
Security Requirements Engineering: State of the Art and

Practice and Challenges

Golnaz Elahi

1 Introduction

Security is a property of the system which remains dependable in the face of malice, error,
or mischance [3]. In scope of information system, security consists of seven states: confi-
dentiality, integrity, availability, authenticity, accountability, non-repudiation and reliability
as defined in ISO/IEC 13335 standard [38]. Introduction of such security goals stem from
potential adversaries that attempt to compromise the system. In security terminology, an
attacker performs intentional unwarranted actions to break the security of a system by ex-
ploiting a vulnerability [71]. The concept of vulnerability is considered as a property of the
system or its environment that in conjunction with an attack can lead to the security failure
[3]. Assets are another concept in security literature defined as any thing valuable in an
organization [38] and the subjects of the attacks [71].

Security requirements engineering frameworks derive security requirements using these
security-specific concepts, borrowed from security engineering paradigm. In addition to
protection purposes, security requirements are derived from analysis of interactions and de-
pendencies of social actors in the organizational contexts [51, 50]. Such considerations to
extract security requirements bring other related issues such as trust among actors, owner-
ship, permission and delegation to security requirements modeling and analysis [23].

Sections 2 and 3 of this paper survey existing security-specific modeling approaches and
security requirements framework. It is of interest to study how deriving security require-
ments based on different security concepts results in different types of security requirements
and security design solutions. Existing security-specific modeling and analysis techniques
consider different definitions for security requirements resulting from different factors for
deriving security requirements.

Surveying security-related modeling notations and security requirements frameworks re-
veals challenges for developing secure software systems. First, existing security requirements
frameworks do not consider potential conflicts between security and other functional and
non-functional requirements. In current practice, the interaction of security requirements
with other design objectives and goals of stakeholders are not analyzed, if any security re-
quirement is gathered at all. Few research contributions address security trade-off analysis
explicitly which are studied in section 4.

Second challenge stems from the tight relationship between architecture design and secu-
rity requirements and impact of security mechanisms on other requirements. This requires
the requirements engineers take the alternative security solutions into consideration to ex-
tract security requirements and resolve the security trade-offs. This requires that security
requirements framework expand the analysis from the problem space to the solution space
as well.

Finally, a major obstacle toward secure software development is the lack of security
knowledge and expertise among ordinary software developers. To fill this gap, a major
portion of research and practical development in security software engineering is dedicated
to develop security knowledge repositories, patterns, security taxonomies, ontologies, and
knowledge bases. This paper surveys security knowledge management solutions in section
5. Finally, section 6 gives a conclusion and suggests future research proposals to tackle the

1



current challenges.

2 Modeling Notations for Security

Models capture an abstraction of certain types of information and descriptions, communicate
the information, make implicit information explicit, and act as a repository for knowledge
and rationale. Conceptual modeling notations are a major area of study in software en-
gineering for facilitating requirements extraction, management, analysis, and visualization.
In addition, models can be used for system and architecture design, analysis, verification,
and visualization.

Conceptual modeling notations for software engineering practices express different con-
cepts to serve different purposes. However, security issues involve special aspects that
traditional software engineering notations do not consider. For example, a general behavior
modeling notation expresses interactions of entities in the system without considering the
harmful behavior of an external adversary. Thus, the models do not circulate the impacts
of the malicious behavior of the adversary on requirements, design, and architecture to the
next phases of development.

To model specific security aspects such as attackers and their malicious behavior (at-
tacks), vulnerabilities, assets, and countermeasures several security modeling notations have
been developed. We have identified two main categories of notations: one focuses on the at-
tacks and vulnerabilities, and one captures countermeasures and security requirements. We
call the former black side notations and the latter white side modeling approaches. It needs
to be mentioned that the categories are not disjoint, and some of the modeling notations
may provide conceptual foundation to model both white and black side concepts.

2.1 Black Side: Vulnerability and Attack Modeling

as discussed by Sindre and Opdahl [48], graphical models become much clearer if the dis-
tinction between malicious and non-malicious elements is made explicit and the malicious
actions are visually distinguished from the legitimate ones. In particular, Sindre and Op-
dahl show that the use of inverted elements strongly draws the attention to dependability
aspects early on for those who discuss the models. The notion of misuse cases [75], abuse
cases [55], and malicious actors in the i* Framework [51, 50, 17] are examples of approaches
that invert icons to indicate the functionality not wanted in the system.

A misuse case is a use case from the point of view of a hostile actor which poses a threat
to the system. Countermeasures for mitigating the threats are expressed as security use
cases that mitigate misuse cases. Therefore, use case relationships are extended by adding
a prevent relationship to the misuse case models for relating security use cases to misuse
cases. Sindre and Opdahl [75] claim that looking at systems from a misuser perspective
increases the chance of discovering threats that would otherwise be ignored.

The other similar notion based on the conventional UML use case modeling is the notion
of abuse case [55]. While use cases are abstract episodes of useful and desired interaction
between a system and its environment, abuse cases are specification of types of interactions
that their results are harm to system. An abuse case describes the abuse of privilege used
to complete the abuse case.

Liu et al. [51] analyze attackers, vulnerabilities in actors dependency networks, coun-
termeasure, and access control using the i* modeling framework [81]. Using the approach
in [51], all actors are assumed potential attacker, and inherit capabilities, intentions, and
social relationships of the corresponding legitimate actor. The actors in the basic depen-
dency model are substituted with their corresponding attackers, and then the impact of the
attack to the dependency relationship is traced to the dependency network of other actors.
In another use of i* modeling for security analysis [17], inverted i* elements are employed
for distinguishing the malicious actors, goals, and tasks.

2



Another major research efforts are dedicated to developing modeling notations for spec-
ifying attacks such as Attack Tree [70], Fault Tree [79], Attack Nets [56], and Attack Graph
[65]. Schneier was first to associate the term “Attack Tree” with the use of tree style models
for expressing different ways in which a system can be attacked [70]. The Attack Tree is
suggested as a formal and methodical way for describing security of the system based on
varying attacks. The root node of an attack tree is the goal of the attack and different ways
to achieve that goal are leaf nodes, and a node can be decomposed by AND/OR relations.
Schneier asserts that designers benefit from understanding all different ways in which a sys-
tem can be attacked, who the attackers are and what their abilities, motivations, and goals
are for selecting proper countermeasures for those attacks.

Fault Tree Analysis (FTA) [79] is one of the most commonly-used techniques in reliability
engineering. It determines various combinations of hardware and software failures and
human errors To develop the Fault Tree model, system failures are identified and each
failure is analyzed on its own Fault Tree. The Fault Tree is refined into more detail events
and end up with un-develop/external events, called leaf events. The logical relationship
is represented by several types of logical gates such as AND, OR, XOR, PRIORITY, etc.
Fault Trees have been used for analysis of failure conditions of complex software systems.
For example, Helmer et al. [33] employs Fault Trees for requirements identification and
analysis of Intrusion Detection Systems (IDS).

McDermott [56] proposes Attack Nets method for modeling attacks as a Petri Nets with
a set of places representing interesting states or modes of the security relevant entities of
the system. Using Attack Net modeling approach, attack steps and attacker actions can be
expressed. The Attack Nets has a set of transitions that represent input events, commands,
or data that cause one or more security relevant entities to change state. The Attack Nets
has a set of tokens, which move from place to place along the directed arcs to indicate
the progress or concurrency of the attack. The integration of software Fault Tree Analysis
(to describe intrusions) and Colored Petri Nets (CPNs) (to specify design) of an IDS is
introduced in [32].

Phillips et al. [65] introduced Attack Graphs to analyze vulnerabilities in computer
networks. Attack Graphs provide a method for modeling attacks and relating them to the
machines in a network and to the attackers. The Attack Graph model is developed based
on attack templates, attack profiles, and network configurations. Attack templates describe
generic steps in known attacks and conditions which must be hold which are matched with
the network configuration and attacker profile to generate the Attack Graph. An Attack
Graphs is an attack template instantiated with particular attackers/users and machines.
Thereby, one can analyze the Attack Graph by identifying the attack paths that are most
likely to succeed.

Sheyner et al. [73] argue that constructing Attack Graphs is a crucial part of vulnerability
analysis of a network. Since constructing Attack Graphs by hand is tedious and error-prone,
they suggest an automated method for generating and analyzing Attack Graphs. Gupta et
al. [27] found the informal attack graph modeling approach useful for iterative system
design. In this modeling approach, the system’s purpose, potential attacker goals, the path
to successful attack, and trust boundaries of the system are modeled and documented.

CORAS framework [15] provides a modeling approach inspired by UML for express-
ing assets, risks targeting the assets, vulnerabilities, and security solutions. The modeling
notation has been improved over time, and [10] introduces new elements for expressing
unwanted incidents, risks, accidental and deliberate threats, and stakeholders. The threat
models relate a threat to vulnerability and risks are consequently imposed. Risks are related
to unwanted incidents, and incidents are connected to the target assets. Finally, treatments
can be related to vulnerabilities and risks.

3



2.2 White Side: Security Requirements and Countermeasures Mod-
eling

Another major group of contributions to conceptual modeling notations for security-specific
aspects express the protection mechanisms against the malicious behavior. Although attacks
are considered in many of these conceptual modeling languages, these types of contributions
mainly focus on modeling security relevant information, security countermeasures, and se-
curity requirements. Since security requirements modeling and analysis frameworks are
separately studied in section 3, this part is limited to related conceptual modeling notations
that capture security specific concepts.

UMLsec [43] is an extension to UML that allows expressing security relevant information
within UML diagrams. The main uses of such approach are first, to encapsulate knowledge
and make it available to developers in form of a widely-used design notation, and secondly,
to provide formal evaluation to check if the constraints associated with the UMLsec stereo-
types are fulfilled in a given specification. The extensions are suggested in form of UML
stereotypes, tags, and constraints that can be used in various UML diagrams such as activity
diagrams, statecharts, and sequence diagrams. The stereotypes and tags encapsulate the
knowledge of recurring security requirements of distributed object-oriented systems, such as
secrecy, fair exchange, and secure communication link. By assigning a stereotype or tag to
part of a model and retrieving the threats, the behavior of the subsystem can be analyzed
to check the impacts of the threat and the security of the system with the execution of the
threat.

SecureUML [52] is another UML-based modeling language for the model-driven devel-
opment of secure, distributed systems based on the Unified Modeling Language (UML).
SecureUML takes advantage of Role-Based Access Control (RBAC) for specifying autho-
rization constraints by defining a vocabulary for annotating UML-based models with infor-
mation relevant to access control.

Mouratidis et al. [61] introduce extensions to Tropos methodology [24] for incorporating
security concerns into the agent-oriented development process. In this approach, security
constraints, secure dependencies, threats, and security goals, tasks, and resources are in-
troduced and added to the Tropos modeling notation. To model these concepts, Tropos
modeling notation [11] is used and extended. In this approach, secure entities are tagged
with an “s” to indicate those tasks, goals, and softgoals are security-related. Security re-
quirements are dealt as constraints on the functionalities. The assignment of a security
constraint to a goal is indicated using a constraint link with a restricts tag. Threats repre-
sent circumstances that have the potential to cause loss or problems that put the security
features in danger. To model threats a new modeling constructs is added to the i* modeling
notation as part of the secure Tropos.

