front-end include

– part-of-speech (POS) tagging and syntactic analysis

– word segmentation, which is non-trivial for languages, for example Mandarin Chinese, in

which words are not segmented using white space

1



Chapter 1. Introduction 2

– text normalization, which involves converting the abbreviations, digits and quantities into

their normalized form

– prosody prediction

– finding word pronunciations, i.e., converting each word into a string of phones along with

other tags for example stress accent, POS, etc.

– generating linguistic feature vectors, which include positional, syntactic information etc., from

these phonetic transcriptions

Not all processing steps are required in each TTS system. Some of the new deep-neural networks

based systems use normalized text as input to the acoustic model, for example Tacotron [Wang

et al., 2017].

• Generation & synthesis : This component, also known as the back-end of a TTS system, is

responsible for generating the speech waveform from the linguistic features produced by the text

analysis. There are various types of back-end designs, which differ significantly in their approach

towards generating speech. Data-driven approaches to generation and synthesis can be broadly

classified into two categories: concatenative speech synthesis and statistical parametric speech

synthesis (SPSS).

1.1 Concatenative Speech Synthesis

As the name suggests, concatenative speech synthesis is based on concatenating together small

units of speech to produce an utterance. The concatenation is typically done using a time-domain

joining algorithm, for example PSOLA [Charpentier and Stella, 1986]. The concatenated utterance is

smoothened by signal processing algorithms to remove the glitches at the discontinuities. These glitches

could be mismatch in spectral tilt, phase, and formant frequencies and bandwidths. The resulting

speech can be very natural sounding because the speech signal is directly taken from instances of the

training data and there is minimal signal processing involved. The concatenative speech synthesis can

further be classified into diphone synthesis and unit selection synthesis.

1.1.1 Diphone Synthesis

In diphone synthesis [Charpentier and Stella, 1986] the fundamental speech unit is typically two halves

of adjacent phones taken together, called a diphone. Each di-phone corresponds to the later half of one
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phone and the first half of a second phone. Thus a diphone captures the transition between two phones.

The advantage of using a diphone as opposed to a phone, as a fundamental unit for concatenation, is

that the middle of a phone is much more stable than the boundary of a phone. It is simpler to put a join

in the middle as it is much more forgiving in case there is a small error in joining the two sounds. The

number of units in diphone synthesis is dependent on the phonotactics of the language, but the amount

of data required is much lesser than all other data-driven approaches. As a result, the resulting speech

is not of great quality but it can be easily implemented on devices with low computational and memory

resources.

1.1.2 Unit Selection Synthesis

In unit selection synthesis [Hunt and Black, 1996], speech is generated from a large corpus of pre-recorded

speech units by selecting the appropriate units out of this database of units. There may not be just one

length of speech units. During the speech database creation, the speech utterances are broken down into

a variety of units which include phones, diphones, a cluster of phones, syllables, phrases, etc. The smaller

units, for example phones, are more generalizable and can thus be used in a variety of contexts, whereas

the larger units, for example phrases, are specialized and thus require a larger amount of speech to be

observable. The use of larger units, however, leads to better speech because such an utterance involves

lesser number of concatenations, so a lesser number of artifacts at the joins. The selection of a unit in

an utterance to be synthesized is dependent on a combination of two cost functions: target cost and join

cost. Target cost defines if a unit is a good fit for the context under consideration. The context could

be defined by a variety of features which include the previous and next phones, position in the syllable,

position in the word, position in the phrase, etc. The join cost defines the joining compatibility between

two speech units. This is dependent on spectral distance, fundamental frequency distance, duration and

intensity mismatch between the two units, etc. After shortlisting the candidate units for concatenation,

the final selection is done using a Viterbi style algorithm.

The speech produced by unit selection has been in general better than the one produced by SPSS [Zen

et al., 2009], even though recently there have been SPSS systems that perform better than state-of-the-art

unit selection systems [van den Oord et al., 2016]. Unit selection requires a huge speech database and is

difficult to adapt to various styles and voices. Thus a new voice or style requires an entirely new dataset.
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1.2 Statistical Parametric Speech Synthesis (SPSS)

In statistical parametric speech synthesis [Zen et al., 2009], the speech is generated from statistical

models rather than from stored exemplars. These statistical models essentially capture the probability

distribution of the acoustic features, given the linguistic context. Most of the time, the output of an

acoustic model is of much lower dimension than the raw speech. The output features are used by a

vocoder to generate the speech waveform. The features depend on the vocoder used but are most often

the spectral envelope, fundamental frequency, and band-aperiodicity coefficients. Instead of modeling

the raw spectral envelope, the acoustic model often models some other lower dimensional features, for

example mel-generalized coefficients (MGCs), from which the spectral envelope could be constructed.

Hidden Markov Model (HMM) based speech synthesis (HTS) has historically been the most popular

SPSS model. Apart from that, there has been some work in autoregressive HMMs for speech synthesis

[Shannon and Byrne, 2009, Quillen, 2012] and Linear Dynamical Model (LDM) based speech synthesis

[Quillen, 2010, Tsiaras et al., 2014]. In this thesis, we explore in detail the latter two methods and

their combination. Recently there has been a lot of progress in speech synthesis using deep-neural

networks, often referred to as neural speech synthesis. Neural speech synthesis has been around for more

than two decades [Karaali et al., 1996] but it has become popular after the advancements in the field

of deep-learning. Neural speech synthesis started as yet another approach to SPSS which uses neural

networks for modeling various components within a TTS system, for example a neural network is used

to map linguistic features to acoustic features [Karaali et al., 1996, Ze et al., 2013]. Recently, however,

there have been neural speech synthesis models which are a little different from the traditional SPSS,

for example in Wavenet [van den Oord et al., 2016], instead of generating acoustic features, the model

synthesizes raw speech waveform. In Char2wav [Sotelo et al., 2017], the front-end and back-end are

trained jointly.

Neural networks are more powerful still than LDMs in modeling complex probability distributions

and are now being extensively used in TTS. Neural networks regained popularity just around the time

when LDMs were first introduced for TTS. LDMs, as a result, did not catch on and have not been

studied extensively in the realm of TTS, which is one of the reasons to study LDMs in this thesis.

Neural networks have more computational resources and memory requirements, thus LDMs could be a

better choice in low resource devices. LDMs also use their statistics more efficiently, so they are more

suited to applications with a limited amount of training data.

Before going into LDMs and autoregressive models, we describe the HMM based models in detail, in

order to motivate the use of LDMs.
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1.3 HMM Based Speech Synthesis

The motivation for using HMMs in TTS comes from their success in automatic speech recognition (ASR)

[Gales and Young, 2008]. HMMs are stable models and have efficient well-developed algorithms [Rabiner,

1989]. They can be easily trained using expectation maximization, the most likely state sequence can be

efficiently found using the Viterbi algorithm, etc. In TTS, each context-dependent phone is associated

with an HMM, which is typically a three or five state left-to-right HMM. In a three-state HMM, the first

state, second and third states correspond to the beginning, middle and end of the phone respectively.

The number of context-dependent phones in a language is very high because the number of phones

increases exponentially with the number of features that define the context. Typically the context is

defined by the one or two preceding and succeeding phones, POS tag, position in syllable, position in

phrase etc. Thus it is nearly impossible to have a separate HMM for each context-dependent phone

because there will not be enough training data for each context-dependent phone and some of the

contexts may never be encountered in the training data. Thus a many-to-one mapping is defined from

linguistic context to HMMs. Historically, the most popular method to define such a mapping is by using

a decision tree to cluster together various contexts and having a single HMM for each given cluster

[Young et al., 1994]. In the very early approaches to using neural networks for speech synthesis, the

decision trees were replaced by neural networks which map the linguistic context to an HMM [Ze et al.,

2013].

In regular HMMs, the probability distribution of the duration of each state in an HMM is

exponentially distributed, which is not an accurate duration model. Thus in order to model the duration

correctly, HMMs in TTS are modified to Hidden Semi Markov Models (HSMMs) [Zen et al., 2007c]

which have an explicit duration component, thus they are only semi-Markov, as the state transition

times are marked in the training data. However, as is the case in most of the literature, we refer to

HSMMs simply as HMMs.

During utterance generation, the HMMs corresponding to each context-dependent phone in sequence

are concatenated together, and observations are generated for each state of this concatenated HMM using

the external duration model associated with the HMM. In the traditional HMM based TTS systems,

HMMs did not really play any major role. During training time, the HMMs are used only for aligning

the phones with the speech audio to generate time labels for phones in each utterance of the training

data. This process is called forced-alignment. The mapping from linguistic to acoustic features is done

by decision trees. During generation, the duration is modeled by an external duration model.

There are however certain issues in the above-described model. Firstly, the observation vectors
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are independent given the state sequence and do not directly depend on previous observation vectors.

Secondly, in a given state, the most probable observation vector is the mean of a Gaussian distribution,

which is the output probability for that state. Thus the parameters generated by HMMs are piece-wise

constant as they remain constant in any given state. A very effective solution to this problem is the use

of dynamic features (deltas and double deltas) of the observation vectors along with “static” features

[Tokuda et al., 1995]. However, this is based on the assumption that the static and dynamic features

in the observation vector are independent, whereas they are clearly dependent. This was addressed by

the trajectory HMM [Zen et al., 2007b] which incorporates the dynamic features in the training as well,

so the static and dynamic features are no longer assumed to be independent. While using dynamic

features, during generation time the parameters are generated using the maximum likelihood parameter

generation (MLPG) algorithm [Tokuda et al., 2000].

Unlike HMMs, LDMs have a continuous state space. Due to their inherent properties, autoregressive

HMMs and LDMs do not suffer from the piece-wise constant output problem. They are more powerful

models for capturing the dynamics of speech. In the next chapter, the auto-regressive HMMs and LDMs

are described in detailed. Chapter 3 describes the use of these models in speech synthesis.

In this work we reappraise LDMs in view of recent developments in TTS. The novel contributions

include the introduction of second order LDMs along with their parameter estimation and usage in speech

synthesis. Other aspects of the LDM based speech synthesis, which include subphone segmentation and

parameter sharing, are also investigated. Several experiments compare the different variations of LDMs

with neural networks for speech synthesis.



