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Abstract

The restricted Boltzmann machine (RBM)
is a flexible model for complex data. How-
ever, using RBMs for high-dimensional multi-
nomial observations poses significant com-
putational difficulties. In natural language
processing applications, words are naturally
modeled by K-ary discrete distributions,
where K is determined by the vocabulary size
and can easily be in the hundred thousands.
The conventional approach to training RBMs
on word observations is limited because it re-
quires sampling the states of K-way softmax
visible units during block Gibbs updates, an
operation that takes time linear in K. In this
work, we address this issue with a more gen-
eral class of Markov chain Monte Carlo op-
erators on the visible units, yielding updates
with computational complexity independent
of K. We demonstrate the success of our
approach by training RBMs on hundreds of
millions of word n-grams using larger vocab-
ularies than previously feasible with RBMs
and by using the learned features to improve
performance on chunking and sentiment clas-
sification tasks, achieving state-of-the-art re-
sults on the latter.

1. Introduction

The breadth of applications for the restricted Boltz-
mann machine (RBM) (Smolensky, 1986; Freund and
Haussler, 1991) has expanded rapidly in recent years.
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For example, RBMs have been used to model image
patches (Ranzato et al., 2010), text documents as bags
of words (Salakhutdinov and Hinton, 2009), and movie
ratings (Salakhutdinov et al., 2007), among other data.
Although RBMs were originally developed for binary
observations, they have been generalized to several
other types of data, including integer- and real-valued
observations (Welling et al., 2005).

However, one type of data that is not well supported by
the RBM is word observations from a large vocabulary
(e.g., 100,000 words). The issue is not one of repre-
senting such observations in the RBM framework: so-
called softmax units (Salakhutdinov and Hinton, 2009)
are the natural choice for modeling words. The is-
sue is that manipulating distributions over the states
of such units is expensive even for intermediate vo-
cabulary sizes and becomes impractical for vocabulary
sizes in the hundred thousands — a typical situation
for NLP problems. For example, with a vocabulary
of 100,000 words, modeling n-gram windows of size
n = 5 is comparable in scale to training an RBM on
binary vector observations of dimension 500,000 (i.e.,
more dimensions than a 700× 700 pixel image). This
scalability issue has been a primary obstacle to using
the RBM for natural language processing.

In this work, we directly address the scalability issues
associated with large softmax visible units in RBMs.
We describe a learning rule with a computational com-
plexity independent of the number of visible units. We
obtain this rule by replacing the Gibbs sampling tran-
sition kernel over the visible units with carefully imple-
mented Metropolis–Hastings transitions. By training
RBMs in this way on hundreds of millions of word
windows, they learn representations capturing mean-
ingful syntactic and semantic properties of words. Our
learned word representations provide benefits on a
chunking task competitive with other methods of in-
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ducing word representations and our learned n-gram
features yield even larger performance gains. Finally,
we also show how similarly extracted n-gram represen-
tations can be used to obtain state-of-the-art perfor-
mance on a sentiment classification benchmark.

2. Restricted Boltzmann Machines

We first describe the restricted Boltzmann machine
for binary observations, which provides the basis for
other data types. An RBM defines a distribution over
a binary visible vector v of dimensionality V and a
layer h of H binary hidden units through an energy

E(v,h) = −b>v − c>h− h>Wv. (1)

This energy is parameterized by bias vectors b ∈ RV
and c ∈ RH and weight matrix W ∈ RH×V , and is
converted into a probability distribution via

p(v,h) = exp (−E(v,h)) /Z (2)

Z =
∑
v′,h′

exp(−E(v′,h′)) . (3)

This yields simple conditional distributions:

p(h|v) =
∏
j

p(hj |v) p(v|h) =
∏
i

p(vi|h) (4)

p(hj = 1|v) = sigm(cj +
∑
i

Wjivi) (5)

p(vi = 1|h) = sigm(bi +
∑
j

Wjihj), (6)

where sigm(z) = 1/(1 + e−z), which allow for efficient
Gibbs sampling of each layer given the other layer.