In a related work in [59], modeling security capabilities is added to the secure Tropos
framework. In a recent work, Matulevicius et al. [54] adapts Secure Tropos proposal for
security risk management. In this enhanced framework, the i* beliefs are used for modeling
vulnerabilities. In this way, vulnerabilities are treated as attackers’ assumptions and believes
about system weaknesses. Vulnerabilities are located inside the boundary of actors and the
positive impacts of vulnerabilities are related to the attack model. In section 3, the security
requirement engineering stages of secure Tropos will be described.

2.3 Discussion

Existing modeling notations for security address different security concepts and take different
viewpoints to security. Each modeling approach is able to express certain aspects and
lacks conceptual modeling constructs to represent some other. In this part, limitations and
capabilities of the methods are studied and compared.

4



2.3.1 Comparison

Table 1 compares existing modeling notations based on the concepts they express and usage
of the models. In some of the notations for modeling attacks and security mechanisms,
attacks are modeled in a similar way that security mechanisms are modeled, while the goals
and means of the attacker and defender are different. Contributions such as [43] express
the need to joint execution of the system with presence of attacks and countermeasures to
check if the security mechanisms successfully protect the system against the attacks.

Attack modeling notations mostly focus on decomposing the attacker’s goal into a set
of actions [70] or required steps and conditions to mount an attack [56, 65]. Several re-
quirements modeling notation capture unwanted behavior of system actors [51, 75, 55]. The
concept of vulnerability is considered in few of the contributions. The CORAS framework
[15] provides explicit modeling constructs to express weaknesses in the system that may
lead to threat scenario. The improved Secure Tropos [54] models vulneerability as i* beliefs.
Mayer et al. extended the i* modeling notation by adding two new modeling elements,
threats and vulnerabilities as well. Security countermeasures are treated as an general ele-
ment of the model, and in some approaches, distinguished from other elements of model by
an “s” [61].

2.3.2 Limitations of Existing Modeling Approaches

To our knowledge, the efficacy of inverted graphical elements for modeling malicious behavior
is not evaluated in empirical studies involving experiments with human subjects. However,
several conceptual modeling notations use the notion of inverted elements. The notion of
misuse case cannot express due to what vulnerabilities the misuse threatens use cases, why a
misuser attacks the system, and what is the impact of a security use case and a misuse case
on other use cases. To fill of these gaps, Rostad [68] suggests extending misuse case notation
for modeling vulnerabilities and insider attackers. The extended notation introduces a new
type of actor called insider that has the capabilities and permissions of an authorized actor
who misuses the given permissions. The concept of vulnerability is defined as a weakness
that may be exploited by the misuse. In the extended modeling notation, the concept of
vulnerability is expressed as a type of use case, with an exploit relationship from the threat
to the vulnerability. However, use cases do not semantically express vulnerabilities as a
weakness of the system Abuse case model is not semantically related to use case model;
therefore, the abuse case model does not provide means to analyze the impact of an abuse
case on other use cases. Actors and malicious actors could be the same entities or different,
but the abuse case approach does not differentiate them.

Using the inverted strategic actors [51], one cannot explicitly model the impacts of
countermeasures on attackers’ goals and other goals, because the countermeasures are placed
inside the boundary of the victim actor and the countermeasure analysis does not consider
which player needs to employ the countermeasures.

Several conceptual modeling approaches such as [70, 79, 56, 65] employ tree style or
graph-based constructs for modeling attacks. Graphs are useful for expressing the attack
steps as nodes and events as edges. Trees are useful for decomposing the attack progress,
causes, and events.

However, Attack Trees do not provide constructs to express required resources, access
level, or skills required to perform an attack. Although Fault Trees enable modeling faults
and tracing them to leaf events or errors, it does not provide means to express vulnerabilities
of the system that lead to the faults and failure. Although minimum path-set are proposed
for modeling ways to prevent occurrence of a failure, the impact of the countermeasures on
other events, faults, vulnerabilities, attacks, and countermeasures cannot be expressed ex-
plicitly. The Attack Nets approach does not support countermeasure modeling and analysis.
In addition, Attack Nets do not consider modeling and analyzing the concept of vulnera-
bility and the relation between attacks and vulnerabilities. Although Attack Graphs are
able to model the steps of an attack, its post and pre conditions, required configurations,

5



Table 1: Summary and comparison of security modeling notations. N indicates that the
modeling notation does not consider the concept in its conceptual modeling constructs and
Y indicates the concept is considered implicitly or explicitly in the notation.

Security Modeling
Notations A

tt
a
ck

S
ec

u
ri

ty
M

ec
h
a
n
is

m
s

V
u
ln

er
a
b
il
it
y

A
ss

et
s

F
u
n
ct

io
n
a
l
R

eq
u
ir

em
en

ts

S
ec

u
ri

ty
R

eq
u
ir

em
en

ts

O
th

er
Q

u
a
li
ty

R
eq

u
ir

em
en

ts

Usage

Attack Tree [70] Y N N N N N N
Modeling and understanding attacks, iden-
tifying vulnerable points

Fault Tree [79] Y Y N N N N N Assess likelihood of the system failures

Attack Nets [56] Y N N N N N N
Modeling steps, concurrency and attack
progress

Attack Graph [65] Y N Y Y N N N
Vulnerability and attack modeling and
analysis in computer networks

Abuse Case [55] Y N N N Y N N
Communicating the flaws and family of
abuse cases of desired use cases to end users
and customers.

Misuse case [75] Y Y N N Y Y N
Modeling attacks in conjunction with func-
tional requirements for security require-
ments elicitation

Extended Misuse
Case [68] Y Y Y N Y Y N

Modeling vulnerabilities to identify all pos-
sible threats and attacks

CORAS Risk Model-
ing Notation [10] Y Y Y Y Y Y N Model-based risk analysis

Secure Tropos [61] Y Y N Y Y Y Y
Incorporating security concerns into the
agent-oriented development process for se-
curity requirements engineering

Improvements on Se-
cure Tropos [54] Y Y Y Y Y Y Y

Security risk management in early phases
of development

UMLsec [43] N Y N Y Y Y N
Expressing security relevant information
within UML diagrams

SecureUML [52] N Y N Y Y Y N
Model-driven development of secure sys-
tems based on UML

and capabilities, they do not provide a way to express the impact of the attacks on system
functionalities.

UMLsec goal is to define a universal set of stereotypes and tags that encapsulate security
design knowledge to be used as part of UML diagrams. However, UML is not a requirements
engineering notation, and the only diagram that focuses on the expected functionalities
from the users point of view is the use case diagram. The formal semantic defined for use
case model in UMLsec is limited to few stereotypes. The resulting models do not express
attackers’ behavior, and threat description is limited to using the notion of Delete, Read,
Insert stereotypes to changes a state of the subsystem. Therefore, the usefulness of the
modeling constructs is based on the expressiveness and comprehensiveness of the stereotypes.
SecureUML can be used in the context of a model-driven software development process
to generate access control infrastructures. However, the meta model of the SecureUML
notation is limited to the access control concepts.

Using the approach proposed in [61], security related entities are tagged with an “s”,
while distinguishing the security entities from other systems entities does not affect the result
of analysis on the models. The notion of threat introduced in the secure Tropos is limited to

6



a visual representation, threats are not assigned to an attacker, and goals and refinements
of the attacks are not expressed. In the enhancement of Secure Tropos notation in [54],
threats are linked to the source actor and vulnerabilities are not related to the elements
that bring them to the system. While impact of vulnerabilities on attacks is expressed,
impact of countermeasures on vulnerabilities is not captured.

3 Security Requirements Frameworks

This section surveys the existing frameworks for eliciting, modeling, and analyzing security
requirements. The goal of this survey is to investigate the main factors for driving security
requirements. We study the role of conceptual modeling notations in elicitation and analysis
of security requirements. We study how different approaches for deriving and expressing
security requirements result in different expressions of requirements.

3.1 Agent and Goal-Oriented Requirements Frameworks

The notation of goal has been used in several security requirements frameworks. Lam-
sweerde [77] proposes a goal-oriented framework for generating and resolving obstacles to
goal satisfaction. In this framework two models are developed iteratively and concurrently.
First the model of the system-to-be, and secondly, the anti-model. Anti-model includes
anti-goals, which are the attackers goals and malicious obstacles to security goals, set up
by the attackers to threaten security goals. Anti-goals are refined to form a threat tree, in
which the leaf nodes are either software vulnerabilities or anti-requirements. New security
requirements are then obtained as countermeasures to the various vulnerabilities. Anti-goal
method can be placed in the threat-based requirement engineering method groups as well.

Liu et al. [50] propose employing explicit modeling of relationships among strategic ac-
tors in order to elicit and analyze security requirements. In this approach, first generic role
dependency patterns between actors in the domain are identified. This model can be elab-
orated to express whether the roles in the dependency relationship have trust, security, or
privacy expectation from other. Then the roles that attackers can potentially play are con-
sidered and attacks to the system are modeled as negative contributions to dependency link.
The agent-oriented analysis continues with elaborating the role-agent hierarchy and model-
ing the dependency derivation. This helps to find out what dependencies are inherited to
the attacker if one of the roles plays as the attacker. In this approach, security requirements
are originated from specifying security goals that actors expect from each other.

In a similar approach, Liu et al. [51] analyze attackers, vulnerabilities in actors de-
pendency network, countermeasure, and access control. In this contribution, all actors are
assumed potential attacker, which inherit capabilities, intentions, and social relationships
of the corresponding legitimate actor. The basic idea of dependency analysis is that de-
pendency relationships bring vulnerabilities to the system and the depending actor. The
dependency vulnerability analysis aims to find which dependency relationship is vulnerable
to the attacks. In this regard, the actors in the basic dependency model is substituted with
its corresponding attacker, and then the impact of the attack to the dependency relationship
is traced to the network of actors.

The contribution in [23] introduces the Secure Tropos1, a formal framework for modeling
and analyzing security requirements based on the concept of trust, ownership, permission,
and delegation. These concepts are dealt within the normal functional requirements model.
In this framework, ownership is defined as the relationship between an actor and a service if
an agent is the legitimate owner of a service. Trust among two actors and a service means
that the actor A trusts the actor B to fulfills a service S or achieve a goal G. Delegation
among two actors and service means that the actor A explicitly delegates a goal, execution

1In security requirements literature, two different frameworks developed by different researchers are called
Secure Tropos [61, 23].

7



of a task, or access to a resource to the actor B. The corresponding meta model of the
notation is presented as part of the i* meta model in [82].

