Computer Science 324 24 October, 2008
St. George Campus University of Toronto

Homework Assignment #2
Due: Thursday, 13 November, 2008, by 6pm

No submissions will be accepted after 6pm Thursday, 13 November

Silent Policy: A silent policy will take effect 24 hours before this assignment is due. This means that
no question about this assignment will be answered, whether it is asked on the newsgroup, by email, or in
person.
Handing in this Assignment

What to hand in on paper: Please use an unsealed envelope, attaching the cover page provided here
to the front. Note that without a properly completed and signed cover page, your assignment will not be
marked. Put inside:

1. A printout of your code. Write your student number on the first page of this printout.

2. For each procedure that you write, you must describe the testing strategy that you used. This
should include a table listing the test cases that you designed for your procedure, what output your
procedure returned, and an explanation of why the test case and output are significant in verifying
the correctness of the procedure. Read the following for a discussion of good testing practices:

http://www.cs.toronto.edu/~gpenn/csc324/software.testing.pdf

You must hand in this part of the assignment in your tutorial on the due date.

What to hand in electronically: In addition to your paper submission, you must submit your code
electronically. Use this command: submit -c¢ c¢sc324h -a A2 a2.sml, from the directory where a2.sml
lives. Type man submit for more information. You can also use the CDF secure website:
https://www.cdf.utoronto.ca/students.

Warning: marks will be deducted for incorrect submission. Note that if the code submitted electroni-
cally differs from the code submitted on paper, we will only mark the electronically submitted version (if,
in such a case, you put comments, etc. only on paper, we will mark the question as if no comments, etc.
were provided).

Since we will test your code electronically, you must:

o make certain that your code runs on CDF,

e use the exact function names and argument(s) (including the order of arguments) specified,
e use the exact file name specified (a2.sml),

e not load any other files from your submitted file, and

e not display anything but the function output (no text messages to the user, fancy formatting, etc.
— just what is in the assignment handout).

Other Information You must read the requirements for code and marking information on the following
web page: http://wuw.cs.toronto.edu/~jward/a2guidelines.html This document constitutes part of
the official requirements for this assignment.

Bulletin Board: Important corrections (hopefully few or none) and clarifications to the assignment will
be posted on the bulletin board, linked from the course home page.

Computer Science 324 24 October, 2008
St. George Campus University of Toronto

Homework Assignment #2
Cover Sheet

Last Name:
First Name:
CDF login:
Email:

I have read, understood, and agree to the policies described in the Course Information handout, in-
cluding the policy on collaboration.

Signature:

Question 1. (16 marks) Consider the following variant datatype:
type succ = z | s of succ;;

This simple type is actually enough to encode all of the natural numbers: z represents 0, s(z) represents
1, s(s(z)) represents 2, etc.
Implement the four basic arithmetic operations on this data-type:

add: succ * succ —-> succ

subtract: succ * succ -> succ
multiply: succ * succ -> succ
divide: succ * succ -> succ * succ

divide returns a pair consisting of the integer quotient (left) and modulus (right) of the division of its left
input argument by its right input argument. You’ll need to define two exceptions: Underflow, to raise
when the second argument to subtract is greater than the first, and DivbyZero, to raise when the second
argument to divide is z.

Hint: implement divide by protecting its recursive call with an Underflow exception handler.

Question 2. (30 marks) Consider the following datatype for floating-point polynomials:

type polynomial = poly of int * float list;;
exception DegreelessthanZero of polynomial;;
exception WrongNumFactors of polynomial;;
exception ZerolLeadingTerm of polynomial;;

The integer represents the degree of the polynomial, and the list of floating point numbers represents the
coefficients of each term in order, from the polynomial’s degree down to 0. Not every pair of integer and
float list corresponds uniquely to a polynomial. The three exceptions defined here itemize the three reasons
that it may not be: the degree is less than zero, there are too many or too few floats in the list, and/or
the leading term of the polynomial is zero when the degree is not zero — if we allowed this, polynomials
would not have unique representations.

(a) (3 marks) Define a function length : ’a list -> int that returns the length of its list argument.
Your implementation should be tail-recursive and run in linear time.

(b) (3 marks) Define a function reverse: ’a list -> ’a list that returns the reverse of its list argu-
ment. Your function should be tail-recursive and run in linear time.

(c) (3 marks) Define a function wf_poly: polynomial -> int * float list that confirms that its poly-
nomial argument is well-formed. If the polynomial is well-formed, it should return the two components of
the structure. If not, it should raise one of the above three exceptions, as appropriate.

(d) (4 marks) Define a function deriv: polynomial -> polynomial that returns the first derivative of
its argument. Don’t forget to call wf_poly.

(e) (4 marks) Define a function defintegral: polynomial -> polynomial that returns the polynomial
g(x) that represents the integral of its argument from 0 to x. Again, be sure to call wf_poly. Run some
tests to ensure that deriv(defintegral(p))=p and that defintegral(deriv(p)) differs from p by at
most a constant term.

(f) (6 marks) Define a function reify: polynomial -> float -> float that returns a CaML function
that calculates the value of the input polynomial argument on its own floating-point argument. Call
wf_poly.

(g) (7 marks) Define a function add_poly: polynomial * polynomial -> polynomial that returns the
polynomial representing the sum of its two polynomial arguments. Hint: use reverse from (b). As usual,
call wf_poly on both arguments.