We train an RBM from T visible data vectors {vt}Tt=1

by minimizing the scaled negative (in practice, penal-
ized) log likelihood of the parameters θ = (b, c,W):

θMLE = argmin
θ

L(θ) L(θ) =
1

T

∑
t

`(vt; θ) (7)

`(vt; θ) = − log p(vt) = − log
∑
h

p(vt,h). (8)

The gradient of the objective with respect to θ

∂L(θ)

∂θ
=

1

T

∑
t

Eh|vt

[
∂E(vt,h)

∂θ

]
− Ev,h

[
∂E(v,h)

∂θ

]
is intractable to compute because of the exponentially
many terms in the sum over joint configurations of the
visible and hidden units in the second expectation.

Fortunately, for a given θ, we can approximate this
gradient by replacing the second expectation with a

h

v

h

v1 1 0 1 0 1 0 1 0 0 0 1{ {

v1:3 v4:6

RBM with binary 
observations

RBM with K-ary 
observations

jeudi 23 février 12

Figure 1. Illustration of an RBM with binary observations
(left) and K-ary observations, for n = 2 and K = 3, i.e. a
pair of 3-ary observations (right).

Monte Carlo estimate based on a set of M samples
N = {ṽm} from the RBM’s distribution:

Ev,h

[
∂E(v,h)

∂θ

]
≈ 1

M

∑
ṽm∈N

Eh|ṽm

[
∂E(ṽm,h)

∂θ

]
. (9)

The samples {ṽm} are often referred to as “negative
samples” as they counterbalance the gradient due to
the observed, or “positive” data. To obtain these sam-
ples, we maintain M parallel Markov chains through-
out learning and update them using Gibbs sampling
between parameter updates.

Learning with the Monte Carlo estimator alternates
between two steps: 1) Using the current parameters θ,
simulate a fews steps of the Markov chain on the M
negative samples using Eqs. (4)-(6); and 2) Using the
negative samples, along with a mini-batch (subset) of
the positive data, compute the gradient in Eq. (9) and
update the parameters. This procedure belongs to the
general class of Robbins-Monro stochastic approxima-
tion algorithms (Younes, 1989). Under mild condi-
tions, which include the requirement that the Markov
chain operators leave p(v,h | θ) invariant, this proce-
dure will converge to a stable point of L(θ).

For K-ary observations — observations belonging to
a finite set of K discrete outcomes — we can use the
same energy function as in Eq. (1) for the binary RBM
by encoding each observation in a “one-hot” represen-
tation and concatenating the representations of all ob-
servations to construct v. In other words, for n sep-
arate K-ary observations, the visible units v will be
partitioned into n groups of K binary units, with the
constraint that each partition can only contain a sin-
gle non-zero entry. Using the notation va:b to refer
to the subvector of elements from index a to index b,
the ith observation will then be encoded by the group
of visible units v(i−1)K+1:iK . The one-hot encoding is
enforced by constraining each group of units to con-
tain only a single 1-valued unit, the others being set
to 0. The difference between RBMs with binary and
K-ary observations is illustrated in Figure 1.
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To simplify notation, we refer to the ith group of visible
units as v(i) =v(i−1)K+1:iK . Similarly, we will refer to
the biases and weights associated with those units as
b(i) = b(i−1)K+1:iK and W(i) = W·,(i−1)K+1:iK . We
will also denote with ek the one-hot vector with its
kth component set to 1.

The conditional distribution over the visible layer is

p(v|h) =

n∏
i=1

p(v(i)|h) (10)

p(v(i) =ek|h) =
exp(b(i)>ek + h>W(i)ek)∑
k′ exp(b(i)i>ek′+h>W(i)ek′)

.

Each group v(i) has a multinomial distribution given
the hidden layer. Because the multinomial probabili-
ties are given by a softmax nonlinearity, the group of
units v(i) are referred to as softmax units (Salakhut-
dinov and Hinton, 2009).

3. Difficulties with Word Observations

While in the binary case the size of the visible layer is
equal to data dimenionality, in the K-ary case the size
of the visible layer is K times the dimensionality. For
language processing applications, where K is the vo-
cabulary size and can run into the hundred thousands,
the visible layer can become unmanageably large.