We described Securre Tropos modeling notation [61] in the previous section. In [59]
security concerns are integrated into all phases of Tropos agen-oriented methodology: from
early and late requirements, and architecture and detailed design. At the early require-
ments phase, Security Diagram is constructed and security constraints are imposed to the
stakeholders. During the late requirements stage, security constraints are imposed to the
system-to-be in the Security Diagram. The system is presented as one or more new actors,
who have a number of dependencies with the other actors of the organization. In the archi-
tectural design stage, security constraints, secure entities that the new actors introduce, and
secure capabilities are identified and assigned to each agent of the system. At the detailed
design stage, agent capabilities and interactions are specified.

In a related work to Secure Tropos requirements framework, Bresciani et al. [12] suggest
a quantitative security requirements analysis on the security constraints models developed
using Secure Tropos method. The analysis considers measures of security criticality and
complexity. Criticality is the measure of how the security of the system will be affected
if the security constraint is not achieved. Security complexity is the measure of the effort
required by the responsible actor for achieving a security constraint. The goal of analysis
is to make sure that security bottlenecks are identified and an actor is not overloaded with
security responsibilities. Figure 1 summarizes and compares the surveyed approaches and
the main factors that each method employ to drive security requirements.

Figure 1: Summary and comparison of agent and goal-oriented security requirements frame-
works.

3.2 Trust-Based Requirements Frameworks

Viega et al.[80] argue that trust and trustworthiness are foundation of security, and the basis
of trust relationships and trust formation can dramatically affect the underlying security
of any system. They assert trust relationship between the entities must be formalized and
mapped into the system requirements for implementation. Without recognizing all the
entities and their trust relationships in a software system during the requirements phase of
a project, that project is doomed from the start. They conclude that it is very important to
minimize or eliminate the trust assumption between the various component in a multiparty
system. Therefore, a recent shift in security requirements engineering is toward analyzing
trust relationships and trust assumptions. Approaches such as [31, 28, 30, 29, 23] analyze
effects of trust relationships and assumptions about trust on security requirements.

The contributions in [28, 30] focus on analyzing the trust assumption on deriving se-

8



curity requirements using problem frames [39]. The focal point of these contributions is
the argument that trust assumptions can have fundamental impacts on how the system
is perceived [28, 30]. In this regard, trust is defined as the quantified belief by a trustor
with respect to the competence, honesty, security and dependability of a trustee within a
specified context. By considering trust assumptions, a requirements engineer believes and
accepts that the domain holds some certain properties and specification. To incorporate
the trust assumption into the problem frames models, which is used as the requirements
elaboration modeling technique, the problem frames notation is extended with an arc from
domain to a dotted oval describing the properties assumed to be true [30]. By adding trust
assumption the model works as a documentation about the way that requirements engineer
trusts the behavior of the domain, and the scope of the analysis is limited to the domain.

Considering trus assumptions, Haley et al. [29] propose a security requirement engi-
neering framework for expressing and analyzing security requirements as constraints on
functional requirements. The framework introduces four main activities to move from func-
tional goals to final arguments that if the security requirements are satisfied. The activities
start with identifying functional requirements. In the second step, security goals and secu-
rity requirements are identified. Finally, satisfaction arguments are constructed. A set of
security requirements core artifacts [42] is introduced which are developed during the dis-
cussed activities and mainly consists of documenting application and security goals, assets,
management control principles, functional, quality, and security requirements, and system
architecture. Security goals are operationalized into security requirements, aiming to pro-
tect the assets from harm. Security requirements are treated as constraints on the systems
functional requirements. Figure 2 summarizes these group of works based on the trust
assumptions.

Figure 2: Summary and comparison of threat and trust-based security requirements engi-
neering methods in [31, 29, 30].

The apporach in [23] can be categorized also as a trust-based requirements engineering
method. However, this approach mainly focuses on eliciting access control requirements
based analyzing ownership, permission, and delegation relationships in a trust chain of
actors.

3.3 Risk and Threat-Based Requirements Frameworks

Several security requirements engineering methods focus on analyzing threats and unwanted
incidents for deriving security requirements. For example, Lamsweerde [77] suggests obtain-
ing security requirements as countermeasures for anti-requirements and vulnerabilities which
are output of analysis of anti-goals and threat trees.

9



In another work by Haley et al. [31], threats are used as crosscutting concerns to de-
termine the impact of security requirements on the functional requirements. Threat de-
scriptions are crosscut with the subproblem to determine which threats apply to a given
subproblem. Threats are composed with subproblems looking for vulnerabilities that may
be used to exploit a threat. In this approach, security requirements are expressed as con-
straints on functionalities or trust assumptions.

Evans et al. [18] suggest Mission Oriented Risk and Design Analysis (Morda) as a
methodology for analyzing security risks. Morda combines threats, attacks, and mission
impact concepts for deriving an unbiased risk metric. The analysis starts with defining the
system and threats. Then, relevant missions and impacts of adversary on them are identified.
To analyze the adversary, the objectives of attacks are identified and an attack tree is
developed for the attack. Morda suggests calculating attack score to assess the risks. The
combination of attack scores represents the adversarys preference for a portfolio of attacks
against the systems missions. This parameterized attack portfolio defines the overall system
risk in terms of calculated utility scores. Finally, security engineers derive countermeasure
alternatives first by focusing on the highest-scoring attacks and characterizing potential
countermeasures according to their costs and benefits. In [19], Evans and Wallner argue
that attack score provides the metric necessary for making trade-off decisions. In this
method, design decisions are made by comparing the changes in risk, cost, and performance
parameters.

Risk management methods are frequently used as part of the secure software development
activities. Several methods such as Security Attributes Evaluations Method (SAEM)[13],
CORAS UML profile and methodology [34, 15, 10], extensions to Tropos for risk modeling
[4], improvements on Secure Tropos for risk assessment by Matulevicius et al. [54], and
the risk-based security requirements engineering framework [58] offer modeling and analysis
approaches for security risks assessment.

Among these methods, the framework proposed by Mayer et al. [58] focuses on in-
tegrating risk analysis with requirements engineering activities. This risk-based security
requirements engineering framework is concerned about integrating requirements engineer-
ing practices with security engineering, as well as intertwining between requirements and
architecture design. The main idea is to align IT security with business goals. For this aim,
the impacts of risks on business assets are analyzed, risks are related to the threats and
vulnerabilities in the architecture, and security requirements are identified to mitigate the
risks.

In this approach, risk is defined as the combination of the probability of occurrence of
harm and the severity of that harm. IT risk are further decomposed into three components:
Risk = Threat∗V ulnerability∗Impact. In this way, risk is characterized by the opportunity
of exploiting one or multiple vulnerabilities, from one or many entities, by a threatening
element using an attack, causing an impact on business assets. The proposed approach
employs the i* Framework as the requirements and architecture modeling method, and
adapts risk analysis in part of the early security engineering practices. New extensions to
the i* are introduced to express threats, vulnerabilities that the threat exploit, and the
relation of the vulnerability with elements of the model.

We described CORAS modeling language in the previous section. In addition to the
UML-inspired modeling notation, CORAS provides a methodology based on the unified pro-
cess for conducting security analysis [15]. The CORAS risk assessment methods is adapted
to address requirement elicitation. In [10], a seven-steps risk analysis method based on the
CORAS modeling approach is presented. The analysis method consists of analyzing the
target context by developing UML models and asset model (refer to the previous section
for details of the modeling notation). Then, potential players who impose the risks, tar-
get assets, and vulnerabilities that make the risks possible are identified. The risks that
have sever consequences and high likelihood are selected for further analysis. For detailed
risk analysis, threat scenario diagrams are developed and unwanted incidents are identified.
Finally, treatments are selected for the risks that not acceptable. In section 4, other risk

10



assessment methods that do not focus on security requirements engineering are surveyed in
detail.

3.4 UML-Based Requirements Engineering

UML is a widely used notation in analysis and design of software systems, developers already
know UML modeling notation, and the notation is well defined. Therefore, UML and
extensions to the UML has been used for security requirements engineering in methods such
as [75, 55, 43].

As described in the previous section, UMLsec is an extension to UML that allows express-
ing security relevant information within UML diagrams. Using UMLsec, security require-
ments are defined by assigning security stereotypes to the elements of the design models.
Since UML is not a requirements engineering notation and the only diagram that focuses
on the expected functionalities of the system from the users’ point of view is the use case
diagram, several security requirements engineering methods based on use cases are proposed.

Jurjens [44] combines the use of UMLsec modeling, use-case driven process, and goal
trees to design the system along with modeling functional and non-functional requirements
respectfully. In this method, the goal tree is developed to record the result or reasons of
design actions which are expressed in UMLsec diagrams. The security goals are refined in
parallel by giving more system details, such as UMLsec stereotypes or tag-values, in design
phases.

We described the misuse case and abuse case modeling notations in the previous section.
The process of eliciting security requirements by misuse cases [75] starts with identifying
critical assets. Then security requirements for each asset are defined. In the third step,
threats to each security requirements are defined and expressed as misuse cases. In the
fourth step, risks of threats are identified and analyzed. Finally, security requirements are
defined as either security use cases or in the mitigation field of misuse case description.
Sindre and Opdahl [75] assert that the visualization of links between use cases and misuse
cases help to organize the requirements specification and tracing requirements to threats
that motivated them. The authors also propose templates for detailing misuse cases to
support requirements extraction [74].

Firesmith [20] also employs the notion of use cases and misuse cases for analyzing security
requirements. He claims use cases are typically misused to unnecessarily specify security ar-
chitectural mechanisms instead the security requirements. Therefore, he suggests a template
for describing reusable security use cases in [20] for specifying security requirements.

Another example of UML profiles for security analysis is the CORAS framework. CORAS,
inspired by UML diagrams, employs similar models to use case models for expressing assets,
risks, vulnerabilities and security treatment. General UML diagrams are also used in the
CORAS methodology for modeling the target system context [10].

3.5 Discussion

The final outcome of security requirements engineering frameworks is expected to be a list of
feasible requirements that provide good-enough system’s security against potential attacks.
To extract the list of feasible security requirements requirements analysts need to consider
possible alternative solutions that satisfy the requirements. Since the output of security
requirement engineering is a set of required protection mechanisms and constraints on the
system-to-be, the need to parallel elaboration of the requirements and architecture design is
pointed in various works [31, 66, 63]. Lamsweerde [77] points to other meta-requirements for
a security requirements engineering technique such as: suitable for early development phases
and high assurance, incremental, enabler for reasoning about alternatives and security-by-
construction, and separating security concerns for interaction analysis.

Existing security requirement engineering frameworks and modeling notations mostly
focus on identifying security requirements and evaluating if a certain system design can
satisfy those requirements. For example, UMLsec [43] focus on encoding requirements and

11



design in system level details. Although employing different modeling notations, existing
security requirements engineering frameworks consider similar concepts such as assets and
threats to drive security requirements. Surveying several security requirements engineering
frameworks shows that since existing approach take different views to model systems and se-
curity, they result indifferent types of security requirements. For example, some approaches
define system as a network of strategic and social actors that delegate services to the other
actors and may (not) trust each other [51, 23, 61]. In approaches such as [43, 29, 31, 30],
the system-to-be and the environment are modeled by focusing on the different aspects of
the system from one single point of view. Using UMLsec [43], one can conclude if a system
setting satisfies a set of requirements expressed as stereotypes, while analyzing actors de-
pendencies from point of view of trust, permission, ownership, and delegation ownership [?]
results in conclusion about dependencies among partners and access control requirements.

