Computer Science 324 10 November, 2008
St. George Campus University of Toronto

Homework Assignment #3
Due: Friday, 5 December, 2008, by 5pm

No submissions will be accepted after 5pm Friday, 5 December

Silent Policy: A silent policy will take effect 24 hours before this assignment is due. This means that
no question about this assignment will be answered, whether it is asked on the newsgroup, by email, or in
person.
Handing in this Assignment

What to hand in on paper: Please use an unsealed envelope, attaching the cover page provided here
to the front. Note that without a properly completed and signed cover page, your assignment will not be
marked. Put inside:

1. A printout of your code. Write your student number on the first page of this printout.
2. Your answer to question 4.

3. For each procedure that you write, you must describe the testing strategy that you used. This
should include a table listing the test cases that you designed for your procedure, what output your
procedure returned, and an explanation of why the test case and output are significant in verifying
the correctness of the procedure. Read the following for a discussion of good testing practices:

http://www.cs.toronto.edu/~gpenn/csc324/software.testing.pdf

You must hand in this part of the assignment on the due date at the location designated by your TA.

What to hand in electronically: In addition to your paper submission, you must submit your code
electronically. Use this command: submit -c csc324h -a A3 a3.pl, from the directory where a3.pl
lives. Type man submit for more information. You can also use the CDF secure website:
https://www.cdf.utoronto.ca/students.

Warning: marks will be deducted for incorrect submission. Note that if the code submitted electroni-
cally differs from the code submitted on paper, we will only mark the electronically submitted version (if,
in such a case, you put comments, etc. only on paper, we will mark the question as if no comments, etc.
were provided).

Since we will test your code electronically, you must:

e make certain that your code runs on CDF,

e use the exact function names and argument(s) (including the order of arguments) specified,
e use the exact file name specified (a3.pl),

e not load any other files from your submitted file, and

e not display anything but the function output (no text messages to the user, fancy formatting, etc.
— just what is in the assignment handout).

Other Information You must read the requirements for code and marking information on the follow-
ing web page: http://www.cs.toronto.edu/~zkincaid/a3guidelines.html This document constitutes
part of the official requirements for this assignment.

Bulletin Board: Important corrections (hopefully few or none) and clarifications to the assignment will
be posted on the bulletin board, linked from the course home page.




Computer Science 324 10 November, 2008
St. George Campus University of Toronto

Homework Assignment #3
Cover Sheet

Last Name:
First Name:
CDF login:
Email:

I have read, understood, and agree to the policies described in the Course Information handout, in-
cluding the policy on collaboration.

Signature:



Question 1. (10 marks) Define a predicate, freq/1, which takes as its argument a (double-quoted)
input string, and uses assert and retract to count the number of times each character occurs in the
string. You will need the built-in char_code/2 to convert between characters and their ASCII codes. The
dynamic predicate you assert should be of the form, count (Char,Count), where Char is the character (not
its ASCII code), and Count is a natural number. You cannot make any assumptions about the state of
the count/2 clauses before your predicate is called, so be sure to initialize the Prolog database by calling
retractall(count(_,_)) at the beginning of your code.

Question 2. (30 marks) A reference chain in Prolog is implemented as a recursively nested term data

structure that pairs a structure with a variable, e.g., Reference-Structure. It is dereferenced by chasing

the recursive embedding until an uninstantiated variable is witnessed as a reference. This indicates that

the structure paired with the uninstantiated variable is the most current version of that structure. For

example, the chain:

(X-f(a,b))-g(a,Y)

represents a structure that has been updated from g(a,Y) to the new, and current structure of f (a,b). The

update was achieved by instantiating the reference variable associated with g(a,Y) to the pair, X-f(a,b).
Pure Prolog has no way to destructively modify instantiated terms, so reference chains are often used

when destructive updates are necessary.

(a) (5 marks) Define a predicate, deref/3, which takes as input to its first argument a reference chain, and

returns as its second and third arguments the uninstantiated variable that is the chain’s current reference,

and the structure that is its current structure, respectively.

(b) (15 marks) Implement the union-find data structure using reference chains. Union-find keeps track

of a mapping of discrete elements (in our case, ground Prolog terms) to disjoint sets, and supports three

operations on this mapping;:

1. make/2: given an element (first argument), this returns a mapping (second argument) that maps the
element to a singleton set consisting only of that element (the mapping’s domain should be the input
element only);

2. combine/3: given two mappings (first two arguments), M; and My, with disjoint domains, D; and
Dy, this returns a single mapping, M, in its third argument with the domain D; U Dy such that
M(z) = Mi(z) if x € Dy and M(z) = Ms(x) if x € D2. You may assume that the domains of M;
and My are disjoint.