The difficulty with large K is that the Gibbs opera-
tor on the visible units becomes expensive to simulate,
making it difficult to perform updates of the negative
samples. That is, generating a sample from the condi-
tional distribution in Eq. (10) dominates the stochastic
learning procedure as K increases. The reason for this
expense is that it is necessary to compute the activity
associated with each of the K possible outcomes, even
though only a single one will actually be selected.

On the other hand, given a mini-batch {vt} and neg-
ative samples {ṽm}, the gradient computations in
Eq. (9) are able to take advantage of the sparsity of
the visible activity. Since each vt and ṽm only con-
tain n non-zero entries, the cost of the gradient es-
timator has no dependence on K and can be rapidly
computed. Thus the only barrier to efficient learning of
high-dimensional multinomial RBMs is the complexity
of the Gibbs update for the visible units.

Dealing with large multinomial distributions is an is-
sue that has come up previously in work on neural
network language models (Bengio et al., 2001). For ex-
ample, Morin and Bengio (2005) addressed this prob-
lem by introducing a fixed factorization of the (condi-
tional) multinomial using a binary tree in which each
leaf is associated with a single word. The tree was de-

termined using an external knowledge base, although
Mnih and Hinton (2009) investigated ways of extend-
ing this approach by learning the word tree from data.

Unfortunately, tree-structured solutions are not appli-
cable to the problem of modeling the joint distribution
of n consecutive words, as we wish to do here. Intro-
ducing a directed tree breaks the undirected, symmet-
ric nature of the interaction between the visible and
hidden units of the RBM. While one strategy might
be to use a conditional RBM to model the tree-based
factorizations, similar to Mnih and Hinton (2009), the
end result would not be an RBM model of n-gram word
windows, nor would it even be a conditional RBM over
the next word given the n− 1 previous ones.

In summary, dealing with K-ary observations in the
Boltzmann machine framework for large K is a crucial
open problem that has inhibited the development of
deep learning solutions NLP problems.

4. Metropolis–Hastings for Softmax
Units

Having identified the Gibbs update of the visible units
as the limiting factor in efficient learning of large-
K multinomial observations, it is natural to examine
whether other operators might be used for the Monte
Carlo estimate in Eq. (9). In particular, we desire
a transition operator that can take advantage of the
same sparse operations that enable the gradient to
be efficiently computed from the positive and nega-
tive samples, while still leaving p(v,h) invariant and
thus still satisfying the convergence conditions of the
stochastic approximation learning procedure.

To achieve this, instead of sampling exactly from the
conditionals p(v(i)|h) within the Markov chain, we use
a small number of iterations of Metropolis–Hastings
(M–H) sampling. Let q(v̂(i) ← v(i)) be a proposal
distribution for group i. The following stochastic op-
erator leaves p(v,h) invariant:

1. Given the current visible state v, sample a pro-
posal v̂ for group i, such that v̂(i) ∼ q(v̂(i) ← v(i))
and v̂(j) = v(j) for i 6= j (i.e. sample a proposed
new word for position i).

2. Replace the ith part of the current state v(i) with
v̂(i) with probability:

min

{
1,
q(v(i) ← v̂(i)) exp(b(i)> v̂(i) + h>W(i)v̂(i))

q(v̂(i) ← v(i)) exp(b(i)>v(i) + h>W(i)v(i))

}
.

Assuming it is possible to efficiently sample from the
proposal distribution q(v̂(i) ← v(i)), this M–H opera-
tor is fast to compute as it does not require normalizing
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over all possible values of the visible units in group i
and, in fact, only requires the unnormalized probabil-
ity of one of them. Moreover, as the n visible groups
are conditionally independent given the hiddens, each
group can be simulated in parallel (i.e., words are sam-
pled at every position separately). The efficiency of
these operations make it possible to apply this transi-
tion operator many times before moving on to other
parts of the learning and still obtain a large speedup
over exact sampling from the conditional.

4.1. Efficient Sampling of Proposed Words

The utility of M–H sampling for an RBM with word
observations relies on the fact that sampling from the
proposal q(v̂(i) ← v(i)) is much more efficient than
sampling from the correct softmax multinomial. Al-
though there are many possibilities for designing such
proposals, here we will explore the most basic variant:
independence chain Metropolis–Hastings in which the
proposal distribution is fixed to be the marginal dis-
tribution over words in the corpus.