Security requirements engineering frameworks do not agree on the concept of security.
While UMLsec [43] enables modeling and analyzing issues such as fair exchange and secrecy
as the security concerns, approaches such as [23, 51, 61] deals with security as an issue that
arises from the interaction of social actors; approaches such as misuse cases [75] and abuse
cases [55] deal with security as an issue where the system users misuse the functionality;
framework in [29] considers security as a constraint on the functionality; and risk-based
requirements frameworks [10, 58] extract security requirements to mitigate the risks.

In sum, the output of existing security frameworks include a variety of concerns such
as: which trust assumptions are invalid, what kind of constraints need to be enforced on
functionalities, what kind of attacks need to be prevented, what type of security coun-
termeasures need to be employed, and what vulnerabilities need to be patched. Table 2
summarizes and compares the similarities and differences of exitisng security requirements
engineering frameworks:

4 Security Trade-off Analysis

Security, like beauty, is in the eye of the beholder.

Devanbu and Stubblebine [16]

While software systems act as enablers, security is a feature of the software that prevents
certain actions. Security requirements are additional requirements which root from the risk
of adversaries and vulnerabilities rather than stakeholders’ interests. Therefore, security
always involves a trade-off, which requires trading convenience, performance, privacy, etc.
for better security. Trade-off analysis is a systematic examination of the advantages and
disadvantages of each proposed requirements and/or design approach for a system to achieve
the right balance among several competing goals [2].

A topic of increasing importance is the analysis and management of dependencies among
requirements which is called Requirements Interaction Management (RIM) [67]. The sat-
isfaction of one requirements or the environment can aid or detract from the satisfaction
of another requirements [78]. When some goals are not sufficiently satisfied, designers need
to explore further alternatives that can better achieve those goals without detrimentally
hurting others. In addition, while a design solution satisfies some quality goals, it may have
negative impacts on satisfaction of other requirements. This situation causes trade-offs be-
tween the positively- and negatively-affected requirements. Satisfying security requirements
involves trading design objectives or values, such as performance, usability, functionality,
and money for security.

Security trade-off are naturally subjective, since security decisions are based on personal
judgment [71]. Different people have different level of risk tolerance and personal privacy
expectations. In addition, different stakeholders have different expectation from a software
system; therefore, they impose different security requirements which may conflict with secu-
rity and other goals of other stakeholders. Analyzing costs and benefits of security-critical

12



Table 2: Summary and comparison of security requirements engineering frameworks. N
indicates that the modeling notation does not consider the concept or analysis in its con-
cpetual modeling constructs, and Y indicates the concept or analysis is considered implicitly
or explicitly in the framework.

Security Requirements Framework A
ss

et

A
tt

a
ck

A
n
a
ly

si
s

S
ec

u
ri

ty
S
o
ci

a
l
C

o
n
ce

rn
s

T
ru

st
C

o
n
ce

rn
s

V
u
ln

er
a
b
il
it
y

A
n
a
ly

si
s

S
ec

u
ri

ty
C

o
n
st

ra
in

ts

S
ec

u
ri

ty
G

o
a
ls

A
lt

er
n
a
ti

v
e

C
o
u
n
te

rm
ea

su
re

s
A

n
a
ly

si
s

R
is

k
A

n
a
ly

si
s

Misuse Case Analysis [75] Y Y N N N N Y N Y
Abuse Case Analysis [55] N Y Y N N N N N N
CORAS Framework [10] Y Y N N Y N N N Y
Anti-Model Analysis [77] N Y N N Y N Y Y N
UMLsec Framework [43] N N N N N N N N N
Social Actor Analysis [51] N Y Y N N N Y N N
Trust, Ownership and Delegation
Analysis [23] N N Y Y N N N N N
Secure Tropos [61] N Y Y N N Y Y Y N
Security Requirements Engineering by
Haley et al. [29] Y Y N Y N Y Y N N
Crosscut Threat Description [31] Y Y N Y Y Y N N Y
Trust Assumption Analysis [30] Y Y N Y N Y Y N N
Risk-Based Security Framework by
Mayer et al. [58] N Y N N Y N Y Y Y

systems may also involve ethical issues. In a context that security attacks may pose risks
to human life, safety, and privacy, quantification of human loss or privacy violation is not
ethically acceptable [9].

Although there is an agreement that security is about trade-offs [71, 69], few software
engineering research contributions have considered trade-off analysis as a requirements engi-
neering and design activity. While risk assessment methods such as [34, 13] address balanc-
ing the costs and benefits of security solutions to achieve good enough security, trade-offs
that security goals and alternative security solutions impose on other quality objectives are
neglected in existing security requirements engineering frameworks. In this part, we discuss
the psychology aspects of security trade-offs to draw conclusions on the requirements for
a security trade-off analysis method. Then a survey and comparison of trade-off and risk
analysis methods is provided.

4.1 Psychology of Security and Security Trade-offs

Bruce Schneier [72] uses the term psychology of security to elaborate the way that humans
decide on security risk and make trade-offs. He asserts that security is a feeling based
not on probabilities and mathematical calculations, but on the psychological reactions to
both risks and countermeasures. Three fields of research: behavioral economics, psychology
of risk, and neuroscience are considered related for studying the human perception of the
risks. Behavioral economics looks at the human emotional, social and cognitive biases and
how that affects economic decisions. Studies on sychology of risk try to find out when
humans exaggerate risks and when they underestimate them. Neuroscience is important to

13



understand how we think about security risks.
Schneier concludes that the approaches for designing security systems and deciding on

security trade-offs need to take the feeling and psychology of security into account. Humans
do not evaluate security trade-offs mathematically, by examining the relative probabilities
of different events. Instead, they use shortcuts, stereotypes, biases, generally known as
heuristics. Empirical studies on trade-off decisions show that unlike the utility theory,
people have subjective values for gain and losses, which is described by prospect theory [45].
In addition, peoples’ choices are affected by how a trade-off is framed. By framing a choice
as gain, people tend to be risk-averse; in opposite, when the choice is framed as loss, people
tend to be risk-seeking. This is called framing effect.

Other biases also affect risk analysis. One common risk bias is called optimism bias:
people tend to believe they will do better than most others engaged in the same activity
and bad things do not happen to them. People also are more likely to accept risks if they
feel they have control over them; this bias is called control bias. The affect heuristic also
says that an overall good feeling toward a situation leads to lower risk perception.

Human minds deal with heuristics and probabilities that may lead to wrong trade-offs.
For example, in human mind, small numbers matter much more than large numbers. While
people are good with comparisons such as 1 vs. 2, 4 vs. 8, they are less good at decision
about 10,000 vs. 100,000. The other heuristic is called, availability heuristic which states
that in any decision making process, easily remembered and available data are given greater
weight than hard-to-remember data. The other heuristic involved in decision making is
Cost Heuristics. People use a mental accounting which assigns different values for different
charges that have the same cost in terms of money. Schneier states that the effect of mental
accounting on security trade-offs is not clear but people have mental accounts for safety
and security, and the money spent from that accounts feel different than money spent from
another account.

The result of trade-off decision making depends on other heuristics such as context
(context effect), variety of choices (choice Bracketing), random information provided to the
decision maker (anchoring effect), etc. While some of these heuristics and biases may lead to
wrong trade-offs, considering them in developing a trade-off analysis method is important.
The example of Utility Theory vs. Prospect Theory shows that making proper trade-offs do
not rely only on a mathematically sound formula, but also on the human’s mind preferences.
Although the possibility of gain and loss might be equal, humans prefer certain choices. The
question is to what extend such human mind preferences should be incorporated into the
decision making process and to what extend such biases need to be avoided in the trade-off
analysis processes?

4.2 Security Trade-off Analysis: State of the Art and Practice

This section first provides an overview of the trade-off analysis and risk assessment methods.
then, se survey possible ways to express trade-offs between design objectives and trade-offs
of alternative solutions. This section discusses why trade-off analysis among quality objec-
tives is challenging and what conceptual constructs are involved in modeling and analyzing
security trade-offs.

4.2.1 Cost-Benefit Analysis and Risk Assessment Methods for Trade-off Anal-
ysis

Cost-benefit and risk analysis have been considered as part of software engineering activities
and specially important in security requirements engineering and secure software design. In
security engineering, risk involves probability of the threat and seriousness of a successful
attack [37]. There exist various methods for modeling and incorporating risk assessment
along with cost-benefic analysis into the software engineering practices.

The risk-based security requirements engineering framework proposed in [58] is con-
cerned with integrating requirements engineering practices with security engineering and

14



interleaving requirements and architecture design by adopting risk analysis practices as a
key activity in the early stages of development. The approach aims to analyze the impacts of
threats on the business by linking the risk impacts with the business values. This approach
uses and extends the i* Framework for modeling the business context, system architecture,
threats, and vulnerabilities. The i* modeling notation is extended to express the threats
that target actors’ goals by using vulnerabilities. Risk analysis involves considering busi-
ness assets, vulnerabilities, probability of attacks, and cost of countermeasures. The main
criteria to make trade-offs and sort the indicators are risk values and cost values.

The CORAS framework [34] provides a UML profile for risk assessment. The pro-
posed profile defines UML stereotypes and rules for specialized UML diagrams to support
of model-based risk assessment. Asset diagram is introduced to identify assets; threat di-
agram captures unwanted incidents causing loss in asset value; state analysis diagram is
proposed to estimate and document the frequency and consequence of the unwanted inci-
dents; and treatment diagrams are models extended with specialized use cases representing
treatments.

Asnar et al. [4] introduces a method for modeling and analyzing risks at organizational
level. The proposed framework is called Goal-Risk Model and extends the Tropos method-
ology with three basic layers: strategy (or goal layer), event, and treatment. Strategic layer
analyzes strategic interests of the stakeholders. Event layer analyzes uncertain events along
their impacts to the strategy layer, and treatment layer analyzes treatments to be adopted
in order to mitigate risks. This framework is extended in [5] to assess the risk in a multi
actors setting. In the extended framework, the concept of actor and dependency between
actors are considered besides the concepts of goal, task, and event.

The Goal-Risk Model provides the basis to analyze if the requirements are satisfied and
the risk level is acceptable for every actor. For this aim, first goals are operationalized to
analyze actors’ goals and the tasks used to achieve them. Then, events are operationalized to
analyze events and their impact on the strategy layer. This permits to do trade-off analysis
when an event acts as a risk for some goals and as an opportunity for other ones. Then,
the risk level perceived by each actor in the organization is calculated. Finally, treatment
Operationalization intends to refine the Goal-Risk Model in case the risk-level is higher than
the risk acceptance defined by actors. Risk assessment involves considering factors such as
evidence values for satisfaction or denial of tasks and goals; the costs events and tasks;
utility values of higher goals; the likelihood of local and global events; and the risk tolerance
for each actor.