Chapter 2

Linear Dynamical Models

In this chapter, we discuss the linear dynamical models, which are a class of dynamical models with

a continuous state space. The state evolution in LDMs is a linear first-order Gauss-Markov random

process, and the observed vectors are produced by a factor analysis model on the state vectors. LDMs

have been used extensively in the field of control systems for problems which require inferring the state

of a system given noisy observations [Kailath, 2000]. LDMs have well developed mathematical equations

for state inference using Kalman filtering, and they are easy to learn using expectation-maximization,

making them a desirable choice for modeling sequential data.

Before discussing LDMs, we briefly describe the autoregressive HMMs which can be considered as a

special case of LDMs. Unlike LDMs, autoregressive HMMs do not have a separate state and observation

space. We then proceed to a detailed discussion of linear dynamical models and introduce second-order

LDMs, a novel contribution in this thesis.

2.1 Autoregressive HMMs

As explained in the previous chapter, vanilla HMM based speech synthesis generates constant observation

vectors within any sub-segment, which corresponds to one state of an HMM. A variety of methods have

been suggested to counter that problem. One approach is to use autoregressive HMMs instead of regular

HMMs.

As is the case with regular HMMs, autoregressive HMMs were first used in ASR [Wellekens, 1987,

Kenny et al., 1990, Woodland, 1992]. M. Shannon et al. published a series of papers on the use of

autoregressive HMMs for speech synthesis [Shannon and Byrne, 2009, 2010, Shannon et al., 2013]. This

was followed by another attempt with some modifications to the system model in [Quillen, 2012]. We will

7
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use the system equations proposed in [Shannon and Byrne, 2009]. Like any other sequence generation

model with underlying hidden states, an autoregressive HMM has a hidden state sequence θ1:T which

produces a sequence of vector observations X = x1:T , T being the length of the sequence. Using Bayes

rule, we can break up the conditional distribution of the observation sequence, given the state sequence

as follows:

P(X|θ1:T ) =

T∏
t=1

P(xt|x1:t−1, θ1:T )

In regular HMMs, the observations are independent given the state sequence

P(xt|x1:t−1, θ1:T ) = P(xt|θ1:T )

whereas in case of autoregressive HMMs, the conditional probability assumes the following Gaussian

distribution:

P(xt|x1:t−1, θt) = N (xt|µθt(x1:t−1),Σθt)

The mean of the distribution at time t for an autoregressive HMM q is assumed to be dependent on the

previous observations by the following equation:

µq(x1:t−1) =

D∑
d=1

Adq(f
d(x1:t−1)− µdq) + µ0

q (2.1)

The previous observation vectors are used to produce D summary vectors fd(x1:t−1). A summary

fdq is acted upon by a matrix Adq after subtracting a bias term µdq from the summary. There is an

additional bias term µ0
q added to the result in the end. The bias vectors µdq are redundant but are used

as a trick to make the estimation of the parameters easier [Woodland, 1992]. For each state q, we need

to determine the parameters A1
q, . . . , A

D
q , µ1

q, . . . ,µ
D
q and µ0

q. The parameter estimation equations for

this system have been derived in [Shannon and Byrne, 2009].

We are free to choose the summarizers to be anything, but they are often some predefined linear

combinations of the last K observation vectors:

fd(x1:t−1) =

K∑
k=1

wdkxt−k

Often certain simplifying assumptions are made, for example the summary vector fdq is defined to be

the vector xt−d, with K = D. These types of models are called canonical autoregressive HMMs [Kenny



Chapter 2. Linear Dynamical Models 9

et al., 1990]. In this case, (2.1) simplifies to:

µq(xt−D:t−1) =

D∑
d=1

Adq(xt−d − µdq) + µ0
q

Another common simplifying assumption is that Adq is a diagonal matrix. This leads to each component

in the observation vector being a scalar, independent, autoregressive process. In our implementation of

autoregressive HMMs for evaluation purposes, we use both of the above mentioned assumptions.

We can clearly see that in autoregressive HMMs, the observations are not piece-wise constant. They

introduce the continuity and context dependence which is needed for good quality speech synthesis

without deltas and double deltas. For speech synthesis, they have been found to perform better than

the regular HMMs [Shannon et al., 2013].

2.2 Linear Dynamical Models

LDMs are a class of continuous state space models with a linear state evolution equation. As mentioned

earlier, LDMs have a continuous vector hidden state space. LDMs do not replace the discrete state

sequence θ1:T in HMMs and autoregressive HMMs, with a continuous vector state sequence, however.

One normally uses a set of LDMs for modeling data like acoustic features in speech. A discrete state θt

in case of LDMs is used to select one LDM out of a set of LDMs. This is similar to autoregressive HMMs,

in which the hidden state essentially picks up an autoregressive HMM, from which we produce multiple

observations, before transitioning to a new state or essentially picking up a new model to produce

another set of observations. LDMs, however, incorporate an additional layer of hidden variables, which

are continuous vectors. In LDM based generation, a particular LDM produces a sequence of continuous

hidden state vectors X = x1:T . Based on these states the observation vectors Y = y1:T are generated.

In the case of LDMs, we will use “state” to refer to the continuous valued vector xt. An LDM q can be

described by the following set of equations:

xt = Fqxt−1 +wt , wt ∼ N (gq, Qq) (2.2a)

yt = Hqxt + vt , vt ∼ N (µq, Rq) (2.2b)

x1 ∼ N (g1,q, Q1,q) (2.2c)

The state at time t is represented by an n-dimensional continuous valued vector xt that linearly evolves

through time according to (2.2a). Fq is the state transition matrix of size n×n, wt is a multi-dimensional
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Figure 2.1: State and observation trajectory for an LDM with n = 2 and m = 3. The state and
observation both converge to their target values with perturbations due to process and observation
noise.

Gaussian random vector with mean gq and variance Qq. The state is not observable, however. An

m-dimensional observation vector represented by yt is observed at time t. The observation vector is

obtained from the state vector by multiplying with an m × n dimensional observation matrix H and

adding the noise vector vt, which is Gaussian distributed with mean µq and variance Rq, as shown in

(2.2b). The initial state is Gaussian distributed with mean g1,q and variance Q1,q. In control systems,

the vectors wt and vt are called process noise and observation noise respectively. All the samples of

process noise, observation noise, and the initial state are independent of each other. Thus, an LDM

q can be specified by the parameters Fq, gq, Qq, Hq,µq, Rq, g1,q and Q1,q. In most of the subsequent

discussion, we omit the subscript q.

The recursion in (2.2a) necessitates the stability of an LDM. An LDM is stable if the spectral radius

of F is less than one. The state of a stable LDM converges to (I − F )−1g. This could be considered

the target state of an LDM which it eventually converges to, and H(I− F )−1g + µ is consequently the

target observation of an LDM. fig. 2.1 shows a trajectory for an LDM with 2-dimensional state space

and 3-dimensional observation space.

2.2.1 Autoregressive HMMs as LDMs

Autoregressive HMMs can be seen as a special case of LDMs. As illustrated in [Quillen, 2012], we can

adapt LDM parameters to model autoregressive HMMs. As an example, a canonical autoregressive

HMM of second order, i.e. the current observation vector factors through two previous observation
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vectors, can be modeled with the following set of equations:

x′t = Fx′t−1 +wt , wt ∼ N (g, Q) (2.3a)

where, x′t =

 xt

xt−1

 , F =

A1 A2

I 0

 , g =

µ0 −A1µ1 −A2µ2

0


yt = Hx′t (2.3b)

where, H =

[
I 0

]

All the notations used are the same as in the case of autoregressive HMM and LDM equations. A1 and

A2 are diagonal matrices in the case of canonical autoregressive HMMs. We exclude any discussion on

covariance matrices here. They will be dealt with in the subsequent sections.

2.2.2 Comparison with Recurrent Neural Networks

LDMs can in turn be seen as simpler variants of recurrent neural networks (RNNs). They are simpler

because there is no non-linearity involved, and the state progresses without any external input being

fed into them at each time step. LDMs are also somewhat similar to a decoder in an encoder-decoder

RNN architecture [Cho et al., 2014], where the input to the decoder is only a summary vector which

corresponds to the initial state in an LDM. However, unlike an LDM, a decoder uses the summary

vector at every time step and the current state could depend on previous state as well as previous

output, whereas in an LDM the current state depends on the previous state only. Consequently, LDMs

can be trained using EM whereas RNNs are trained by back-propagating gradients. A 2-layer RNN with

a given initial state x1, subsequent hidden states x2:T , outputs y1:T is represented as:

xt = σx(Fxt−1 + g)

yt = σy(Hxt + µ)

where σx and σy are hidden-state and output activation functions. These equations are the same as the

LDM equations (2.2), except that in LDMs the activation functions are identity.