Näıve procedures for sampling from discrete distribu-
tions typically have linear time complexity in the num-
ber of outcomes. However, the alias method (pseu-
docode at www.cs.toronto.edu/~gdahl) of Kronmal
and Perterson (1979) can be used to generate sam-
ples in constant time with linear setup time. While
the alias method would not help us construct a Gibbs
sampler for the visibles, it does make it possible to
generate proposals extremely efficiently, which we can
then use to simulate the Metropolis–Hastings opera-
tor, regardless of the current target distribution.

The alias method leverages the fact that any K-valued
discrete distribution can be written as a uniform mix-
ture of K Bernoulli distributions. Having constructed
this mixture distribution at setup time (with linear
time and space cost), new samples can be generated
in constant time by sampling uniformly from the K
mixture components, followed by sampling from that
component’s Bernoulli distribution.

4.2. Mixing of Metropolis–Hastings

Although this procedure eliminates dependence of the
learning algorithm on K, it is important to examine
the mixing of Metropolis–Hastings and how sensitive
it is to K in practice. Although there is evidence (Hin-
ton, 2002) that poorly-mixing Markov chains can yield
good learning signals, when this will occur is not as
well understood. We examined the mixing issue using
the model described in Section 6.1 with the parameters
learned from the Gigaword corpus with a 100,000-word
vocabulary as described in Section 6.2.
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Figure 2. Convergence of the Metropolis–Hastings opera-
tor to the true conditional distribution over the visibles
for a trained 5-gram RBM with a vocabulary of 100K
words. (a) KL divergence for six randomly-chosen data
cases. (b) Average total variation distance for the same
six cases. (c,d) For the slowest-converging of the six top
curves (dark green), these are broken down for each of the
five multinomials in KL and total variation, respectively.

We analytically computed the distributions implied by
iterations of the M–H operator, assuming the initial
state was drawn according to

∏
i q(v

(i)). As this com-
putation requires the instantiation of n 100k× 100k
matrices, it cannot be done at training time, but was
done offline for analysis purposes. Each application
of Metropolis–Hastings results in a new distribution
converging to the target (true) conditional.

Figures 2(a) and 2(b) show this convergence for the
“reconstruction” distributions of six randomly-chosen
5-grams from the corpus, using two metrics: symmet-
ric Kullback–Leibler (KL) divergence and total varia-
tion (TV) distance, which is the standard measure for
analysis of MCMC mixing. The TV distance shown
is the mean across the five group distributions. Fig-
ures 2(c) and 2(d) show these metrics broken down by
grouping, for the slowest curves (dark green) of the
top two figures. These curves highlight that the state
of the hidden units has a strong impact on the mix-
ing and that most groups mix very quickly while a few
converge slowly. We feel that these curves, along with
the results of Section 6, indicate that the mixing is
effective, but could benefit from further study.

5. Related Work

Using M–H sampling for a multinomial distribution
with softmax probabilities has been explored in the
context of a neural network language model by Bengio
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and Sénécal (2003). They used M–H to estimate the
training gradient at the output of the neural network.
However, their work did not address or investigate its
use in the context of Boltzmann machines in general.

Salakhutdinov and Hinton (2009) describe an alter-
native to directed topic models called the replicated
softmax RBM that uses softmax units over the entire
vocabulary with tied weights to model an unordered
collection of words (a.k.a. bag of words). Since their
RBM ties the weights to all the words in a single
document, there is only one vocabulary-sized multi-
nomial distribution to compute per document, instead
of the n required when modeling a window of consec-
utive words. Therefore sampling a document condi-
tioned on the hidden variables of the replicated soft-
max still incurs a computational cost linear in K, al-
though the problem is not amplified by a factor of n as
it is here. Notably, Salakhutdinov and Hinton (2009)
limited their vocabulary to K < 14, 000.

No known previous work has attempted to address the
computational burden associated with K-ary obser-
vations with large K in RBMs. The M–H-based ap-
proach used here is not specific to a particular Boltz-
mann machine and could be used for any model with
large softmax units, although the applications that
motivate us come from NLP. Dealing with the large
softmax problem is essential if Boltzmann machines
are to be practical for natural language data.