Another approach for deciding on security requirements and design is proposed in [41],
where probabilistic inference on security influence diagrams and Bayesian Networks are used
to support trade-off analysis. In this work, authors discuss the criteria of the language for
security requirements modeling and analyzing. They assert that the language should be able
to represent decision’s maker goals, domain of control, and causal relation between goals
(indirect and controlled). For managing the definitional uncertainty the language must
specify what is meant by the conceptual concepts of the language, and must represent the
causal and empirical uncertainty.

Butler [13] suggests a cost-benefit analysis method called SAEM to compare alternative
security designs. SAEM relies on a quantitative risk and benefit assessment in which the
analysts need to interview IT and security managers to elicit initial data for the analysis.
The analysis starts with the assessment of security technologies benefits. Benefit of a security
technology is an assessment of how well the technology mitigates a risk. The mitigation may
work in two ways: prevent the attack from occurring or reducing the consequences of an
attack. The usage of security technologies are divided into three main categories: protection,
detection, and recovery. Then, to assess the benefits of the technologies, threats that the
technologies mitigate are identified. At this stage, interviews are required to capture a
rough estimation about the quality and effectiveness of countermeasures. The results of
technologies effectiveness are percentage indicating how a threat is reduced by a security
technology.

15



In the second step of SAEM, the benefit assessment is applied to the threat frequencies
and outcomes to determine how the overall threat index is affected. Threat index indicates
the frequency of an attack and its probable outcomes. Consequences of an attack are called
attribute, and the outcome is a vector of attributes where the value of the attribute is
the level of damage. Since each security technology reduces the risk from several threats,
comparing technologies requires an overall assessment of the threat index. Hence, new threat
indices for alternative security technologies are calculated. In addition to considering the
total changes of threat index, in the third step, alternative technologies are compared based
on the coverage of prevention, detection, recover, and coverage of several threats. Finally,
in the forth step, cost of alternative security technologies is considered for trade-off analysis.

4.2.2 Software Quality Trade-off Analysis Methods

There exists trade-off analysis methods that go beyond cost-benefit analysis and consider
goals of stakeholders and quality attributes of the system. Kazman et al. [7] introduce a
framework for modeling quality attributes and architectural alternative designs using the no-
tion of scenarios and tactics respectively. A quality attribute scenario is a quality-attribute-
specific requirement, and consists of six parts: Source of stimulus, Stimulus, Environment,
Artifact, Response, and Response measure. Achievement of quality scenarios relies on tac-
tics.

ATAM and CBAM. Architecture Tradeoff Analysis Method (ATAM) [46] is a labor-
intensive evaluation method to analyze whether an architecture decision satisfies particular
quality goals. ATAM helps designers to prioritize scenarios and evaluate alternative tactics
using a Quality Attribute Utility Tree. Scenarios that have at least one high priority of
importance or difficulty are chosen for a detail analysis to examine if the selected tactics
satisfy the scenario.

The result of the ATAM analysis is an Architectural Approach Analysis table for each
quality scenario. Evaluators identify and record sensitivity, tradeoff, risks and non-risks
points of alternative tactics for satisfying a scenario in this table. Sensitivity and tradeoff
points are architectural decisions that have effects on one or more quality attributes, the
former positively and the latter negatively. In ATAM, a risk is defined as an architectural
decision that may lead to undesirable consequences. Similarly, a nonrisk is an architectural
decision that upon analysis is considered safe.

Cost Benefit Analysis Method (CBAM) [7] picks up where ATAM leaves off. It takes
ATAM outputs as input and adds cost factors to the trade-off analysis. CBAM uses scenarios
as a way to concretely express specific quality attributes. Stakeholders vote for scenarios to
select the top priority scenarios for further analysis. In this way, CBAM resolves the conflict
of goals among stakeholders by computing the ROI of each strategy based on their votes for
utility of each strategy. Stakeholders’ vote is used to calculate stimulus-response utility per
each scenario for creating the utility-response curves. Utility is based on the importance
of each scenario and its response value. The overall utility is combined with the cost of
an architectural strategy to calculate the final Return On Investment (ROI) measure. The
ROI value for each architectural strategy is the ratio of the total benefit to the cost. Using
the ROI value, the architectural strategies can be rank-ordered and compared, and a final
decision is made.

Using ATAM, in ”Architectural Approach Analysis” table for each scenario, alternative
tactics are analyzed. However, the impacts of tactics are analyzed on one specific scenario
rather across multiple scenarios. Moreover, ATAM does not incorporate the degree of sen-
sitivity or trade-off between tactics and qualities in the analysis, since the Architectural
Approach Analysis table does not express the impact of tactics on stimuli (attacks) and
does not specify the consequences of applying a tactic on other quality scenarios. The
ATAM process does not separately capture the impact of each tactic on stimuli of security
scenarios (attacks).

ATAM does not consider cost as a trade-off factor that usually has the highest priority
over the other factors. CBAM is proposed to address this weakness. The CBAM approach to

16



trade-off analysis requires the designer to obtain quantitative measures of current response
and expected response of architectural strategies for each affected scenarios. The major
obstacle toward applying CBAM would be unavailability and inaccuracy of such measures
in the early stages of development and lack of agreement on metrics and measurement
methods.

SVDT and AORDD. Security Verification and security solution Design Trade-off
(SVDT) [36] framework provides methods for evaluating alternative security solutions and
balancing security requirements. In this framework, security requirements and candidate
security solutions are modeled and verified using UMLsec. The trade-off analysis is im-
plemented using Bayesian Belief Nets (BBN) and makes use of a fixed set of trade-off pa-
rameters, such as budget, business goals, and time-to-market constraints, to support design
decisions regarding how to best meet security requirements while also fulfilling other diverse
system requirements.

SVDT consists of four main steps: (1) identify potential misuses and assess their risks,
(2) identify alternative security solutions for misuses that must be addressed, (3) perform
UMLsec security verification of these security solutions to ensure they prevent the target
misuse and (4) perform security solution design trade-off analysis among the alternative
solutions.

The first two steps are performed using the CORAS risk assessment platform [34].
CORAS is a risk assessment model-based methodology which provides a UML profile for
risk assessment. In the third step of SVDT, the alternative security solutions for a particular
misuse are modeled and verified using UMLsec. In this way, complete analysis is reserved
for the most promising alternatives. In the fourth step, the trade-off analysis method in-
corporates the notion of a static security level to address the security level derived from
development activities, and a dynamic security level to address the security level derived
from predicting events when the system is operating.

The static security level, dynamic security level, standards, policies, laws and regulations,
priorities, business goals, security risk acceptance criteria, time-to-market, and budget con-
straints are all parameters to the trade-off analysis, which computes the Return on Security
Investment (RoSI) for each security solution. Security requirement, solution effect, solution
cost, misuse cost and misuse impact are input parameters for RoSI computation as the
information that is traded off. The goal of computing RoSI is to measure and compare the
level of security of alternative solutions.

SVDT framework introduces the structure of trade-off analysis in form of a Bayesian
Networks topology. The trade-off parameters are estimated and fed into the BBN to com-
puter RoSI for each alternative solution. The result of risk assessment in this framework is
a set of misuses and alternative security treatment strategies. The input to trade-off anal-
ysis is the results from risk assessment. SVDT framework is based on the Aspect-Oriented
Risk-Driven Development (AORDD) [35] cost-benefit risk analysis approach for making
security trade-offs. The AORDD also takes advantage of BBN for computing RoSI. The
AORDD framework provides an ontology for security risks concepts and the BBN topology
covers those concepts. In this framework, UML models of the system are annotated with
stereotypes which help the analysts to select the right estimation set from the estimation
repository. The annotations are then mapped to the BBN nodes and subnodes.

The use of probabilistic reasoning by BBN in SVDT (and AORDD) requires the software
designers obtain quantitative measures or qualitative scales of the impact of misuses and
solutions. The major limitation is the inaccuracy or unavailability of quantitative data
on the impact of misuses and solutions especially in the early stages of the development
lifecycle. In addition, requirements such as security, privacy, and usability are personal
and subjective qualities. For example, different personalities have different level of risk
tolerance and different people have different privacy expectations. Therefore, calculating
one single value for security benefits or privacy costs of a solution may not be feasible in all
circumstances.

A before head-designed BBN that returns the RoSI in every context saves time and efforts

17



for many projects, while shifting the challenge to developers of such BBN that is applicable
in every context. relying only on the RoSI metric to compare two alternative security design
solutions, when the system designers and analysts need to trace the impact of changes in
BBN parameters or changes in the design, they have to learn about the topology of the
BBN which they have not designed.

Use of Misuse Cases for Trade-off Analysis. Another approach that aims to express
trade-offs between system’s objectives more explicitly employs the notion of use cases and
misuse cases [2]. This approach visualizes the structure of the trade-off situation accurately
and in a way that emphasizes the essential points of conflicts and trade-offs. For this aim,
two new types of relationships to the misuse case model are added: 1) Mis(use) case A
aggravates misuse case B, which means A increases either the probability of success or
seriousness of damage that B threatens. 2) Use case A conflicts with use case B, if achieving
A’s goal makes achieving B’s goal more difficult or impossible.

The relationships in (mis)use case model, threatens, mitigates, aggravates, conflicts with,
together with includes and has expectation (extends), provide the toolkit to handle trade-
offs. This approach enables the analyst to describe threats, and discover functional and
non-functional requirements. By visualizing the impact of misuse cases and conflicting use
cases with easy-to-understand relationships, the model show areas where costs and benefits
can be expected. The main limitation of this approach is the lack of structures that relate
the causes of trade-offs to use cases, since a use case model is limited to describe the expected
functionality rather than the architectural solution. Therefore, the misuse case model does
not express due to what operationalizations the use cases are in conflict.

Schneier 5-Steps Trade-off Analysis Method. Bruce Schneier suggests a five-
steps trade-off analysis method in [71], which helps security engineers to assess threats,
risks, security solution, and trade-offs imposed by a security solution. In the first step, the
analyst studies the asset that security solutions are trying to protect. In the second step
of the trade-off analysis, the analyst needs to ask what are the risks to the assets? In this
step, the analyst considers who wants to attack the system, how they might attack it, and
what are the consequences of the successful attacks. In the third step, the security solution
is evaluated in terms of its impact on the risks and how well it mitigates those risks. In
the next step, other risks that the security solution causes are studied. Finally, in the fifth
step, the costs and trade-offs that the security solution imposes are studied. This means
considering the downsides of applying the security solution, such as costs in terms of money,
matters of convenience and comfort or privacy.

