Growing a Decision Tree

Given:

- set of (binary) features, \mathcal{F}
- set of target classes
- training set, \mathcal{T} , with class assignments

Return $\mathtt{Train}(\mathcal{F}, \mathcal{T})$

Function Train(S, T): returns tree

- 1. Calculate probability p over T, entropy, H(p)
- 2. For all features F_i in S:
 - (a) partition T into $T_{Y,i}$ and $T_{N,i}$,
 - (b) calculate probabilities, $p_{Y,i}$ and $p_{N,i}$ and their entropies
 - (c) calculate information gain, G_i :

$$G_i = H(p) - (\frac{|T_{Y,i}|}{|T|} H(p_{Y,i}) + \frac{|T_{N,i}|}{|T|} H(p_{N,i}))$$

- 3. Choose feature F that maximizes G
- 4. Return tree that splits on F, with subtrees, $\operatorname{Train}(S \setminus F, T_Y)$ and $\operatorname{Train}(S \setminus F, T_N)$.

Growing a Decision Tree

Advantages:

- works better than cosine method,
- easy to comprehend resulting classifier (but be careful how you interpret them!).

Disadvantages:

- training phase,
- greedy algorithm,
- overkill for linearly separable problems.

C4.5:

- can handle some non-binary features,
- prunes (with threshold),
- supports cross-validation.