In Section 6, we present results on the task of learning
word representations. This task has been investigated
previously by others. Turian et al. (2010) provide
an overview and evaluation of these different meth-
ods, including those of Mnih and Hinton (2009) and of
Collobert and Weston (2008). We have already men-
tioned the work of Mnih and Hinton (2009), who model
the conditional distribution of the last word in n-gram
windows. Collobert and Weston (2008) follows a simi-
lar approach, by training a neural network to fill-in the
middle word of an n-gram window, using a margin-
based learning objective. In contrast, we model the
joint distribution of the whole n-gram window, which
implies that the RBM could be used to fill-in any word
within a window. Moreover, inference with an RBM
yields a hidden representation of the whole window
and not simply of a single word.

6. Experiments

We evaluated our M–H approach to training RBMs
on two NLP tasks: chunking and sentiment classifi-
cation. Both applications will be based on the same
RBM model over n-gram windows of words, hence we

first describe the parameterization of this RBM and
later present how it was used for chunking and sen-
timent classification. Both applications also take ad-
vantage of the model’s ability to learn useful feature
vectors for entire n-grams, not just individual words.

6.1. RBM Model of n-gram Windows

In the standard parameterization presented in Sec-
tion 2, the RBM uses separate weights (i.e., differ-
ent columns of W) to model observations at different
positions. When training an RBM on word n-gram
windows, we would prefer to share parameters across
identical words in different positions in the window and
factor the weights into position-dependent weights and
position-independent weights (word representations).

Therefore, we use an RBM parameterization very sim-
ilar to that of Mnih and Hinton (2007), which itself
is inspired by previous work on neural language mod-
els (Bengio et al., 2001). The idea is to learn, for each
possible word w, a lower-dimensional linear projection
of its one-hot encoding by incorporating the projection
directly in the energy function of the RBM. Moreover,
we share this projection across positions within the
n-gram window. Let D be the matrix of this linear
projection and let ew be the one-hot representation of
w (where we treat w as an integer index in the vocabu-
lary), performing this projection Dew is equivalent to
selecting the appropriate column D·,w of this matrix.
This column vector can then be seen as a real-valued
vector representation of that word. The real-valued
vector representations of all words within the n-gram
are then concatenated and connected to the hidden
layer with a single weight matrix.

More specifically, let D be the D ×K matrix of word
representations. These word representations are in-
troduced by reparameterizing W(i) = U(i)D, where
U(i) is a position-dependent H ×D matrix. The bi-
ases across positions are also shared, i.e., we learn
a single bias vector b∗ that is used at all positions
(b(i) = b∗ ∀i). The energy function becomes

E(v,h) = −c>h +

n∑
i=1

−b∗
>

v(i) − h> U(i) Dv(i)

with conditional distributions

p(h|v) =
∏
j

p(hj |v) p(v|h) =

n∏
i=1

p(v(i)|h)

p(hj = 1|v) = sigm

(
cj +

n∑
i=1

U
(i)
j· Dv(i)

)

p(v(i) = ek|h) =
exp(b∗

>
ek + h>U(i) Dek)∑K

k′=1 exp(b∗>ek′ + h>U(i) Dek′)
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where U
(i)
j· refers to the jth row vector of U(i). The

gradients with respect to this parameterization are eas-
ily derived from Eq. (9). We refer to this construction
as a word representation RBM (WRRBM).

In contrast to Mnih and Hinton (2007), rather
than training the WRRBM conditionally to
model p(wn+t−1|wt, . . . , wn+t−2), we train it us-
ing Metropolis–Hastings to model the full joint
distribution p(wt, . . . , wn+t−1). That is, we train the
WRRBM based on the objective

L(θ) =−
∑
t

log p(v(1) =ewt
,v(2) =ewt+1

, . . . ,v(n)
wn+t−1

)

using stochastic approximation from M–H sampling of
the word observations. For models with n > 2, we also
found it helpful to incorporate `2 regularization of the
weights, and to use momentum when updating U(i).

6.2. Chunking Task

As described by Turian et al. (2010), learning real-
valued word representations can be used as a simple
way of performing semi-supervised learning for a given
method, by first learning word representations on un-
labeled text and then feeding these representations as
additional features to a supervised learning model.