2.2.3 Inference

Given an LDM with parameters Θ, and a set of observations Y , three types of hidden state inference

problems can be defined:
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• filtering : P(xt|y1:t,Θ)

• smoothing : P(xt|Y,Θ)

• prediction : P(xt+τ |y1:t,Θ)

Thus, in filtering the state inference in causal, whereas, in case of smoothing, the state is inferred

using all the observations. Filtering and smoothing, which are required in order to learn the LDM

parameters via expectation maximization, are discussed below. Prediction is required when observation

vectors are not available for some time steps, which is not the case with our problem, so we omit the

discussion on prediction. For the sake of convenience, we use the following notation:

x̂i|j ≡ E[xi|y1:j ]

Σi|j ≡ Var(xi|y1:j)

Σi,i−1|j ≡ Cov(xi,xi−1|y1:j)

P̂i|j ≡ E[xix
>
i |y1:j ]

P̂i,i−1|j ≡ E[xix
>
i−1|y1:j ]

Filtering

The filtering problem is defined as the causal inference of the state xt given y1:t. Filtering is done using

Kalman Filter recursions [Kalman, 1960]. Kalman filters perform the inference recursively, where each

recursion consists of two steps. The Kalman filter recursions can be written in multiple ways but one of

the standard forms is stated as follows:

x̂t|t−1 = F x̂t−1|t−1 + g (2.4a)

Σt|t−1 = FΣt−1|t−1F
> +Q (2.4b)

et = yt − ŷt|t−1 = yt −Hx̂t|t−1 − µ (2.4c)

Σet = HΣt|t−1H
> +R (2.4d)

Kt = Σt|t−1H
>Σ−1

et
(2.4e)

x̂t|t = x̂t|t−1 +Ktet (2.4f)

Σt|t = Σt|t−1 −KtΣet
K>t (2.4g)(

Σt,t−1|t = (I−KtH)FΣt−1|t−1

)
(2.4h)
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In the first phase, x̂t|t−1 and Σt|t−1 are predicted given x̂t−1|t−1 and Σt−1|t−1 as shown in (2.4a) and

(2.4b) respectively. In the second phase, the error et in the predicted observation ŷt|t−1 (2.4c) is used to

refine the state estimation (2.4f) using the optimal Kalman gain matrix Kt (2.4e). The variance of the

state vector is thus reduced as shown in (2.4g). The autocovariance matrix given in (2.4h) is used in the

calculation of a statistic in the backward recursions in smoothing. The initial state and process noise

are Gaussian distributed, hence the state process itself is Gaussian. The local likelihood function for

observations is also Gaussian, leading to the conditional distribution of state given a set of observations

being Gaussian as well.

Smoothing

In the smoothing problem, the state vectors are inferred given all the observation vectors. This is done

using an RTS smoother [Rauch et al., 1965] which consists of a forward pass, which is the same as

Kalman filtering, and a backward pass. The backward pass adjusts the state estimates once all the data

have been observed. A gain matrix At, similar to the Kalman gain matrix, is introduced as shown in

(2.5a). The estimated state is essentially a linear combination of the estimation made by the two filters

as shown in (2.5b). The corresponding variance is shown in (2.5c). The statistics calculated in (2.5e)

and (2.5f) are not a part of the standard forward-backward recursions, but are used in the parameter

estimation of the LDMs. The backward recursions are stated as follows:

At = Σt−1|t−1F
>Σ−1

t|t−1 (2.5a)

x̂t−1|T = x̂t−1|t−1 +At(x̂t|T − x̂t|t−1) (2.5b)

Σt−1|T = Σt−1|t−1 +At(Σt|T − Σt|t−1)A>t (2.5c)

Σt,t−1|T = Σt|TA
>
t (2.5d)(

P̂t−1|T = Σt−1|T + x̂t−1|T x̂
>
t−1|T

)
(2.5e)(

P̂t,t−1|T = Σt,t−1|T + x̂t|T x̂
>
t−1|T

)
(2.5f)

2.3 Second-order LDMs

The state evolution equation in standard LDMs (2.2a) is first order, i.e. the current state’s dependence

on previous states factors through the immediately previous state. In order to provide more flexibility to

the model, we increase the order so that the current state factors through the previous two states. This

essentially leads to the state evolution being an autoregressive process, with observations still modeled
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as factor analysis on the state space. A second order LDM q is represented as follows:

xt = Fqxt−1 +Gqxt−2 +wt , wt ∼ N (gq, Qq) ; (2.6a)

yt = Hqxt + vt , vt ∼ N (µq, Rq) (2.6b)

x1 ∼ N (g1,q, Q1,q) , x0 ∼ N (g0,q, Q0,q) (2.6c)

Using the probability distribution of an x0 as the base case in (2.6c) rather than x2|1 leads to easier

calculations in the EM algorithm. Similar to the set of equations for autoregressive HMMs (2.3), second

order LDM equations can be transformed into a first-order LDM equation form:

x′t = F ′x′t−1 +wt , wt ∼ N (g′, Q′) (2.7a)

where, x′t =

 xt

xt−1

 , F ′ =

F G

I 0

 , g′ =

g
0

 , Q′ =

Q 0

0 0


yt = H ′x′t + vt (2.7b)

where, H ′ =

[
H 0

]
, vt ∼ N (µ, R)

By converting to the above form, the Kalman filtering (2.4) and smoothing (2.5) equations can be used

for inferring the states of a second order LDM as well.

The state recursive equation in second-order LDMs (2.6a) is more powerful than the recursion in

first-order LDMs (2.2a). The trajectory of second-order LDMs is, in general, smoother than that of

first-order LDMs because of averaging over two previous states rather than one. When restricted to

diagonal state transition matrices, second order relations can model oscillations that first order relations

cannot as shown in fig. 2.2. We found that LDMs with diagonal matrices F and G are sufficient to model

the trajectories of acoustic features as the speech generated using these diagonal transition matrices is

good as the one generated using full matrices. The evaluation metrics and the detailed results are

presented in the next chapter. Thus, it uses 2n parameters in a state progression matrix as opposed

to n2 parameters in first-order LDMs. The parameters can be further reduced to n by using a critical

damping system assumption, which will be discussed in the next chapter.
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Figure 2.2: Example trajectory of a second order relation xt = φ1xt−1 + φ2xt−2 + g is shown on left,
while that for a first order relation xt = φxt−1 + g is shown on the right

2.4 Parameter Estimation

LDM parameter estimation is an unsupervised problem. An LDM can be considered as a generative

model which produces a sequence of observations. The most popular method for training LDMs is the

expectation-maximization (EM) algorithm which was introduced by Digalakis et al. [Digalakis et al.,

1993] for first-order LDMs. In this section, we will derive the EM equations for second order LDMs. EM

provides a simple and convergent solution to LDM learning.

Maximum likelihood estimation of the unknown LDM parameters Θ is obtained by minimizing the

objective function, which is the negative log-likelihood of the observations. Following the generalized

concept of expectation-maximization [Bishop, 2006], we introduce some distribution q over X and

manipulate the log-likelihood function, L as follows:

L(Θ) = log P(Y |Θ)

=

∫
X

q(X) log

(
P(X,Y |Θ)

q(X)

q(X)

P(X|Y,Θ)

)
dX

=

∫
X

q(X) log

(
P(X,Y |Θ)

q(X)

)
dX −

∫
X

q(X) log

(
P(X|Y,Θ)

q(X)

)
dX

= F(q,Θ) + KL(q‖p)

where F(q,Θ) is a functional of q(X) and KL(q‖p) is the Kullback-Leibler (KL) divergence between

q(X) and the posterior distribution P(X|Y,Θ), which has the property KL(q‖p) ≥ 0, with equality

being obtained if and only if q(X) = P(X|Y,Θ). This provides a lower bound on the log-likelihood
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function:

L(Θ) ≥ F(q,Θ).

EM algorithm involves an iterative two-stage optimization. In the expectation step, the lower bound is

maximized with respect to q(X), keeping the parameters fixed, denoted by Θold. This is achieved by

setting:

q(X) = P(X|Y,Θold),

which makes the KL divergence term zero, and the log-likelihood becomes equal to the lower bound.

Thus, at the end of the expectation step we have:

L(Θold) = F(q,Θold) (2.8)

=

∫
X

P(X|Y,Θold) log P(X,Y |Θold)dX −
∫
X

P(X|Y,Θold) log P(X|Y,Θold)dX (2.9)

In the maximization step, the lower bound F(q,Θ) is maximized with respect to Θ keeping q(X)

fixed:

Θnew = argmax
Θ

F(q,Θ)

= argmax
Θ

∫
X

P(X|Y,Θold) log P(X,Y |Θ)dX −
∫
X

P(X|Y,Θold) log P(X|Y,Θold)dX

= argmax
Θ

∫
X

P(X|Y,Θold) log P(X,Y |Θ)dX + H(q)

The second term here does not depend on Θ, so the expression can be reduced to

Θnew = argmax
Θ

∫
X

P(X|Y,Θold) log P(X,Y |Θ)dX

= argmax
Θ

E[log P(X,Y |Θ)|Y,Θold]

≡ argmax
Θ

Q(Θ,Θold)

The function Q(Θ,Θold) is called the auxiliary function. This will increase the lower bound unless a

local maximum has already been achieved. Updating Θ will make the KL divergence term non-zero. So,

we repeat the procedure until L(Θ) stops increasing.

The term inside the expectation of the auxiliary function, in case of a second order LDM, expands

to:

log P(X,Y |Θ) = log P(x0) + log P(x1) +

T∑
t=2

log P(xt|xt−1,xt−2) +

T∑
t=1

log P(yt|xt)
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The auxiliary function is evaluated as:

Q(Θ,Θold) = E[log P(x0)|Y,Θold] + E[log P(x1)|Y,Θold]

+

T∑
t=2

E[log P(xt|xt−1,xt−2)|Y,Θold] +

T∑
t=1

E[log P(yt|xt)|Y,Θold]

= −1

2
log |Q0| −

1

2
E[(x0 − g0)>Q−1

0 (x0 − g0)|Y,Θold]

− 1

2
log |Q1| −

1

2
E[(x1 − g1)>Q−1

1 (x1 − g1)|Y,Θold]

− T − 1

2
log |Q|

− 1

2

T∑
t=2

E[(xt − Fxt−1 −Gxt−2 − g)>Q−1(xt − Fxt−1 −Gxt−2 − g)|Y,Θold]

− T

2
log |R| − 1

2

T∑
t=1

E[(yt −Hxt − µ)>R−1(yt −Hxt − µ)|Y,Θold]

In the E step, sufficient statistics are gathered from the forward and backward Kalman recursions.