Question 3. (44 marks) In this question, you will write code to 2-colour an undirected graph, by
converting it to a functional representation in which nodes pass messages to each other to enforce the
typical constraint that no two adjacent nodes may have the same colour. Let us begin with some datatypes:

type colour = black | white | unknown;;

type reply = ¢ of colour | ok of unit;;

type message = status | link of (message -> reply) | paint of colour;;
type edge = e of int * int;;

type adjGraph == edge list;;

type lambdaGraph == (message -> reply) list;;

You will ultimately take an adjacency representation of a graph as input, convert it to the lambda repre-
sentation, which is the one in which nodes are represented by functions that pass messages to each other,
and then colour that graph. In the adjacency representation, nodes are represented by positive integers.
If someone gives us a graph that uses other integers, we must correct them:

exception NonPosInt of int;;
exception NotTwoColourable;;

Not all graphs are 2-colourable. Odd cycles such as this one are never 2-colourable:
let oddcycle = [e(1,2);e(2,3);e(3,1)];;
Acyclic graphs, like this tree, are always 2-colourable:
let tree = [e(1,5);e(2,5);e(3,6);e(4,6);e(5,7);e(6,7)];;

If the input graph is not 2-colourable, you must raise the exception, NotTwoColourable.

In the functional representation, there are three kinds of messages that you can pass to your nodes.
The first (status) asks, “what is your colour?” Notice that there is a value in the datatype colour for
unknown, meaning that a colour has not been assigned yet. The second kind of message (1ink) tells the
node to link itself to another node. Whenever a node is assigned a colour, it will broadcast a message
to the nodes that it is linked to, assigning them the opposite colour. We will be linking adjacent nodes
to each other, thus enforcing the 2-colouring constraint. The third message (paint) tells the node what
colour it has been assigned.

Every node must reply to every message it receives. The reply to a status message should be the colour
it is assigned (or unknown). The reply to a 1ink message should be ok — this has a unit argument to make
your code more readable, since you can return ok(command), where command is a side-effect-producing
command that evaluates to the unit object. The reply to a paint message should also be ok.

The functional representations of nodes must remember their known neighbours and their colour value
in between function calls. This means that they will have local reference variables like the object-oriented
stack implementation that we covered in lecture. Now you have variant datatypes, however, so your
implementation will not be so poor.

You will probably need these:

let unit_of_ok = function ok(()) -> (;;
let opposite = function white -> black

| black -> white

| unknown -> unknown;;
let compose(f) (g) = (function x -> f(g(x)));;

Composing unit_of_ok with a message-pass to a node converts the ok to a unit object, which makes it
easier to throw away without CaML complaining.
(a) (4 marks) Write a function nth: int -> ’a list -> ’a such that nth(n) (1ist) returns the n'*
element of 1ist, numbered left-to-right beginning with 1. If the integer is out of range, you must raise an
exception. Define your own exception(s) for this purpose. Your code should be tail-recursive and run in
linear time.
(b) (4 marks) Write a function max_list: ’a list -> ’a that returns the maximum element in a list
(of integers — although the built-in max does not restrict itself to integers). You will need this to find the
largest integer in the adjacency representation of your input graph, which will tell you how many nodes
the graph has. Your code should be tail-recursive and run in linear time.
(c) (25 marks) Write a function init_lambdaG: int -> (message -> reply) list, which initializes the
functional representation of a graph with the number of nodes given by its argument, n. This will be a list
of length n, each member of which is a different function that does not know its colour and has no known
neighbours. Be sure that you initialize every position to a different such function — if you use a local
variable, for example, it will be very easy to bind every position in the list to the same function, which
would imply that all nodes must have the same colour.
(d) (6 marks) Define a function 1ink_edges: (adjGraph * lambdaGraph) -> unit which links all of the
nodes in the lambdaGraph according to the edges specified in the adjGraph. Remember that you are
dealing with undirected graphs here, so link in both directions.
(e) (5 marks) Define a function lambdaG_of_adjG: adjGraph -> lambdaGraph which converts an adja-
cency representation of a graph to the functional representation. This should find the number of nodes
with max_1ist, call init_lambdaG to initialize the functional representation, and then add then link the
nodes using link_edges.
(f) (10 marks) Finally, write the function two_colour: adjGraph -> colour list, which colours its
input graph by calling 1ambdaG_of _adjG, and then assigning colours to the nodes of the resulting functional
representation. How many nodes must you explicitly assign colours to here? Remember that the input
graphs may not be connected, i.e., some nodes may not be accessible from others along paths of edges.
This function will return a list of colours. The n'? position in the list indicates the colour assigned to
node number n in the original adjacency representation. It does not matter which colours you assign to
which nodes, as long as you assign every node either black or white, and no two adjacent nodes the same
colour. Here is a sample transcript:

#let oddcycle = [e(1,2);e(2,3);e(3,1)];;
oddcycle : edge list = [e (1, 2); e (2, 3); e (3, 1)]
#let tree = [e(1,5);e(2,5);e(3,6);e(4,6);e(5,7);e(6,7)];;
tree : edge list =
[e (1, 5); e (2, B); e (3, 6); e (4, 6); e (5, 7); e (6, 7)]
#two_colour oddcycle;;
Uncaught exception: NotTwoColourable
#two_colour tree;;
- : colour list = [white; white; white; white; black; black; whitel