We trained the WRRBM on windows of text derived
from the English Gigaword corpus1. The dataset is
a corpus of newswire text from a variety of sources.
We extracted each news story and trained only on
windows of n words that did not cross the boundary
between two different stories. We used NLTK (Bird
et al., 2009) to tokenize the words and sentences, and
also corrected a few common punctuation-related tok-
enization errors. As in Collobert et al. (2011), we low-
ercased all words and delexicalized numbers (replacing
consecutive occurrences of one or more digits inside a
word with just a single # character). Unlike Collobert
et al. (2011), we did not include additional capitaliza-
tion features, but discarded all capitalization informa-
tion. We used a vocabulary consisting of the 100,000
most frequent words plus a special “unknown word”
token to which all remaining words were mapped.

We evaluated the learned WRRBM word represen-
tations on a chunking task, following the setup de-
scribed in Turian et al. (2010) and using the associated
publicly-available code, as well as CRFSuite2. As in
Turian et al. (2010), we used data from the CoNLL-
2000 shared task. We used a scale of 0.1 for the word

1http://www.ldc.upenn.edu/Catalog/catalogEntry.
jsp?catalogId=LDC2005T12

2http://www.chokkan.org/software/crfsuite/

Table 1. Comparison of experimental results on the chunk-
ing task. The baseline results were taken from Turian et al.
(2010). The performance measure is F1.

Model Valid Test

CRF w/o word representations 94.16 93.79
HLBL (Mnih and Hinton, 2009) 94.63 94.00
C&W (Collobert and Weston, 2008) 94.66 94.10
Brown clusters 94.67 94.11
WRRBM 94.82 94.10
WRRBM (with hidden units) 95.01 94.44

representation features (as Turian et al. (2010) recom-
mend) and for each WRRBM model, tried `2 penal-
ties λ ∈ {0.0001, 1.2, 2.4, 3.2} for CRF training. We
selected the single model with the best validation F1
score over all runs and evaluated it on the test set. The
model with the best validation F1 score used 3-gram
word windows, λ = 1.2, 250 hidden units, a learning
rate of 0.01, and used 100 steps of M–H sampling to
update each word observation in the negative data.

The results are reported in Table 1, where we ob-
serve that word representations learned by our model
achieved higher validation and test scores than the
baseline of not using word representation features, and
are comparable to the best of the three word represen-
tations tried in Turian et al. (2010)3.

Although the word representations learned by our
model are highly effective features for chunking, an
important advantage of our model over many other
ways of inducing word representations is that it also
naturally produces a feature vector for the entire n-
gram. For the trigram model mentioned above, we
also tried adding the hidden unit activation probabil-
ity vector as a feature for chunking. For each word
wi in the input sentence, we generated features using
the hidden unit activation probabilities for the trigram
wi−1wiwi+1. No features were generated for the first
and last word of the sentence. The hidden unit activa-
tion probability features improved validation set F1 to
95.01 and test set F1 to 94.44, a test set result superior
to all word embedding results on chunking reported in
Turian et al. (2010).

As can be seen in Table 3, the learned word represen-
tations capture meaningful information about words.
However, the model primarily learns word represen-

3Better results have been reported by others for this
dataset: the spectral approach of Dhillon et al. (2011)
used different (less stringent) preprocessing and a vocabu-
lary of 300,000 words and obtained higher F1 scores than
the methods evaluated in Turian et al. (2010). Unfortu-
nately, the vocabulary and preprocessing differences mean
that neither our result nor the one in Turian et al. (2010)
are directly comparable to Dhillon et al. (2011).
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tations that capture syntactic information (as do the
representations studied in Turian et al. (2010)), as it
only models short windows of text and must enforce
local agreement. Nevertheless, word representations
capture some semantic information, but only after sim-
ilar syntactic roles have been enforced. Although not
shown in Table 3, the model consistently embeds the
following natural groups of words together (maintain-
ing small intra-group distances): days of the week,
words for single digit numbers, months of the year,
and abbreviations for months of the year. A 2D vi-
sualization of the word representations generated by
t-SNE (van der Maaten and Hinton, 2008) is provided
at http://i.imgur.com/ZbrzO.png.