4.3 Discussion

The surveyed trade-off modeling and analysis approaches express trade-offs at different levels
of explicitness and abstraction. In many engineering fields, mathematical formulas model
the relationships between trade-off parameters. Using the AORDD and SVDT methods,
trade-off parameters are expressed in a BBN where the BBN topology visually expresses the
relation between trade-off parameters. In this way, a single fixed formulation of relationships
between trade-off parameters is reused for multiple projects. Using the ATAM and CBAM
approaches, trade-offs are recorded by the lists of tactics, scenarios and quality attributes
in tables. Trade-offs are analyzed by an architecture expert that evaluate each design tactic
in terms of its costs and benefits. Using the misuse case models for trade-off analysis, one
can explicitly express the (mis)use cases that have negative or positive impact on other
(mis)uses and use cases that have conflicts. Although trade-offs are expressed explicitly, the
(mis)use case model is not expressive enough to model the trade-offs causes.

Figure ?? depicts the different levels of abstraction for expressing trade-offs and their
properties. Table 3 provides a summary and comparison of the existing trade-offs modeling
and analysis approaches.

18



Figure 3: Abstraction level of different modeling approaches for expressing the relation
between trade-off factors.

5 Security Knowledge Management

Many recurring patterns of attacks and vulnerabilities have been identified by longtime soft-
ware security practitioners [57]. In addition to awareness about potential attacks, designing
security-critical systems requires knowledge and security expertise in various fields such as
computer networks, operating systems, communication protocols, cryptography algorithms,
and access control methods. Barnum and McGraw [6] note that ”software security does
not have enough master craftsmen to effectively apprentice and train the worlds developers,
architects, and software security newbies” and software designers usually lack such expertise
and skills, and security knowledge is hard to acquire.

Mead and McGraw [57] assert that one of the challenges facing software security is the
lack of an easily accessible common body of security knowledge. Although much security
knowledge is widely available in the form of textbooks, checklists, standards, and security
design patterns, it remains difficult for designers to extract relevant pieces of knowledge
to apply to their specific design or requirements related decision making situations. Struc-
turing knowledge helps the knowledge consumer browse the content and finds the relevant
information more efficiently.

There are various approaches for collecting, structuring, and managing security knowl-
edge such as taxonomies, ontologies, standards, guidelines, checklists, patterns, repositories,
and web-based data bases. This section provides an overview of advantages and limitations
of various approaches for structuring and sharing security-related knowledge. We divided
the knowledge management contributions for security into two main groups: 1) A group
of work that suggests a way to structure and organize knowledge into a specific format, 2)
A group of work that provides the body knowledge in form of a taxonomy, categorization,
repository, or data base. The first group of contributions is concerned about defining the
knowledge structure. The second groups of work, which are more common, may introduce a
way to structure knowledge but also provides the actual populated knowledge in a structure.

5.1 First Group: Knowledge Structures

Barnum and McGraw [6] have suggested schema of a security Knowledge Base (KB), in
which they identify seven knowledge catalogues: principles, guidelines, rules, attack pat-
terns, historical risks, vulnerabilities, and exploits, which are categorized into three cate-
gories: prescriptive, diagnostic, and historical. Prescriptive knowledge category, including

19



Table 3: Summary and comparison of trade-off modeling and analysis methods.

Method Prop-
erties ATAM/CBAM SAEM Misuse Case SVDT/AORDD

Model devel-
oper

Modeled by the
project analyst

Modeled by the
project analyst

Modeled by the
project analyst

Modeled by
a project-
independent
analyst before-
head

Level of the ab-
straction of the
model

Trade-offs are ex-
pressed by relation-
ships in a table

Trade-offs are mod-
eled and analyzed
by relationships in
tables

Trade-offs are ex-
pressed by relation-
ship between the
(mis)use cases

Trade-offs are
formulated in the
BBN topology

Modeling Con-
structs ATAM/CBAM SAEM Misuse Case SVDT/AORDD

Design ob-
jectives and
goals

Expressed in terms
of scenarios

Limited to security
benefits and costs
(expressed in ta-
bles)

Expressed as use
cases

Considered by
fixed BBN param-
eters

Relations
between objec-
tives

Not considered ex-
plicitly

The relation be-
tween cost and
security objec-
tives are expressed
by quantitative
measures in tables

Expressed by
include, extend,
conflictswith

Considered in the
fixed BBN topol-
ogy

Alternative de-
sign solutions

Expressed in terms
of tactics Listed in tables

Design solutions
are not modeled

Each alternative
security solution
is analyzed by the
UMLsec reasoning
and BBN cost
benefit analysis

Impacts of ob-
jectives and so-
lutions on each
other

Utility tree in
ATAM doesnt
capture the con-
tributions of
scenarios on each
other/ CBAM
considers the im-
pacts by utility
and side effects of
an architectural
strategy

Limited to impact
of solutions on risks
and costs by effec-
tiveness estimates

The impact of
(mis)use cases
are expressed
by aggravate,
mitigates, and
threaten relations

Encoded in the
BBN topology

Extents of
objectives
achievement

Not considered in
ATAM/ Expressed
in terms of Utility-
Response Curves in
CBAM

The extent to
which threats are
controlled are ex-
pressed by threat
indices Not modeled

Expressed by
parameters fed
into the BBN and
mostly quantita-
tively

Inaccurate or
incomplete
knowledge Not considered

The extent to
which threats are
controlled are ex-
pressed by threat
indices Not considered

In terms of proba-
bility density func-
tions (pdf) in BBN

Multiple actors

Expressed implic-
itly by multiple
stimuli sources in
ATAM. In CBAM
multiple stakehold-
ers votes are taken
into account Not considered

Multiple actors’
use cases are ex-
pressed from view
points of several
actors

The BBN topology
can contain param-
eters from multiple
actors point of in-
terest

Security spe-
cific forces Not considered

Threats and their
risks are considered

Misuse cases and
the relations of
threatens models
the attacks and
threats

Some concepts are
considered in the
BBN topology

20



principles, guidelines, and rules offers advice for what to do and what to avoid. Diagnostic
knowledge, including attack patterns, exploits, and vulnerabilities help the designers iden-
tify and deal with common problems that lead to security attacks. Historical knowledge
includes catalogue of historical risks.

NFR security catalogues [14] is another example of security knowledge catalogue. The
NFR framework is a framework for modeling and analyzing non-functional requirements,
using the notion of softgoals. Softgoals are goals that have no clear definition or criteria
of satisfaction, like security. The interaction among security requirements and other non-
functional requirements are modeled by correlation rules. The NFR framework introduces
operationalization methods, which are ways to achieve security requirements. Catalogues
of correlation rules facilitate the systematic capture and reuse of knowledge of softgoal
harmonies and conflicts and trade-offs among operationalization methods.

Gross and Yu [26] present an approach to reorganize knowledge in a design pattern
according the contribution of alternate solutions to various design goals. The design goals
are typically non-functional requirements (NFRs) such as performance, maintainability, and
security, which may conflict with each other; thus requiring trade-offs. To characterize
patterns according to the NFRs, this approach suggests modeling the impact of each design
pattern to other NFRs to explicitly express how alternative solutions contribute differently
to goals.

5.2 Second Group: Knowledge Repositories

The majority of research contributions on knowledge management for security is dedicated
to gathering and cataloguing bodies of knowledge in various structures and formats. The
result of these efforts are the existing public sources of security knowledge. This part surveys
these sources of knowledge and the way that knowledge is structured those sources.

5.2.1 Text-Based Unstructured Security Knowledge

The content of text-based knowledge sources such as books, standards, guidelines, and
project documentations is amorphous and unstructured. Security textbooks such as [64, 3]
typically include a wide variety of knowledge ranging from high-level concepts to technical
details. Security standards such as [47] include practical security recommendations with
emphasis following proven approaches on which the community of practitioners agrees on,
and thus standards can serve as criteria for compliance. Security guidelines such as NIST
guidelines [76, 25] have broad coverage similar to textbooks, but presented in more focused
and practical format; therefore guidelines are used as ready-to-apply practical development
guides. Security checklists such as SANS checklists2 provide designers with tips and re-
minders about well-known pitfalls and solutions.

Design rationale is the explicit listing of decisions made during a design process and the
reasons why those decisions were made [40]. Design rationale is an explanation of why an
artifact or some part of an artifact is designed the way it is. Therefore, if such a document is
developed about security design decisions within an organization, it may contain recurring
attack patterns and descriptions of successful or defeated solutions as well as why a security
solution was chosen. Codifying and cataloguing such information would be useful for future
references.

5.2.2 Security Design Patterns

Design patterns encapsulate experts knowledge in form of a proven solution to common
problems. Patterns are mostly structured text in form of a three-part rule which expresses
a relationship between a certain context, a problem, and a solution. Design patterns are
widely used for collecting and codifying object-oriented design knowledge. One of the most
comprehensive catalogues of security patterns is published by the Open Group [8], in which

2http://www.sans.org/score/checklists.php

21



patterns are described based on the “Gang of four” format [22]. This pattern format de-
scribes the intent, motivation, applicability, structure, consequences, known uses, and re-
lated patterns.

In addition to proposal by Gross and Yu [26] for expressing design patterns using goal-
orineted models, in the SERENITY project, a goal based approach for expressing security
patterns were employed [1]. The solution and context of the patterns are elaborated both in
text and graphical Secure Tropos goal models. Expressing patterns by Secure Tropos helps
the designers to validate the pattern using reasoning techniques. Mouratidis et al. [62] also
offer an approach for expressing and structuring security design pattern for agent systems.
The patterns are expressed in text accompanied with social dependencies models expressed
by i* notation. The proposed patterns express the consequences of applying the patterns
explicitly.

5.2.3 Web-Based Knowledge Bases

There exist web portals that gather and catalogue an updated list of vulnerabilities discov-
ered for specific platforms, operating systems, protocols and products. SANS top-20 annual
security risks3 provide updated lists of common vulnerabilities. The US-CERT Vulnera-
bility Notes Database (VND)4 is a well-known web-based security catalogue which gathers
security vulnerabilities in a searchable database. VND catalogues vulnerabilities, their con-
text, impact, and a reference to the vulnerability report. Generally, the structure of this
knowledge source is limited to the information about the vulnerabilities, and solutions are
not suggested for the vulnerabilities.

National Vulnerability Database (NVD)5 contains Common Vulnerabilities and Expo-
sures (CVE)6 list that provides common names for publicly known information security
vulnerabilities. NVD includes databases of security checklists, security related software
flaws, misconfigurations, product names, and impact metrics. NVD supports the Common
Vulnerability Scoring System (CVSS)7 standard for all CVE vulnerabilities. The CVSS is
an open standard for scoring the vulnerabilities by providing an open framework for com-
municating the characteristics and quantitative impacts of IT vulnerabilities.