For the sake of simplicity, we provide equations for a single training sequence. When training on multiple

sequences, which is normally the case, the statistics are added for each training sequence in the training

data. The following are the sufficient statistics collected:

ζ1 =

T−1∑
t=1

x̂t|T (2.10a)

ζ2 =

T∑
t=2

x̂t|T (2.10b)

ζ3 =

T∑
t=1

x̂t|T (2.10c)

ζ4 =

T∑
t=1

yt (2.10d)

ζ5 =

T−2∑
t=0

x̂t|T (2.10e)

Γ1 =

T−1∑
t=1

P̂t|T (2.10f)

Γ2 =

T∑
t=2

P̂t|T (2.10g)

Γ3 =

T∑
t=1

P̂t|T (2.10h)

Γ4 =

T∑
t=2

P̂t,t−1|T (2.10i)



Chapter 2. Linear Dynamical Models 18

Γ5 =

T∑
t=1

ytx̂
>
t|T (2.10j)

Γ6 =

T∑
t=1

yty
>
t (2.10k)

Γ7 =

T−2∑
t=0

P̂t|T (2.10l)

Γ8 =

T−1∑
t=1

P̂t,t−1|T (2.10m)

Γ9 =

T∑
t=2

P̂t,t−2|T (2.10n)

In the M step, the auxiliary function is maximized with respect to each parameter by taking the derivative

with respect to that parameter and equating it to zero. As in the case of the E step, the expressions

presented below are for a single training sequence but can be trivially extended to multiple sequences.

The expectations in these expressions are the statistics that were collected in the E step (2.10).

Expression for g0:

∂Q(Θ,Θold)

∂g0
= −1

2
2Q−1

0 (E[x0|Y,Θold]− g0) = 0

⇒ gnew
0 = E[x0|Y,Θold]

= x̂0|T (2.11)

In the case of multiple sequences, x̂0|T is averaged over multiple sequences. The expression for Q0 is

easier to calculate by differentiating with respect to Q−1
0 :

∂Q(Θ,Θold)

∂Q−1
0

=
1

2
Q0 −

1

2
E[(x0 − g0)(x0 − g0)>|Y,Θold] = 0

⇒ Qnew
0 = E[x0x

>
0 |Y,Θold]− gnew

0 gnew>
0

= P̂0|T − gnew
0 gnew>

0 (2.12)

In case Q0 is assumed to be diagonal, only diagonal entries for both the terms in the expression are

taken. In case of multiple sequences, P̂0|T is averaged over all sequences. Expressions for g1 and Q1 are

similar to the ones for g0 and Q0:

gnew
1 = E[x1|Y,Θold]

= x̂1|T (2.13)
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Qnew
1 = E[x1x

>
1 |Y,Θold]− gnew

1 gnew>
1

= P̂1|T − gnew
1 gnew>

1 (2.14)

Expression for F :

∂Q(Θ,Θold)

∂F
= −1

2
(−2)Q−1

T∑
t=2

E[(xt − Fxt−1 −Gxt−2 − g)x>t−1|Y,Θold]

⇒
T∑
t=2

E[xtx
>
t−1|Y,Θold]− F

T∑
t=2

E[xt−1x
>
t−1|Y,Θold]

−G
T∑
t=2

E[xt−2x
>
t−1|Y,Θold]− g

T∑
t=2

E[x>t−1|Y,Θold] = 0

T∑
t=2

P̂t,t−1|T − F
T−1∑
t=1

P̂t|T −G
T−1∑
t=1

P̂>t,t−1|T − g
T−1∑
t=1

x̂>t|T = 0

Γ4 − FΓ1 −GΓ>8 − gζ>1 = 0

Substituting the value of g in terms of F and G from (2.18):

⇒ F new =

[
Γ4 −

1

T − 1
ζ2ζ
>
1 +Gnew

(
1

T − 1
ζ5ζ
>
1 − Γ>8

)](
Γ1 −

1

T − 1
ζ1ζ
>
1

)−1

(2.15)

Similarly, expression for G:

Gnew =

[
Γ9 −

1

T − 1
ζ2ζ
>
5 + F new

(
1

T − 1
ζ1ζ
>
5 − Γ>8

)](
Γ7 −

1

T − 1
ζ5ζ
>
5

)−1

(2.16)

The expressions for F new and Gnew involve each other. From (2.15) and (2.16) we can write these

expressions independently as 1:

F new

Gnew

 = Λ−1∆ (2.17)

where, ∆ =

[
(Γ4 − 1

T−1ζ2ζ
>
1 )(Γ1 − 1

T−1ζ1ζ
>
1 )−1 (Γ9 − 1

T−1ζ2ζ
>
5 )(Γ7 − 1

T−1ζ5ζ
>
5 )−1

]>

Λ =

 I −
(

1
T−1ζ5ζ

>
1 − Γ>8

)(
Γ1 − 1

T−1ζ1ζ
>
1

)−1

−
(

1
T−1ζ1ζ

>
5 − Γ>8

)(
Γ7 − 1

T−1ζ5ζ
>
5

)−1

I



1In our implementation, we iteratively find Fnew and Gnew instead of finding the matrix inverse as in (2.17). This is
followed by restricting the spectral radius to be less than 1 using the method described in [Quillen, 2012]
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Expression for g:

∂Q(Θ,Θold)

∂g
= −1

2
(−2)Q−1

T∑
t=2

E[xt − Fxt−1 −Gxt−2 − g|Y,Θold]

⇒ gnew =
1

T − 1
(

T∑
t=2

E[xt|Y,Θold]− F new
T∑
t=2

E[xt−1|Y,Θold]−Gnew
T∑
t=2

E[xt−2|Y,Θold])

=
1

T − 1

(
T∑
t=2

x̂t|T − F new
T−1∑
t=1

x̂t|T −Gnew
T−2∑
t=0

x̂t|T

)

=
1

T − 1
(ζ2 − F newζ1 −Gnewζ5) (2.18)

Expression for Q is easier to find by differentiating with respect to Q−1:

∂Q
∂Q−1

=
T − 1

2
Q− 1

2

T∑
t=2

E[(xt − Fxt−1 −Gxt−2 − g)(xt − Fxt−1 −Gxt−2 − g)>|Y,Θold] = 0.

By assuming that ∂Q
∂Q−1 , ∂Q∂F , ∂Q∂G and ∂Q

∂g are simultaneously 0, many terms in the product (xt−Fxt−1−

Gxt−2 − g)(xt − Fxt−1 −Gxt−2 − g)> cancel, leaving:

Qnew =
1

T − 1

(
T∑
t=2

E[xtx
>
t |Y,Θold]− F new

T∑
t=2

E[xt−1x
>
t |Y,Θold]

−Gnew
T∑
t=2

E[xt−2x
>
t |Y,Θold]− gnew

T∑
t=2

E[x>t |Y,Θold]

)

=
1

T − 1
[Γ2 − F newΓ>4 −GnewΓ>9 − gnewζ>2 ] (2.19)

Expression for H, in which we substitute µ in terms of H from (2.21):

∂Q(Θ,Θold)

∂H
= −1

2
(−2)R−1

T∑
t=1

E[(yt −Hxt − µ)x>t |Y,Θold] = 0

⇒
T∑
t=1

ytE[x>t |Y,Θold]−H
T∑
t=1

E[xtx
>
t |Y,Θold]− µ

T∑
t=1

E[x>t |Y,Θold] = 0

⇒ Hnew =

(
Γ5 −

1

T
ζ4ζ
>
3

)(
Γ3 −

1

T
ζ3ζ
>
3

)−1

(2.20)

Expression for µ:

∂Q
∂µ

= −1

2
(−2)R−1

T∑
t=1

E[yt −Hxt − µ|Y,Θold] = 0

⇒ µnew =
1

T

(
T∑
t=1

yt −Hnew
T∑
t=1

x̂t|T

)
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=
1

T
(ζ4 −Hnewζ3) (2.21)

Expression for R:

∂Q(Θ,Θold)

∂R−1
=
T

2
R− 1

2

T∑
t=1

E[(yt −Hxt − µ)(yt −Hxt − µ)>|Y,Θold] = 0

⇒ Rnew =
1

T

(
T∑
t=1

yty
>
t −Hnew

T∑
t=1

E[xt|Y,Θold]y>t − µnew
T∑
t=1

y>t

)

=
1

T

(
Γ6 −HnewΓ>5 − µnewζ>4

)
(2.22)
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LDMs for Text-to-Speech Synthesis

In this chapter we will discuss the application of LDMs in text-to-speech synthesis. An initial attempt

to use LDMs for speech synthesis was made by C. Quellin [2010]. This was followed by a series of papers

by V. Tsiaras et al. [2014, 2015, 2016] that further investigated LDM-based TTS. We start by providing

a motivation for the use of LDMs in acoustic modeling in section 3.1. In speech synthesis, a phone

segment is generally subdivided into sub-segments. The resulting entities are called subphones, which

are the fundamental speech units modeled. Each context-dependent subphone is modeled by a single

LDM, so a set of LDMs jointly model the speech. As is the case with HMMs, several context-dependent

subphones are tied together and share the same LDM. This clustering of subphones is done using binary

decision trees which is discussed in section 3.2. The algorithms for subphone segmentation are discussed

in section 3.3. We provide the implementation details of our LDM-based TTS system in section 3.4. All

the results are complied in the next chapter.

3.1 Motivation

Production of speech is a multi-step process. It involves the creation of airflow by the compression of the

pulmonic cavity. This airflow is acted upon by the larynx which may provide voicing through vibrations

of the vocal folds. The vocal tract then acts as a filter on the source excitation and produces different

vowels and consonants. In SPSS, speech is generally decomposed into at least two components which

model the source excitation and the vocal tract filter. The source is characterized with a binary variable

which determines whether the sound is voiced or unvoiced, and for voiced sounds, the fundamental

frequency (f0). The vocal tract filter is characterized by the impulse response of the filter or equivalently

the Fourier transform of the impulse response. We are mostly interested in the ability of LDMs to model

22
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the vocal tract filter.