6.3. Sentiment Classification Task

Maas et al. (2011) describe a model designed to learn
word representations specifically for sentiment analy-
sis. They train a probabilistic model of documents
that is capable of learning word representations and
leveraging sentiment labels in a semi-supervised frame-
work. Even without using the sentiment labels, by
treating each document as a single bag of words, their
model tends to learn distributed representations for
words that capture mostly semantic information since
the co-occurrence of words in documents encodes very
little syntactic information. To get the best results
on sentiment classification, they combined features
learned by their model with bag-of-words feature vec-
tors (normalized to unit length) using binary term fre-
quency weights (referred to as “bnc”).

We applied the WRRBM to the problem of sentiment
classification by treating a document as a “bag of n-
grams”, as this maps well onto the fixed-window model
for text. At first glance, a word representation RBM
might not seem to be a suitable model for learning
features to improve sentiment classification. A WR-
RBM trained on the phrases “this movie is wonderful”
and “this movie is atrocious” will learn that the word
“wonderful” and the word “atrocious” can appear in
similar contexts and thus should have vectors near
each other, even though they should be treated very
differently for sentiment analysis. However, a class-
conditional model that trains separate WRRBMs on
n-grams from documents expressing positive and neg-
ative sentiment avoids this problem.

We trained class-specific, 5-gram WRRBMs on the la-
beled documents of the Large Movie Review dataset
introduced by Maas et al. (2011), independently pa-
rameterizing words that occurred at least 235 times in
the training set (giving us approximately the same vo-
cabulary size as the model used in Maas et al. (2011)).

Table 2. Experimental results on the sentiment classifica-
tion task. The baseline results were taken from Maas et al.
(2011). The performance measure is accuracy (%).

Model Test

LDA 67.42
LSA 83.96
Maas et al. (2011)’s “full” method 87.44
Bag of words “bnc” 87.80
Maas et al. (2011)’s “full” method

88.33
+ bag of words “bnc”

Maas et al. (2011)’s “full” method
88.89

+ bag of words “bnc” + unlabeled data
WRRBM 87.42
WRRBM + bag of words “bnc” 89.23

To label a test document using the class-specific WR-
RBM, we fit a threshold to the difference between the
average free energies assigned to n-grams in the docu-
ment by the positive-sentiment and negative sentiment
models. We explored a variety of different hyperpa-
rameters (number of hidden units, training parame-
ters, and n) for the pairs of WRRBMs and selected
the WRRBM pair giving best training set classifica-
tion performance. This WRRBM pair yielded 87.42%
accuracy on the test set.

We additionally examined the performance gain by ap-
pending to the bag-of-words features the average n-
gram free energies under both class-specific WRRBMs.
The bag-of-words feature vector was weighted and nor-
malized as in Maas et al. (2011) and the average free
energies were scaled to lie on [0, 1]. We then trained
a linear SVM to classify documents based on the re-
sulting document feature vectors, giving us 89.23% ac-
curacy on the test set. This result is the best known
result on this benchmark and, notably, our method did
not make use of the unlabeled data.

7. Conclusion

We have described a method for training RBMs with
large K-ary softmax units that results in weight up-
dates with a computational cost independent of K, al-
lowing for efficient learning even when K is large. Us-
ing our method, we were able to train RBMs that learn
meaningful representations of words and n-grams. Our
results demonstrated the benefits of these features for
chunking and sentiment classification and, given these
successes, we are eager to try RBM-based models on
other NLP tasks. Although the simple proposal dis-
tribution we used for M-H updates in this work is ef-
fective, exploring more sophisticated proposal distri-
butions is an exciting prospect for future work.
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Table 3. The five nearest neighbors (in the word feature vector space) of some sample words.

could spokeswoman suspects science china mother sunday
should spokesman defendants sciences japan father saturday
would lawyer detainees medicine taiwan daughter friday
will columnist hijackers research thailand son monday
can consultant attackers economics russia grandmother thursday
might secretary-general demonstrators engineering indonesia sister wednesday

tom actually probably quickly earned what hotel
jim finally certainly easily averaged why restaurant
bob definitely definitely slowly clinched how theater
kevin rarely hardly carefully retained whether casino
brian eventually usually effectively regained whatever ranch
steve hardly actually frequently grabbed where zoo
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