5.2.4 Taxonomies and Ontologies

Ontologies for modeling and expressing security are another source of security knowledge.
Mouratidis et al. [60] propose an ontology for modeling security, based on the Tropos
approach. The ontology uses the notion of security constraints. Security constraints that
contribute positively or negatively to the other requirements of the system are differentiated
to identify conflicts between security and other (functional and non functional) requirements.
Security constraints are imposed to different parts of the system, The Secure Tropos ontology
also introduces the term secure entity which includes secure goals, tasks and resources of
the system. A secure entity is introduced to the actor (or the system) in order to help in
the achievement of a security constraint.

Massacci et al. [53] suggest an extended ontology based on i*, using the notion of owner-
ship, delegation, permission, and trust. The theme of the work is on exploring vulnerabilities
in the interface between the information system and the organization. this work proposes
a language called SI*, which defines required constructs for designing secure socio-technical
systems, based on the concepts of the i* modeling notation.

Taxonomies of security concepts are a common method for sharing security knowledge.
Security taxonomies can be used for evaluating the comprehensiveness of the KB schemas.
Avizienis et al. [49] provide a detailed taxonomy of dependability and security concepts

3http://www.sans.org/top20/
4http://www.kb.cert.org/vuls/
5http://nvd.nist.gov/
6http://cve.mitre.org/
7http://www.first.org/cvss/

22



such as dependability and security attributes, taxonomy and classes of faults, fault modes,
classification of fault tolerance techniques, and verification approaches. In this taxonomy,
the main threats to dependability and security are defined as failures, errors, and faults.
Avizienis et al. [49] classify the main means to attain security and dependability attributes
into fault prevention, fault tolerance, fault removal, fault forecasting. The proposed con-
cepts taxonomy provides elementary fault classes which includes: 1) development faults or
operational ones, 2) internal vs. external faults, 3) natural or human-made faults, 4) hard-
ware or software faults, 5) malicious vs non-malicious faults, 6) deliberate or non-deliberate
faults, 7) accidental faults or incompetence faults, 8) permanent vs. transient faults.

The authors use the combination of the fault classes to analyze the nature of faults and
ways to deal with them. For example, deliberate, non-malicious, development faults result
generally from trade-offs, either 1) aimed at preserving acceptable performance, at facili-
tating system utilization, or 2) induced by economic considerations; Malicious human-made
faults exploit a vulnerability to cause harms; etc. The classification and such contribu-
tions are useful to locate the points that decisions are made during development for further
analysis of some users or events.

Firesmith [21] suggests a taxonomy for security requirements. The taxonomy introduces
a quality model, which defines what a quality is, how it is divided into sub-qualities, what are
qualities criteria, etc. Quality requirements are defined with respect to the quality model.
Safety and security are defined based on the quality model, and defensibility subfactors
are described based on the sub-quality model. Defensibility problem type are divided into
incidents, dangers, risks, and harms. The taxonomy categorizes harm as authorized and
unauthorized harm, and harm to people, to property, to environment harm, and to service.
Firesmith suggests a classification of safety and security incidents as well. A model for
defining safety hazards vs. security threats is also provided.

Finally, the taxonomy decomposes the security requirements into pure security require-
ments, security-significant requirements, security system requirements, and security con-
straints. Pure security requirements specify minimum thresholds of various subfactors of
security. Security-significant requirements are derived by using harm, incident, threat, and
risk analysis to categorize non-security requirements in terms of their relative security risks.
Security system requirements are the requirements associated with security subsystems.
Finally, security constraints are engineering decisions that they would ordinarily be made
during architecture development, design, implementation, integration, or testing.

5.3 Limitations of Existing Knowledge Sources

Generally, text-based knowledge content is amorphous and unstructured; therefore, brows-
ing, retrieving, manipulating, and expanding the knowledge source is cumbersome. In ad-
dition, knowledge is represented informally and in natural language, thus designers and an-
alysts need to interpret the content, which may lead to misinterpretation and inaccuracies.
The unit of knowledge in textual contents is not fixed, and can be a sentence, a paragraph,
a section or a chapter. This implies that the smallest chunk of reusable knowledge may
be a whole section or chapter. The text-based knowledge units are tightly coupled, which
makes it difficult to modularize the knowledge. These characteristics make the retrieval and
application of the knowledge inefficient and often ineffective, because the designer needs to
browse a large chunk of knowledge in order to extract the required information.

Textbooks and guidelines tend to be descriptive, abstract, and theory-oriented rather
than practical. Standards address a specific context and domain, thus cannot be applied in
a broad area. While checklists aim to remind the designer to follow certain recommenda-
tions and avoid pitfalls in technical details, and do not provide the designers with required
knowledge for analyzing security solutions and making trade-off decision. Design rationale
is internal documents of an organization, which are not well documented, and usually are
incomplete and hard to maintain.

Design patterns are more structured than other text-based knowledge sources such as
standards and textbooks. However, patterns still rely heavily on informal text-based pre-

23



sentation, because the structure of design reasoning is not systematically organized [26].
The goal-driven approach for expressing design patterns in [26] makes the reasoning struc-
ture behind design patterns explicit. However, no consideration is given to security-specific
concepts such as vulnerabilities, threats, and security safeguards in the structure of the
patterns. In addition, the resulting models may become large and complex, especially if one
integrates multiple design patterns into one goal model to analyze and compare alternative
design patterns for a problem and a procedure for browsing and extracting smaller units
from the models is not provided.

The proposed patterns for agents in [62] does not consider cataloguing security mech-
anisms and assets that are target of attacks. Besides, the type of reasoning and analysis
that the proposed structure of knowledge provides is not specified; therefore the proposed
schema remains at the level a catalogue of security principles, rules, vulnerabilities, and at-
tack pattern, without correlating the body of knowledge to trade-offs. Security and privacy
patterns in the SERENITY project [1] do not consider attacks and vulnerabilities. In ad-
dition, the approach used in SERENITY project does not provide structures for expressing
and analyzing trade-offs among alternative patterns.

The NFR security catalogues [14] do not consider modeling security-specific aspects such
as threats, attacks, vulnerabilities, and assets. The security methods in the security opera-
tionalizations catalogue are not related to threats or vulnerabilities; therefore, the catalogue
does not provide knowledge required for selecting security solutions for potential threats
and vulnerabilities. The proposed schema of the KB in [6] does not consider cataloguing
security mechanisms and assets, and does not provide the required structure to express the
trade-offs.

6 Conclusions and Potential Research Opportunities

Existing security requirements framework have different definitions and views to security
requirements. While traditionally, security is viewed as a protection mechanism, and several
methods deal with security requirements as constraints on functionality, new trends for
analyzing access control concern trust, ownership, and permission delegation issues; some
approaches view security as an issue that arises from interactions of social actors; and some
approaches consider security as an issue that always involves trade-offs. Several existing
security analysis methods focus on modeling and analysis of attacks and vulnerabilities, and
relating them to security requirements. The other group of security modeling frameworks
focus on capture and analyze security goals and security countermeasures.

It is agreed that security requirements pose trade-offs on other objectives. However,
currently, security trade-offs are made intuitively by practitioners. Current security re-
quirements frameworks do not provide explicit means for modeling and analyzing security
trade-offs at the requirements and architecture levels. It is useful to express security trade-
offs explicit in order to avoid implicit and intuitive decision makings. In addition, explicit
expression of trade-offs serves both as a record for decision rationale and a basis for trade-
off reasoning. However, few software engineering contributions focus on analyzing security
trade-offs and making rationale for trade-offs explicit.

The other challenge for security trade-off analysis is lack of an accessible and easy-to-
use body of knowledge that facilitates making security trade-offs explicitly. We overviewed
existing sources of security knowledge in general, and we discussed how each knowledge
source may help making security trade-offs.

Lack of trade-off analysis activities in security requirements frameworks and the current
knowledge challenges bring the need for a method for careful analysis of security trade-offs
with a knowledge support. The subjective nature of security trade-offs, implicit effects of
security mechanisms on privacy, usability, and functionality requirements, ethical issues in-
volved with quantifying security, safety, and privacy benefits and costs, and lack of agreement
on measurement methods and metrics for quality goals, make the security trade-offs analy-
sis challenging. Deciding on security requirements and selecting an appropriate architecture

24



that satisfies the requirements need careful analysis of trade-offs that each requirement
and architectural solution imposes. With respect to state of the art and practice, current
challenges, and the work done to date, potential research developments are foreseen:

• Improving the conceptual modeling notation for expressing security trade-offs explic-
itly, proposed in [17]. Criteria for such a notation need to be gathered and justified
as well.

• Developing a trade-off analysis method that facilitates the decision making process.
Both quantitative and qualitative methods and the possibility to combine qualitative
and quantitative measures can be explored.

• Designing a process model for intertwining the trade-off analysis to security require-
ments and architecture design activities.

• Empirical studies such ethnographies, interviews, and surveys to understand how
trade-offs are made in current practices, how software developers model and analyze
security requirements, and how security requirements affect the architecture design.

• Empirical experiments such as controlled experiments to evaluate usefulness, expres-
siveness, and understandability of the proposed goal-oriented security conceptual tech-
nique.

• Designing and populating a knowledge base for structuring security trade-offs knowl-
edge. To develop such a knowledge base, the required knowledge items for making
security trade-offs need to be examined.

• Experiments to understand the psychology of security trade-off analysis and decision
making in current software engineering state of the practice.

References
[1] Serenity project, a1.d3.1 - initial set of security and privacy patterns at organizational level. 2007.

[2] I. F. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In RE ’02: Proceedings
of the 10th Anniversary IEEE Joint International Conference on Requirements Engineering, pages 61–
70, Washington, DC, USA, 2002. IEEE Computer Society.

[3] R. Anderson. Security Engineering: a guide to Building dependable Distributed systems. John Wiley
and Sons, 2001.

[4] Y. Asnar and P. Giorgini. Modelling risk and identifying countermeasure in organizations. pages 55–66,
Samos, Greece, August 2006. LNCS 4347.

[5] Y. Asnar, R. Moretti, M. Sebastianis, and N. Zannone. Risk as Dependability Metrics for the Evaluation
of Business Solutions: A Model-driven Approach. In Proc. of DAWAM’08, pages 1240–1248. IEEE
Press, 2008.

[6] S. Barnum and G. McGraw. Knowledge for software security. IEEE Security and Privacy, 3(2):74–78,
2005.

[7] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Second Edition, Addison
Wesley, Boston, MA, USA, 2003.

[8] B. Blakley and C. Heath. Security design patterns. 2004.

[9] B. Blakley, E. McDermott, and D. Geer. Information security is information risk management. In
NSPW ’01: Proceedings of the 2001 workshop on New security paradigms, pages 97–104, New York,
NY, USA, 2001. ACM.

[10] F. Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen. Model-based security analysis in
seven steps — a guided tour to the coras method. BT Technology Journal, 25(1):101–117, 2007.

[11] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-Oriented
Software Development Methodology. JAAMAS, 8(3):203–236, 2004.

[12] P. Bresciani, P. Giorgini, and H. Mouratidis. On security requirements analysis for multi-agent sys-
tems. In Proc. of 2nd Int. Workshop on Software Engineering for Large-Scale Multi-Agent Systems
(SELMAS), pages 35–48, 2003.