The vocal tract’s shape is determined by the position of various articulators like lips, teeth, alveloar

ridge, hard palate, etc. The movement of the articulators over time changes the vocal tract’s shape

and thus changes the filter’s impulse response. The movement of the various articulators can be

characterized by a critically damped spring-mass system [Saltzman and Munhall, 1989]. A critically

damped spring-mass system is governed by the following equation:

d2x(t)

dt2
+ 2φ

dx(t)

dt
+ φ2(x(t)− u) = w(t) (3.1)

where x(t) is the position of the articulator at time t, u is the target parameter of the system, φ2 is the

stiffness parameter and w(t) is a zero-mean Gaussian noise. This can be written in a canonical form

[Deng, 1999] (where ẋ(t) = dx(t)
dt ):

d

dt

x(t)

ẋ(t)

 =

 0 1

−φ2 −2φ


x(t)

ẋ(t)

+

 0

φ2u

+

 0

w(t)

 (3.2)

This continuous-time system of equations can be expressed by a discrete-time dynamic-system state

equation [Deng, 1998]:

xt+1 = 2φxt − φ2xt−1 + (1− φ)2u+ wt (3.3)

which is an equation for an autoregressive process. The notation has been abused to use t to denote time

in the continuous time equations (3.1) and (3.2), as well as in the discrete time equation (3.3). The above

equations can be vectorized to simultaneously model multiple articulators. The acoustic parameters that

characterize the filter’s impulse response, can be obtained from a non-linear operation on the articulator

state [Deng, 1998]. However we approximate it with a linear function that maps the state space of the

articulators to the state space of the acoustic parameters using a matrix H and a noisy bias vector vt

with mean µ and variance R. This leads to a second order LDM for speech production:

x′t = F ′x′t−1 +wt , wt ∼ N (g′, Q′) (3.4a)

where, x′t =

 xt

xt−1

 , F ′ =

2ϕ −ϕ2

I 0

 , g′ =

(I− ϕ)2u

0

 ,

Q′ =

Q 0

0 0

 , ϕ = diag(φ1, φ2, ..., φn) , Q = diag(q1, q2, ..., qn)
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Figure 3.1: Schematic diagram of an LDM-based TTS system

yt = H ′x′t + vt, vt ∼ N (µ, R) (3.4b)

where, H ′ =

[
H 0

]

ϕ and Q are diagonal matrices, with φ2
i and qi being the stiffness parameter and variance associated

with ith articulator. This implies that the motion of articulators are independent. We found using full

matrices do not provide any improvement in the speech, so we follow this assumption, unless stated

otherwise. Apart from this, the advantages of using LDMs to model sequential data have already been

discussed in the earlier chapters.

3.2 Decision Tree Clustering

A schematic diagram of an LDM-based TTS system is shown in fig. 3.1. The input is a text string and the

output is a speech waveform. The speech waveform is generally generated from acoustic features which

are a denser representation than the raw speech. The LDMs are responsible for generating these acoustic

features. On the input side, the raw text is preprocessed and phonetic transcriptions are extracted from

the clean normalized text. Some linguistic features are extracted from phonetic transcriptions which

form the input to the backend of a TTS system. Generally one feature vector is extracted per subphone

in the utterance. The linguistic features typically include the current phone, two preceding and two

succeeding phones, position in the syllable, position in the word, position in the utterance, etc. The

various features used in our model are listed in the appendix. Many of these features are the ones used

in HTK [Young et al., 2006].

A statistical model is required to map the linguistic feature vector to an LDM, which will generate

the corresponding acoustic features. This is done using a binary decision tree as used by V. Tsiaras

et al. [2015]. The number of context-dependent subphones is much more than the number of LDMs,
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so the mapping is many to one. Thus a decision tree solves the problem of limited or non-existent

data for many context-dependent subphones by clustering together various context-dependent phones.

A separate decision tree is created for each sub-segment of each phone for each acoustic feature. For

example our implementation segments phones into three sub-segments, starting from 51 phones and

three acoustic features, so we create a total of 3× 51× 3 decision trees.

PThe decision tree clustering is performed with the minimum description length (MDL) criterion

[Rissanen, 1984]. The linguistic features associated with the subphone are used in the clustering process.

This involves creating a root node which points to all the examples for a given subphone. An LDM is fit

to these examples, and the data likelihood is calculated given that LDM. This is followed by recursively

splitting the leaf nodes, beginning with the root node. For a given leaf node, data associated with

that node are split into ”yes” and ”no” examples according to a binary question based on the linguistic

features. A separate LDM is fit to the ”yes” and ”no” examples respectively. There should be an

increase in the data likelihood relative to a weighted combination of these two LDMs as opposed to the

single previous LDM. This is done for each available question for a given leaf node. If the increase in

log-likelihood on splitting a node with some question is lesser than a certain threshold or if the number

of examples in either of the ”yes” or ”no” categories are lesser than a threshold, that question is not

considered for splitting. The question which provides the maximum increase of likelihood is selected

for splitting this given leaf node. This is done recursively for each leaf node. Ultimately, for each leaf

node, there will be no question available which could split the leaf any further. Further details about

the algorithm can be found in V. Tsiaras et al. [2015].

The computational time required by this algorithm is very high because in order to split a node,

LDMs of the order 2nq, where nq are the number binary questions, need to be trained. A binary tree

with l leaves will have l − 1 internal nodes. There are multiple decision trees which depend on the

number of phones and sub-segments. All this contributes to a large number of LDMs being trained in

order to cluster. Apart from providing an initial model to the EM algorithm, the sufficient statistics

collected for the parent node cannot be used to directly train the LDMs for the potential child nodes.

Instead of clustering the data using LDMs, we used autoregressive HMMs for clustering because they

have a closed form solution as opposed to the iterative EM algorithm learning for LDMs. The quality of

speech produced from autoregressive-HMM-based trees is found to be at par with the LDM-based trees.
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Figure 3.2: Bayesian network representation of the switching LDM used. θ1:T represent the LDM
selection variables, x1:T are the state vectors, y1:T are the observations and are thus the only observed
variables

3.3 Subphone Segmentation

A phone is generally divided into 3 or 5 subphones. The vocal tract parameters are relatively stationary

in a subphone as opposed to a phone, which may have different dynamics in the beginning, middle and

end. This is especially true for phones like diphthongs and stops. Subphones correspond to different

regions of a phone. In our implementation, we divided a phone into three subphones. Dividing a phone

into more subphones leads to very short sub-segments, often of length 1 or 2 frames, thus defeating the

purpose of using LDMs to model dynamics. In earlier approaches to LDM-based synthesis, a phone was

divided into three equal segments [Tsiaras et al., 2015], which is suboptimal. Another approach was to

use the segmentation provided by HMM models as a part of forced alignment [Tsiaras et al., 2014].

As each subphone maps to an LDM, after dividing a phone segment into three sub-segments, three

LDMs together generate the acoustic features in that segment, one LDM per sub-segment. Thus each

phone is essentially modeled by a switching-state-space model (switching LDM). There has been a lot

of work on switching-state-space models in the area of control and estimation [Ghahramani and Hinton,

2000]. The various models proposed differ in the underlying assumptions of the generation process, and

consequently the complexity of the model. In our problem there are two conditions that dictate the

underlying assumptions. Firstly, there is a left to right switch between the LDMs, i.e. the model cannot

switch back to a previous LDM once it has switched to the next LDM. Secondly, the member LDMs

are not necessarily unique to one switching LDM, so one LDM can be a member of multiple switching

LDMs. For example, two context-dependent phones might be modeled by LDMs {l1, l2, l3} and {l7, l2, l9}
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respectively, where l2 belongs to both of them. Based on these two conditions, our switching LDM is

loosely based on the model introduced in section 11.6.3 of Y. Bar-Shalom et al. [2002], which provides

an approximate solution to the state estimation problem, but does not provide any algorithm to learn

the parameters. The model can be represented by the graph depicted in fig. 3.2. θt selects the LDM

at time t. Due to the first condition mentioned above, it only depends on θt−1. The state vector xt is

dependent on θt as well as on previous state xt−1. The observation yt depends only on xt. We learn

the parameters using expectation maximization. Expectation involves inferring the state vectors x1:T

and the selection variables θ1:T . In the maximization step, the LDMs are again learned using the new

segmentation derived by the current model parameters. This is done iteratively. Hard assignment is

done for LDM selection, i.e. P(θt) is a one-hot vector, rather than a soft assignment, which simplifies

the model.

In the E step all the phone segments in the training data are internally resegmented, i.e. subphone

boundaries for each phone segment are learned again using the current set of LDMs. Thus θt within

each segment can only take 3 values {l1, l2, l3}. Two methods are used to resegment. The first one

is a brute-force search for the best segmentation by calculating the likelihood for all the possible

segmentations of the phone (with the condition that each sub-segment is at least one frame long), and

then choosing the best one. The number of possible segmentations is quadratic in the length of a segment

(
(
n−1

2

)
segmentations in a segment with n frames). Thus the time taken to find the best segmentation

grows quickly as segments become long. We introduce an approximate method which grows linearly

with the length of a segment. This second method involves doing an approximate Viterbi-like search,

the basic philosophy of which is that in order to evaluate the state vector xt, Kalman filter recursions

are not performed from the beginning of the sequence, but in a fixed interval. The presence of two LDM

switches in the segment leads to an exponential number of paths all of which start with θ1 = l1 and end

with θT = l3, where T is the segment length, not the complete utterance length. In order to evaluate

xt, we perform the Kalman filter recursions from t − d till t, where d is the depth parameter. At each

time step t, a state vector xθtt is determined for all of the possible values of θt. So we determine three

different state vectors corresponding to the three values of θt, along with the log-likelihoods of reaching

those states, and obtain two T × 3 tables in the end. There are multiple paths which start from t − d

and lead to θt. These multiple paths correspond to different starting states θt−d, and also different paths

with the same starting state. The path which maximizes the log-likelihood of reaching θt from t − d

is chosen for each value of θt. The state xθtt corresponding to the best path is stored per θt. Along

with that, the second-to-last state of the best path, θt−1, is also stored per θt, resulting in yet another

T × 3 table. Similar to the Viterbi algorithm, this will be used for backtracking in the end. In order
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Algorithm 1: Sub-optimal Subphone Segmentation

Data: y1:T ; parameters Θl1 ,Θl2 ,Θl3 for LDMs l1, l2, l3 respectively; d
Result: θ∗1:T ,x