3. find/3: given an element (first argument) and a mapping (second argument), this returns the set
(third argument) to which the mapping maps the element;

4. union/2: given two sets (first and second arguments) from some mapping, U; and Us, the mapping
is updated so that any element that belonged to U; or Uy before now belongs to Uy U Us.

Note that your implementation of union cannot return a new mapping as a third argument. It must update
the mapping that it is passed as input so that, upon successful termination of union/2, the input mapping
itself reflects the update.

Your representation of sets should be a reference chain. Do not use assert or retract.

(c) (10 marks) Now implement the union-find data structure without reference chains (and without
assert and retract). Hint: term unification at the Prolog source-code level is implemented using
reference chains and union-find at the abstract machine level. Call your predicates makec/2, combinec/3,
findc/3 and unionc/2 so that they do not clobber your solutions for (b).

Question 3. (40 marks) In this question, you’ll use Prolog’s built-in backtracking search, combined with
a strategy called iterative deepening to search for a digital circuit that simulates a given Boolean function.



You should assume that the Boolean function you are supposed to build a circuit for has been consulted
into Prolog’s memory in the form of a clause:
bool (Name,Arity,Outputs).
where Name is the name of the function, Arity is the number of inputs that it has, and Outputs is a list
of 2471 outputs, one for each possible setting of the inputs, in the order 00---0, 00---1, ..., 11---1. For
example, a binary exclusive or would be registered with the clause:
bool(xor,2,[0,1,1,0]).

(a) (20 marks) Write a predicate, generate/2, which takes a natural number N as input in its first
argument, and successively produces as output in its second argument the term representation of a digital
circuit on N inputs, consisting of AND, OR and NOT gates. Do not use any other kind of gate. If a call
to generate/2 backtracks, generate/2 should producing another digital circuit on N inputs. generate/2
should therefore never fail, since there are infinitely many possible combinations of N inputs when no bound
on the number of gates is provided.

The term representation of a digital circuit uses the terms and/2, or/2 and not/1 to represent the gates
of a circuit. If the input to a gate is one of the inputs to the circuit, then there should be an uninstantiated
variable in that argument position, which uniquely identifies the input, i.e., all inputs lines that share the
same circuit input use the same variable. If the input to a gate is the output of another gate, then the
term representing that other gate appears in the corresponding argument position. One implementation
of XOR, for example, is:
and (not (and(X,Y)) ,not (and (not (X) ,not(Y))))

A simpler example would be the obvious implementation of NAND:
not (and(X,Y))

We want smaller circuits wherever possible, so you should use iterative deepening to control Prolog’s
depth-first search. In each cycle of iterative deepening, it performs normal depth-first search until a given
depth bound is reached. Iterative deepening begins at the bound of 0 (an input line only), performs search
to this bound (which at 0 involves only iterating through every input line), then increments its counter
to 1, performs search to this bound, successively succeeding with every digital circuit of depth 1, and so
on. Since the number of gates roughly corresponds to the depth of the term representation, this will yield
smaller circuits before larger ones. Be sure not to return a depth-n solution when the depth bound is set
to depth n + 1 or higher.

You will need =.. to build your terms. This converts a list of length n into an n — l-ary term:

?- Term =.. [and,X,Y].
Term = and(X,Y)?

(b) (18 marks) Write a predicate, test/3, which takes as input a Boolean function name (first argu-
ment), and an arity (second argument), and the term representation of a digital circuit (third argument).
test/3 succeeds if and only if the digital circuit produces the Boolean function. To determine this, you
will have to test the circuit on every possible setting of its input lines. You will find term variables/2
very helpful — it returns a list of all of the variables in a term. You may assume that the ordering of
inputs assumed by bool/3 is the same as the ordering of variables returned by term variables/2.

(c) (2 marks) Finally, write a predicate, circuit/3, which takes as input a Boolean function name
(first argument), and an arity (second argument), and produces as output the term representation of an
equivalent digital circuit (third argument). Use generate/2 and test/3. Generate-and-test approaches
are often the simplest to implement, but they are often very slow. You will probably notice this as you
run your code on functions with larger arities.

Question 4. (20 marks) (No programming is required for this one - hand your solution in on paper).
Given a non-empty set, S, of size n > 0, find a method for representing every non-empty subset of S using
n + l-ary terms, such that, if U and V are the term representations of the subsets U and V, respectively,
then:



e the unification, U U V, exists if and only if U NV # ¢; and
e the unification, U LI V, when it exists, is the representation of U N V.

Hint: use shared variables.