25



[13] S. A. Butler. Security attribute evaluation method: a cost-benefit approach. In ICSE ’02: Proceedings
of the 24th International Conference on Software Engineering, pages 232–240, New York, NY, USA,
2002. ACM.

[14] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software Engi-
neering. Springer, October 1999.

[15] F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stolen, and J. O. Aagedal. The coras
methodology: model-based risk assessment using uml and up. pages 332–357, 2003.

[16] P. T. Devanbu and S. Stubblebine. Software engineering for security: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, pages 227–239, New York, NY,
USA, 2000. ACM.

[17] G. Elahi and E. Yu. A goal oriented approach for modeling and analyzing security trade-offs. In Proc.
of ER’07, LNCS 4801, pages 375–390. Springer, 2007.

[18] S. Evans, D. Heinbuch, E. Kyule, J. Piorkowski, and J. Wallner. Risk-based systems security engineer-
ing: Stopping attacks with intention. IEEE Security and Privacy, 2(6):59–62, 2004.

[19] S. Evans and J. Wallner. Risk-based security engineering through the eyes of the adversary. In Infor-
mation Assurance Workshop, IAW ’05., pages 158–165, 2005.

[20] D. Firesmith. Security use cases. Journal of Object Technology, 2(1):53–64, 2003.

[21] D. Firesmith. A taxonomy of security-related requirements. In Int. Workshop on High Assurance
Systems, RHAS’05. 2005.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[23] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security requirements through
ownership, permission and delegation. In In Proc. of RE’05, pages 167–176. IEEE Computer Society,
2005.

[24] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal reasoning techniques for goal
models. Journal of Data Semantics, 1:1–20, 2003.

[25] T. Grance, M. Stevens, and M. Myers. Guide to selecting information technology security products.
Recommendations of the National Institute of Standards and Technology, NIST Special Publication
800-36, 2003.

[26] D. Gross and E. Yu. From non-functional requirements to design through patterns. Requirements
Engineering Journal, 6:18–36, 2001.

[27] S. Gupta and J. Winstead. Using attack graphs to design systems. IEEE Security and Privacy,
5(4):80–83, 2007.

[28] B. Haley, C. Laney, D. Moffett, and B. Nuseibeh. Using trust assumptions with security requirements.
Requir. Eng., 11(2):138–151, 2006.

[29] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering: A framework for
representation and analysis. TSE, 34(1):133–153, 2008.

[30] C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh. The effect of trust assumptions on the elab-
oration of security requirements. In RE ’04: Proceedings of the Requirements Engineering Conference,
12th IEEE International, pages 102–111, Washington, DC, USA, 2004. IEEE Computer Society.

[31] C. B. Haley, R. C. Laney, and B. Nuseibeh. Deriving security requirements from crosscutting threat
descriptions. In Proc of AOSD’04, pages 112–121. ACM, 2004.

[32] G. Helmer, J. Wong, . M. Slagell, . V. Honavar, . L. M. , Y. Wang, and R. L. . Software fault tree
and colored petri net based specification, design and implementation of agent-based intrusion detection
systems. IEEE Transactions of Software Engineering, 7:2002, 2002.

[33] G. Helmer, J. Wong, M. Slagell, V. Honavar, and L. Miller. A software fault tree approach to require-
ments analysis of an intrusion detection system. In Requirements Engineering Journal, pages 207–220,
2001.

[34] S. H. Houmb, F. D. Braber, M. S. Lund, K. Stlen, and S. T. Informatics. Towards a uml profile for
model-based risk assessment. In In UML2002, Satellite Workshop on Critical Systems Development
with UML, pages 79–91, 2002.

[35] S. H. Houmb and G. Georg. The aspect-oriented risk-driven development (aordd) framework. In In
Proceedings of the International Conference on Software Development (SWDC-REX), pages 81–91,
2005.

[36] S. H. Houmb, J. Jrjens, G. Georg, and R. France. An integrated security verification and security
solution trade-off analysis. In Integrating Security and Software Engineering: Advances and Future
Vision. Mouratidis, H. and Giorgini, P. (eds). Idea Group Inc., 2006.

[37] ISO/IEC. Risk management-vocabulary-guidelines for use in standards. ISO/IEC Guide 73, 2002.

26



[38] ISO/IEC. Management of Information and Communication Technology Security – Part 1: Concepts
and Models for Information and Communication Technology Security Management. ISO/IEC 13335,
2004.

[39] M. Jackson. Problem frames: analyzing and structuring software development problems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[40] A. Jarczyk, P. Loffler, and F. Shipmann. Design rationale for software engineering: a survey. In
Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, pages 577–586,
1992.

[41] P. Johnson, R. Lagerstrom, P. Norman, and M. Simonsson. Extended influence diagrams for enterprise
architecture analysis. In: Enterprise Distributed Object Computing Conference, EDOC ’06. 10th IEEE
Int, pages 3–12, 2006.

[42] B. N. Jonathan D. Moffett, Charles B. Haley. Core security requirements artefacts, the open university,
department of computing. Technical Report 2004/23, 2004.

[43] J. Jürjens. Umlsec: Extending uml for secure systems development. In Proc of UML’02, pages 412–425.
Springer, 2002.

[44] J. Jürjens. Using umlsec and goal trees for secure systems development. In SAC ’02: Proceedings of
the 2002 ACM symposium on Applied computing, pages 1026–1030, New York, NY, USA, 2002. ACM.

[45] D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. Econometrica,
47(2):263–292, 1979.

[46] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. The architecture tradeoff
analysis method. iceccs, 00:0068, 1998.

[47] M. J. Kenning. Security management standard — iso 17799/bs 7799. BT Technology Journal,
19(3):132–136, 2001.

[48] J. Krogstie, A. L. Opdahl, and S. Brinkkemper. Capturing dependability threats in conceptual mod-
elling. Conceptual Modelling in Information Systems Engineering, pages 247–260, 2007.

[49] J.-C. Laprie and B. Randell. Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput., 1(1):11–33, 2004. Fellow-Algirdas Avizienis and Senior Member-
Carl Landwehr.

[50] L. Liu, E. Yu, and J. Mylopoulos. Analyzing security requirements as relationships among strategic
actors. In Proc. of SREIS’02, October 2002.

[51] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social setting.
In Proc. of RE’03, page 151. IEEE Computer Society, 2003.

[52] T. Lodderstedt, D. A. Basin, and J. Doser. Secureuml: A uml-based modeling language for model-
driven security. In UML ’02: Proceedings of the 5th International Conference on The Unified Modeling
Language, pages 426–441, London, UK, 2002. Springer-Verlag.

[53] F. Massacci, J. Mylopoulos, and N. Zannone. An Ontology for Secure Socio-Technical Systems. In
Handbook of Ontologies for Business Interaction. 2007. To appear.

[54] R. Matulevicius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, and N. Genon. Adapting secure
tropos for security risk management in the early phases of information systems development. In CAiSE,
pages 541–555, 2008.

[55] J. McDermott and C. Fox. Using abuse case models for security requirements analysis. In Proc of
ACSAC’99, page 55. IEEE Computer Society, 1999.

[56] J. P. McDermott. Attack net penetration testing. In Proc. of NSPW’00, pages 15–21. ACM, 2000.

[57] N. R. Mead and G. McGraw. A portal for software security. IEEE Security and Privacy, 3(4):75–79,
2005.

[58] N. Meyer, A. Rifaut, and E. Dubois. Towards a Risk-Based Security Requirements Engineering Frame-
work. REFSQ-Proc. Of Internat. Workshop on Requirements Engineering for Software Quality, 2005.

[59] H. Mouratidis, P. Giorgini, and G. Manson. Modelling secure multiagent systems. In AAMAS ’03:
Proceedings of the second international joint conference on Autonomous agents and multiagent systems,
pages 859–866, New York, NY, USA, 2003. ACM.

[60] H. Mouratidis, P. Giorgini, and G. Manson. An ontology for modelling security: The tropos approach.
In KES, pages 1387–1394, 2003.

[61] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp. A natural extension of tropos methodology for
modelling security. In Proceedings of the Workshop on Agent-oriented methodologies, at OOPSLA,
2002.

[62] H. Mouratidis, P. Giorgini, and M. Schumacher. Security patterns for agent systems. In Proceedings
of the Eight European Conference on Pattern Languages of Programs (EuroPLoP), Irsee, 2003.

[63] B. Nuseibeh. Weaving together requirements and architectures. Computer, 34(3):115–117, 2001.

27



[64] C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall Professional Technical Reference,
2002.

[65] C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability analysis. In Proc. of
NSPW’98, pages 71–79. ACM, 1998.

[66] K. Pohl and E. Sikora. The co-development of system requirements and functional architecture. pages
229–246. 2007.

[67] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirements interaction management. ACM
Comput. Surv., 35(2):132–190, 2003.

[68] L. Rstad. An extended misuse case notation: Including vulnerabilities and the insider threat. In
The Twelfth Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’06), 2006.

[69] R. Sandhu. Good-enough security: Toward a pragmatic business-driven discipline. IEEE Internet
Computing, 7(1):66–68, 2003.

[70] B. Schneier. Attack trees. Dr. Dobb’s Journal, 24(12):21–29, 1999.

[71] B. Schneier. Beyond Fear. Springer, 2003.

[72] B. Schneier. The psychology of security. Commun. ACM, 50(5):128, 2007.

[73] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and analysis of
attack graphs. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security and Privacy, page
273, Washington, DC, USA, 2002. IEEE Computer Society.

[74] G. Sindre and A. L. Opdahl. Templates for misuse case description. In Proceedings of the 7 th In-
ternational Workshop on Requirements Engineering, Foundation for Software Quality (REFSQ’2001,
pages 4–5, 2001.

[75] G. Sindre and L. Opdahl. Eliciting security requirements with misuse cases. Requir. Eng., 10(1):34–44,
2005.

[76] M. Tracy, W. Jansen, K. Scarfone, and J. Butterfield. Guidelines on electronic mail security. Recom-
mendations of the National Institute of Standards and Technology, NIST Special Publication 800-45,
2007.

[77] A. van Lamsweerde. Elaborating security requirements by construction of intentional anti-models. In
Proc. of ICSE’04, pages 148–157. IEEE Computer Society, 2004.

[78] A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented requirements engineering. IEEE
Trans. Softw. Eng., 26(10):978–1005, 2000.

[79] W. E. Vesely, F. F. Goldberg, N. Roberts, and D. F. Haasl. Fault tree handbook. Technical Report
NUREG-0492, U.S. Nuclear Regulatory Commission, January 1981.

[80] J. Viega, T. Kohno, and B. Potter. Trust (and mistrust) in secure applications. Commun. ACM,
44(2):31–36, 2001.

[81] E. Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis, Department of Com-
puter Science, University of Toronto, Canada, 1995.

[82] N. Zannone. The si* modeling framework: Metamodel and applications. To appear in International
Journal of Software Engineering and Knowledge Engineering, 2008.

28