∗
1:T

Initialization: x1
1 = K.F.(y1|gl11 , θ1 = l1), δ1

1 = L(y1|gl11 , θ1 = l1), δ2
1 = δ3

1 = −∞
for t = 2 : T do

d′ = min(t− 1, d)
for j = 1 : 3 do

for k = 1 : j do
P = {θt−d′:t : θt−d′ = lk, θt = lj}
p∗k = p ∈ P : L(yt−d′:t|xkt−d′ , p) > L(yt−d′:t|xkt−d′ , p′)∀ p′ ∈ P
qk = L(yt−d′:t|xkt−d′ , p∗)

end

δjt = max
k

(qk + δkt−d′)

r = argmax
k

(qk + δkt−d′)

ψjt = p∗r(−2) (second last element of p∗r)
xjt = K.F.(yt−d′:t|xrt−d′ , p∗r)

end

end
θ∗T = l3
x∗T = x3

T

for t = T − 1 : −1 : 1 do

θ∗t = ψ
θ∗t+1

t+1

x∗t = x
θ∗t
t

end

to find the path with the maximum log-likelihood and to do Kalman recursions, the log-likelihood at

θt−d and the corresponding state vector x
θt−d

t−d for each value of θt−d are required. These would have

been stored in the table earlier when xt−d had been calculated. This is done for all time steps and

the best path is found by tracing back through the trellis. The pseudo-code is provided in algorithm

1. K.F.(yt1:t2 |xt1 , θt1:t2) refers to the Kalman filter recursions which infer the state xt2|t2 from yt1:t2 ,

and require the initial state xt1 and the path followed θt1:t2 . The only difference from regular Kalman

recursions is that the LDM parameters at time t are given by Θθt , and thus they do remain constant

throughout the recursion. L(yt1:t2 |xt1 , θt1:t2) refers to the log-likelihood that is actually derived from the

Kalman filter but is written separately in the algorithm for clarity. The algorithm can easily be changed

in order to accommodate a different number of sub-segments than 3. It was observed that the brute-force

segmentation method starts taking more time to run than the approximate segmentation method when

the number of frames in a segment exceeds 25. Thus we follow the brute-force segmentation method for

phone segments with length less than 26 frames.

In the M step, the segmentation derived in the E step is used to individually re-train all the LDMs.
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3.4 Implementation Details

In this section we will discuss the implementation details and design choices of the TTS system that

we developed. We used the Nick corpus speech data released for the Hurricane Challenge [Hurricane

Corpus 2012]. A total of 2643 utterances sampled at 16 kHz from the herald and hvd sets of the corpus

were used for training the models.

3.4.1 Front-end

We used the Festival [Taylor et al., 1998] front end to generate HTS-style [Zen et al., 2007a] full context

labels. The lexicon used was unilex-rpx [Fitt and Isard, 1999]. The corresponding phoneset had 49

phones. We used 2 phones for short and long pause respectively, so a total of 51 phones were used. The

resulting full context labels were aligned with the speech audio using the HMM Toolkit (HTK) [Young

et al., 2006]. For the forced alignment, MFCCs were extracted from frames of length 10 ms, with a

frame shift of 5 ms.

3.4.2 Acoustic Features

The WORLD vocoder [Morise et al., 2016] with the D4C band-aperiodicity estimation [Morise, 2016] was

used to obtain the acoustic features. The acoustic features include 40 Mel-cepstral coefficients (MCEPs),

1 log fundamental frequency (ln(f0)) and 1 band-aperiodicity coefficient, extracted every 5 ms. Thus

we have a 42-dimensional acoustic feature vector per frame. WORLD outputs a raw spectral envelope

which was converted into the Mel-cepstral coefficients using SPTK [SPTK 2016].

3.4.3 Back-end

The back-end used LDMs for acoustic modeling and was implemented in MATLAB. For parameter

estimation, two methods were proposed by V. Tsiaras [2014]. Our implementation used the segment-level

EM algorithm as opposed to the phone-level EM algorithm because it was shown to perform better

than the latter [Tsiaras et al., 2014]. In this method, the EM algorithm is carried out for each label

individually. Here, each label corresponds to an individual clustered subphone state obtained form a

decision tree. For a particular label, the Kalman recursions are performed individually for each segment

assigned that label and sufficient statistics are calculated in the E step. In the M step, the parameters

are re-estimated using the accumulated statistics. The consequence of training each label segment-wise

is that the state vector is not propagated from one segment to the next in an utterance. Even though one

might expect this algorithm to perform worse because of the disruption in the continuity of state vector
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progression through the utterance, in practice it performs better because LDMs are quite sensitive to

the initial state. So getting the initial state vector of a new segment from the last state vector of the

previous segment does not work very well.

As mentioned in section 3.2, we created a binary decision tree for each segment of each phone.

This results in 3 trees per phone, so there are a total of 153 decision trees for modeling Mel-cepstral

coefficients alone. Clustering aperiodicity and ln(f0) will require 153 decision trees each as well. 1586

binary questions were used to create these binary decision trees. Out of these, 755 corresponded to binary

features. The rest of the questions were created in order to specify the continuous valued features.

The Mel-cepstral coefficients were modeled using several LDM variants including the second order

LDMs. The LDMs however do not provide any advantage in modeling one dimensional features, i.e.,

ln(f0) and BAP. So we used autoregressive HMMs to model those. However, in most of our experiments,

we modeled only the Mel-cepstral coefficients in order to study the performance of LDMs only. In those

cases, the original ln(f0) and BAP as obtained from the vocoder analysis were used. We did not model

duration and used the durations obtained from HMM forced alignment for synthesis as well.

The subphone segmentation was done by three different methods. The first one is dividing each phone

segment into three equal sub-segments. The second one involves using the subphone segmentation

obtained from the HMM forced alignment, where the HMMs themselves are three-state left-to-right

models. The third method is doing the re-segmentation as described in section 3.3 while starting from

one of the first two segmentations mentioned above.

Some of the LDM parameters can be tied for all the LDMs. There is degeneracy in the LDMs. The

state covariance Q and initial state covariance Q1 can be moved into matrices F and H [Roweis and

Ghahramani, 1999]. For an LDM with a given set of parameters, there exists an equivalent LDM with

different F and H but with identity covariance matrices Q and Q1. Thus without loss of generality

we can assume Q and Q1 to be identity matrices, which has been followed in all our experiments. The

same cannot be said about R, though. Another method to reduce the number of parameters is to tie

H for all the LDMs. This drastically reduces the total number of parameters by Nnm, where N is the

total number of LDMs, n is the state dimension and m is the observation dimension. Tying H degrades

the quality of speech but the reduction in the number of parameters is more significant. Reducing the

number of clusters while keeping the number of parameters constant provides lower quality than tying

H does.
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3.4.4 Speech Parameter Generation

In order to generate an utterance, the system requires full context labels and the subphone segment

durations corresponding to the utterance. The full context label for each subphone segment is used to

determine the decision tree state and thus the corresponding LDM for that segment. The duration for

each subphone segment is used to calculate the number of frames for that segment. With this we obtain

θ1:T where θt is the LDM used at time t and T is the total duration of the utterance in terms of the

number of frames. The parameter generation equations are as follows:

x1 = gθ11 (3.5a)

xt =


F θtxt−1 + gθt , if θt = θt−1

ρgθt + (1− ρ)xt−1, otherwise

(3.5b)

yt = Hθtxt + µθt (3.5c)

We can use the same set of equations for the second order LDMs with the help of the conversion technique

illustrated in (2.7). There are two cases in (3.5b) because, in the middle of a segment, we use the usual

LDM equation for state progression, but at a segment boundary, the first state of the next segment

is a linear combination of the last state of the previous segment and the initial learned state. The

parameter generation for a toy example with only 3 subphones in the utterance is shown in fig. 3.3. In

our experiments, we observed that ρ = 1 always performs better than any other value. This could be

attributed to two reasons. First is that even though the final state of an LDM is not dependent on

the initial state, the beginning state trajectory is dependent on the initial state. It was observed that

starting from an unusual initial state leads to large swings in the state vectors. The second reason is that

in our implementation, the LDMs are trained such that the initial state of a segment is not dependent on

the last state of the previous segment. After generating the Mel-cepstral feature vectors, global variance

[Tsiaras et al., 2016] is applied, which marginally improves the speech quality.

3.4.5 Training Optimization Techniques

LDM training is a time consuming process. One of the techniques to speed-up the training process,

introduced by J. Frankel and S. King [2007], is to pre-compute some of the quantities in the Kalman

recursions. In the forward Kalman recursions, the quantities Σt|t−1,Σt|t,Σet ,Kt, and, in the backward

recursions At are independent of data. All these quantities can be calculated once for each subphone

up to the maximum segment length of that subphone and reused in the Kalman recursions for all the
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Figure 3.3: A toy generation example with three subphones of durations d1, d2, d3 respectively in an
utterance of length T . The regular arrows show dependency and dotted arrows show dependency where
ρ is involved. ρ = 1 removes that dependency link.

segments. The decision tree clustering as well as LDM training can easily be parallelized on multiple

CPUs. During decision tree clustering, the node split corresponding to the various questions can be

carried out on different CPUs. In LDM training, different LDMs can be trained on different CPUs

because the training process is independent for each LDM. We used 28 CPU cores to train. Both the

above mentioned techniques significantly speed up the training process.
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Results and Conclusions

In this chapter, we will evaluate various aspects of the LDM-based speech synthesis that have been

discussed in the previous chapters. We compare this approach to autoregressive HMMs and various

configurations of neural networks. A total of 100 utterances from the hvd and herald sets of the Nick

Hurricane corpus [Hurricane Corpus 2012] were synthesized in all the experiments.

4.1 Evaluation Metrics

In all our experiments the evaluation is performed using two metrics: Mel-Cepstral Distance (MCD)

[Kubichek, 1993] and Perceptual Evaluation of Speech Quality (PESQ) [Rix et al., 2001]. These are

described as follows:

• Mel-cepstral distance : Mel-cepstral distance (in dB) between two vector sequences of Mel-cepstral

coefficients c1, c2 of lengths T is given by:

d(c1, c2) =
10

T ln(10)

T∑
t=1

√√√√ m∑
i=1

[ct,1(i)− ct,2(i)]2

where m is the Mel-cepstral vectors’ dimension, ct,1(i) and ct,2(i) are the ith Mel-cepstral

coefficients (MCEPs) at time step t for the first and second sequences respectively. To evaluate

a test sentence, the MCEPs generated by the acoustic model and the ones derived from vocoder

analysis of the gold standard are used to calculate the MCD. The scoring metric is the average

MCD over all test sentences. MCD evaluates the modeling ability of a generative model.

• perceptual evaluation of speech quality score : PESQ was originally introduced to evaluate the

33
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speech quality of a telephony system. Some studies have found a correlation between the raw

PESQ score and subjective measures [Hu and Loizou, 2008]. Raw PESQ scores correspond to the

perceptual similarity between the original and synthesized waveform. Thus PESQ has been argues

to be a reasonable substitute for a subjective evaluation. Subjective study is time-consuming, so

we use PESQ to do a quick evaluation in a large number of experiments.

4.2 Experiments

A number of experiments are conducted to evaluate different aspects of LDM based speech synthesis,

each of which is described next.

4.2.1 Spectral modelling

As mentioned in previous chapters, LDMs are useful to model vector sequences. They do not provide any

advantage over autoregressive HMMs in modelling scalar sequences. In our implementation, MCEPs are

vector sequences whereas ln(f0) and band aperiodicity (BAP) are scalar sequences. In order to evaluate

the speech modelling power of LDMs only, we obtain the ln(f0) and BAP sequences for each of the test

sentences by vocoder analysis. Only MCEPs, which are responsible for providing spectral information,

are obtained by the various acoustic models. The acoustic models that are compared are:

• First order LDMs : n = 10

• Second order LDMs : Two types of second order LDMs are used: with and without diagonal

transition matrices, n = 10 in both. Henceforth we refer to these as SO-LDMd and SO-LDM

respectively.

• Autoregressive HMMs

• Feed-forward neural networks : Two models are used: one with 6 layers, each layer of 512 units

and a second with 4 layers of 1024 units each. The hidden units used tanh activation. In all the

neural networks, the input layer is of size 613 (corresponds to the number of linguistic features)

and the output is a linear layer of size 40, because of the 40 MCEPs.

• Hybrid model : Hybrid (LSTM + feed-forward) neural network with one feed-forward layer of size

512, 3 LSTM layers of size 384 each and one feed forward layer of size 512 on top. All the neural

networks are implemented using the Merlin speech synthesis system [Wu et al., 2016].
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Model Details No. Param. MCD PESQ

2nd order LDM diagonal F,G 2,804,230 4.06 2.62
2nd order LDM full F,G 3,756,610 4.06 2.61
1st order LDM – 3,174,600 4.08 2.61

Autoregressive HMM – 1,058,200 4.43 2.53
Feed-forward NN 4 layers × 1024 units 3,819,560 3.71 2.68
Feed-forward NN 6 layers × 512 units 1,648,680 3.71 2.69

Hybrid LSTM + FF 512 FF + 384 × 3 LSTM + 512 FF units 4,070,440 3.62 2.73

Table 4.1: Comparison of various acoustic models. No. param. is the number of parameters in the
acoustic model.

We did not include HMMs in the comparison because it has already been shown [Tsiaras et al., 2014,

2015] that LDMs perform better than HMMs. Besides, we did not use dynamic features for any of the

models, while HMMs require dynamic features to synthesize decent-quality speech. The initial results

are shown in table 4.1.

Amongst the non-neural-network models, all the LDM-based systems perform nearly identically. The

SO-LDMd based system has the least number of parameters but performs at least as well as the others.

Autoregressive HMMs have the least number of parameters overall but their performance is worse than

that of LDMs, even though the clustering used in all the non-neural-network models was derived using

autoregressive HMMs, thus giving them an edge over the others. Figure 4.1 compares the trajectories

of the 2nd Mel-cepstral coefficient in part of an utterance generated by various state-space models. The

trajectories generated by the variations of LDMs are nearly the same. The trajectory generated by

the autoregressive HMMs is a little different from the others, and seems piece-wise linear. The faster

variations in the original trajectory have not been captured by any of the models. This is true in case

of neural networks as well.

Neural networks perform better than the LDMs. This is expected because they are more flexible

in modeling non-linearities. Neural networks learn distributed representations whereas in LDMs, a

separate LDM is learned for each cluster-state. However, the working memory required by LDMs is

much smaller than by neural networks because they involve two small matrix-vector products per time

step. In neural networks, the number of computations is much larger, and generation of parameters

for each time step involves using all the neural network parameters. This will not be a problem in

systems with adequate resources but in devices with limited working memory, LDMs are much easier

to use. In this experiment we did not try to restrict the number of parameters in any of the models.

Figure 4.2 compares the trajectory generated by SO-LDMd with the ones generated by the two neural

network models. The trajectory generated by the hybrid (LSTM + feed-forward) model tracks the

original trajectory most closely. In some of the regions, for example around 350 ms, all the generated
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trajectories differ significantly from the original one. In general, the LDM-generated trajectory is quite

similar to the one generated by the neural-networks. One of the reasons for the better performance of

neural networks might be that the neural networks were trained using penta-phone labels, thus more

fine grained linguistic context information was supplied to the model at any time-step. LDMs do not

benefit from segmenting the phone into 5 subphones rather than 3 because then each sub-segment will

be too short to take advantage of the dynamics of the LDMs.
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Figure 4.1: Trajectories of 2nd Mel-cepstral coefficient in part of an utterance generated by various types
of state space models
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Figure 4.2: Comparison of trajectory of 2nd Mel-cepstral coefficient in part of an utterance generated by
SO-LDMd with the ones generated by neural networks

Model No. clusters/layers No. Param. MCD PESQ

SO-LDMd 5291 2,804,230 4.06 2.62
SO-LDMd, tied H 5291 688,230 4.08 2.60

SO-LDMd 1937 1,026,610 4.14 2.59
SO-LDMd 1264 669,920 4.21 2.57

SO-LDMd, tied H 1264 164,720 4.34 2.50

Feed-forward NN 6 layers × 512 units 1,648,680 3.71 2.69
Feed-forward NN 4 layers × 512 units 1,123,368 3.76 2.68
Feed-forward NN 2 layers × 512 units 598,056 3.94 2.59

Table 4.2: Variation of MCD and PESQ on varying the number of parameters in the models.

4.2.2 Clustering & Parameter Tying

There are two major ways of reducing the number of parameters in LDM-based TTS. The first one is

to reduce the number of clusters in each decision tree. The other one is to tie the projection matrix H

for all the LDMs. We tried both methods. The results are presented in table 4.2. In order to compare

to neural networks with a similar number of parameters, we include the results for feed-forward neural

networks of various sizes.

It is observed that reducing the parameters by tying H is less damaging than reducing the number

of clusters. The number of parameters with 5291 clusters but tied H are nearly the same as with 1264

clusters, but the former performs better in terms of MCD as well as PESQ. The MCD for neural-networks

is still lesser than the LDMs after reducing the number of parameters. The PESQ scores, however,



Chapter 4. Results and Conclusions 38

Model No. Param. MCD PESQ

SO-LDMd 3,758,760 3.96 2.66
SO-LDM 5,035,320 3.94 2.68

1st order LDM 4,255,200 3.96 2.66

Table 4.3: MCD and PESQ using SO-LDMd-based clustering.

become nearly identical to those of LDMs.

So far we have used autoregressive HMMs to perform clustering which took around one day to

complete by parallelizing on 28 cores of an Intel Xeon E5-2470. This clustering will, however, be

sub-optimal for LDMs. We clustered using SO-LDMd as well. The number of clusters is not directly

controlled, but rather are controlled by the stopping criteria of the clustering. A threshold criterion which

resulted in 1264 clusters in autoregressive HMM based clustering, provided 7092 clusters in SO-LDMd

based clustering. The results are presented in table 4.3 The results are better than the ones presented

in the previous sections for each model. However, it took two weeks to cluster using 14 cores of an Intel

Xeon E7520. Nevertheless, it is recommended to use LDMs to cluster for LDMs.

4.2.3 Segmentation

In section 3.3, we discussed various methods of dividing a phone segment into sub-segments. In all

the experiments described so far, we divided a phone segment into three equal-length sub-segments,

which is a suboptimal segmentation method. We alternatively used the segmentation achieved by

forced alignment to three-state left-to-right HMMs. Apart from these, we also attempted the a new

method for segmentation introduced in section 3.3. The comparison of performance among these three

SO-LDMd-based systems with different segmentation methods is shown in table 4.4. The clustering was

done using autoregressive HMMs.

We can observe that HMM-based segmentation performs much better than the sub-optimal equal

sized segmentation. The new method performed slightly better than the equal-sized segmentation but

worse than the HMM-based segmentation on the test data. It was observed during training that, the

log-likelihood of each phone segment increased after each iteration of resegmentation. On the training

data, it performed much better than the other methods. The new segmentation overfits the training data

and thus does not provide any advantage on the test data. This might be attributed to the relatively

small size of our training data.
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Segmentation No. clusters MCD PESQ

3 equal segments 5291 4.06 2.62
tri-state HMM segmentation 3759 3.94 2.66
new segmentation method 5291 4.04 2.63

Table 4.4: MCD and PESQ on using three different segmentation methods with SO-LDMd and
autoregressive HMM based clustering.

Model Details MCD PESQ

2nd order LDM diagonal F,G 4.06 2.24
2nd order LDM full F,G 4.06 2.24
1st order LDM – 4.08 2.25

Autoregressive HMM – 4.43 2.18
Feed-forward NN 6 layers × 512 units 3.70 2.42
Feed-forward NN 4 layers × 512 units 3.76 2.39
Feed-forward NN 3 layers × 512 units 3.81 2.36
Feed-forward NN 2 layers × 512 units 3.93 2.35

Table 4.5: Comparison of complete TTS systems with different acoustic models.

4.2.4 Complete synthesis

In all the experiments so far, only MCEPs were modelled by the acoustic models. In this section, we

present the results when ln(f0) and BAP are synthesized as well. In the case of autoregressive HMMs and

LDMs, we synthesized ln(f0) and BAP using two separate sets of autoregressive HMMs. The MCEPs

for LDMs were obtained using the LDM clustering tree, i.e. the same as the one used in table 4.3. In

neural-network-based synthesis, the same neural network predicts ln(f0) and BAP as well. Thus, the

output vector’s size is increased from 40 to 42. The results are presented in table 4.5.

We can observe that the performance of both the LDM-based and neural-network-based systems

goes down because of the artificially generated prosody and band-aperiodicity features. The generated

samples sound more monotonous and robotic. The performance of the LDMs, however, deteriorates

more than the neural networks. It can be inferred that autoregressive HMMs are not powerful enough

to model the prosody properly.

4.3 Conclusions

In this work, we investigated LDM-based speech synthesis. There is a limited amount of work in the

literature concerning the use of LDMs for speech synthesis. It has, however, been shown that LDMs

provide better speech than the HMMs. We introduced second-order LDMs, which have a second-order

autoregressive state process and a factor-analysis observation process. It was shown that the critically

damped motion of articulators for speech production leads to a second order LDM speech synthesis
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process, which is the primary motivation for using second-order LDMs. Furthermore, it was found that

the second-order LDMs with diagonal transition matrices are sufficient to model speech. These models

perform as well as the first-order LDMs but have a reduced number of parameters. Similar to HMMs,

LDMs require decision-tree-based clustering, which maps the linguistic features to a particular LDM

from the given set of LDMs. This results in one LDM per each decision-tree cluster. During feature

generation, a single LDM is deployed per segment in the utterance. Thus, the working memory required

by the LDMs is really small as they require two small matrix-vector products per time step. However,

they require a comparable amount of total space to the neural networks to store the complete acoustic

model. We looked into methods for reducing the number of parameters further. It was observed that

tying the projection matrix H is a good way to do that. There has been no study in the literature

on subphone segmentation for LDMs. It was observed that using the subphone segmentation obtained

from HMMs leads to an improvement in the speech quality relative to an equal-length baseline. A new

segmentation algorithm was introduced which did not perform very well because it overfits the training

data.

The quality of LDM-based speech synthesis was compared to neural-network-based speech synthesis.

Neural networks are better at acoustic modelling, as revealed by their lower MCD. Also, perceptually the

speech obtained from LDMs is inferior to the one obtained using neural networks as LDM synthesized

speech obtained lower PESQ scores. However, as mentioned earlier, LDMs require much less working

memory so they are useful in low-memory devices. LDMs could potentially replace HMM-based speech

synthesis because they have similar computational and memory requirements, but are superior in

performance.

4.4 Future Work

There are numerous directions of further investigation, some of which are discussed in this section.

Currently one of the weakest links in LDM-based speech synthesis is the usage of decision trees to

map linguistic features to LDMs, which are then used to generate output features. Decision trees are

inefficient at expressing dependencies such as XOR or parity. Expressing these sorts of relations will

result in prohibitively large decision trees [Esmeir and Markovitch, 2007]. Also, they partition the data

into small clusters, corresponding to the leaves of these decision trees, from which individual models

are learned. This reduces the amount of training data for each cluster as well as for clustering the

other contexts [Yu et al., 2011]. A very large tree, with a small amount of data per terminal node,

leads to overfitting and degrades the quality of the synthesized speech. HMMs formerly suffered from a
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similar problem because they also used decision trees. In the case of HMMs, neural networks replaced the

decision trees, which lead to a significant improvement in the speech quality [Zen et al., 2013]. For LDMs

as well, a more powerful, distributed model, like a neural network, would perhaps be better suited to this

mapping, thus creating a hybrid of LDMs and neural networks. This could also reduce training time by

avoiding decision-tree clustering. However, this is not a trivial problem because if we replace a decision

tree directly with a neural network, the objective of such a neural network is not clearly defined. In

such an implementation, a neural network acts as a discriminator and picks up one LDM given the input

linguistic features. The LDMs are themselves trained on the data that gets mapped to each individual

LDM. Besides, there is no way to determine the number of LDMs required. As described in section 2.2.2,

an LDM is a simplified RNN. Thus combining an LDM with a neural network might essentially lead to

a hybrid neural network with feed-forward layers at the bottom and an RNN layer at the top. However,

the advantages of LDMs such as simplified training using the EM algorithm will not be possible in such

a hybrid. Furthermore, if the model is trained using stochastic gradient descent, then we are free to

choose any type of neural-network configuration, without worrying whether the implementation is close

to an LDM or not.

Subphone segmentation currently has not been properly optimized. The new segmentation algorithm

proposed in this document could be further investigated. In theory, the algorithm should work because

the log-likelihood is increased after each iteration. It overfits the training data, however. Thus the first

step could be to try it with more training data, or to add some sort of regularization to avoid overfitting.

In our work, a duration model was not implemented. One possible duration model is the same as the

one in HSMMs. However, it is not a very powerful model. Another possibility is a neural-network-based

duration model. Though more complex, it could lead to better speech than the HSMM-based duration

model. It was also observed that the autoregressive-HMM-based prosody and aperiodicity models did

not perform very well. Alternatives to these need to be developed to create a good-quality, full-fledged

LDM-based TTS system. LDMs could be useful in articulatory speech synthesis as LDMs could be good

at modelling the dynamics of the articulators, and could learn the models from statistical data while

respecting the physical constraints on the dynamics.
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Appendix

List of linguistic features used:

• features for current phone, previous phone, next phone, previous to previous phone, and next to
next phone:

– identity
– is vowel
– is consonant
– is voiced consonant
– is unvoiced consonant
– is pulmonic consonant
– is voiced pulmonic consonant
– is unvoiced pulmonic consonant
– is syllabic consonant
– is plosive
– is voiced plosive
– is unvoiced plosive
– is bilabial plosive
– is coronal plosive
– is velar plosive
– is fricative
– is voiced fricative
– is unvoiced fricative
– is labiodental fricative
– is coronal fricative
– is dental fricative
– is alveolar fricative
– is post-alveolar fricative
– is approximant
– is pulmonic approximant
– is nasal
– is pulmonic nasal
– is syllabic nasal
– is affricate
– is lateral
– is voiced lateral
– is labial
– is voiced labial
– is unvoiced labial
– is bilabial
– is voiced bilabial
– is unvoiced bilabial
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– is pulmonic bilabial
– is pulmonic voiced bilabial
– is coronal
– is general voiced coronal
– is general unvoiced coronal
– is pulmonic coronal
– is voiced coronal
– is unvoiced coronal
– is dorsal
– is voiced dorsal
– is dorsal velar
– is labialized velar approximant
– is fortis consonant
– is lenis consonant
– is general front vowel
– is front vowel
– is front close vowel
– is front open-mid vowel
– is front near-open vowel
– is general front or near-front vowel
– is front or near-front vowel
– is general front or near-back vowel
– is front or near-back vowel
– is general or near-front vowel
– is near-front vowel
– is general central vowel
– is central vowel or rhotic consonant
– is central vowel
– is central mid vowel
– is central open-mid vowel
– is general near-back vowel
– is near-back vowel
– is general back vowel
– is back vowel
– is back open vowel
– is back open-mid vowel
– is back close vowel
– is back vowel or rhotic consonant
– is long vowel
– is long back vowel
– is long close vowel
– is long open-mid vowel
– is close vowel
– is near-close vowel
– is open-mid vowel
– is open vowel
– is open-mid near-close vowel
– is general open near-close vowel
– is open near-close vowel
– is open near-close mid vowel
– is near-close mid vowel
– is dipthong
– is rounded
– is unrounded
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– is unround-schwa

• vowel in the central syllable

– identity
– is general front vowel
– is front vowel
– is front close vowel
– is front open-mid vowel
– is front near-open vowel
– is general front or near-front vowel
– is front near-front vowel
– is general front or near-back vowel
– is front or near-back vowel
– is general near-front vowel
– is near-front vowel
– is general central vowel
– is central vowel or rhotic consonant
– is central vowel
– is central mid vowel
– is central open-mid vowel
– is general near-back vowel
– is near-back vowel
– is general back vowel
– is back vowel
– is back open vowel
– is back open-mid vowel
– is back close vowel
– is back vowel or rhotic consonant
– is long vowel
– is long back vowel
– is long close vowel
– is long open-mid vowel
– is close vowel
– is near-close vowel
– is open-mid vowel
– is open vowel
– is open-mid or near-close vowel
– is general open or near-close vowel
– is open or near-close vowel
– is open, near-close or mid vowel
– is near-close or mid vowel
– is diphthong
– is rounded
– is unrounded
– is unrounded-schwa

• part of speech of the current, left and right word
• position of phone in syllable from the front
• position of phone in syllable from the back
• left syllable stress
• left syllable accent
• left syllable number of phones
• current syllable stress
• current syllable accent
• current syllable number of phone
• position current syllable in word from front
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• position of current syllable in word from back
• position of current syllable in phrase from front
• position of current syllable in phrase from back
• number of stressed syllables before current syllable in phrase
• number of stressed syllables after current syllable in phrase
• number of accented syllables before current syllable in phrase
• number of accented syllables after current syllable in phrase
• number of syllables from previous stressed syllable
• number of syllables from next stressed syllable
• number of syllables from previous accented syllable
• number of syllables from next accented syllable
• right syllable stress
• right syllable accent
• right syllable number of segments
• left word number of syllables
• current word number of syllables
• part of speech of current word
• number of content words before current word in current phrase
• number of content words after current word in current phrase
• number of words from previous content word
• number of words from next content word
• right word number of syllables
• left phrase number of syllables
• left phrase number of words
• current phrase number of syllables
• current phrase number of words
• part of speech of current phrase in utterance from front
• part of speech of current phrase in utterance from back
• right phrase number of syllables
• right phrase number of words
• number of syllables in utterance
• number of words in utterance
• number of phrases in utterance


