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Language Modelling (Shannon, 1951; Jelinek, 1976)

W =argmax P(w, | w, ... w, )

Wn
Examples:
* SkipGram (word2vec)
* BERT

* GPT



Language Modelling (Shannon, 1951; Jelinek, 1976)

W =argmax P(w, | w, ... w, )
Wn

Example sentences:
Athens is the capital
Athens is the capital of

What do you need to know to predict the first?
What do you need to know to predict the second?



“BERT Rediscovers the Classical NLP Pipeline”

Tenney et al. (2019)
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BERT recapitulates the “NLP pipeline?”

“Surface information at the bottom,
syntactic information in the middle,
semantic information at the top.”

Semantic

Jawahar et al. (2019)

“It appears that basic syntactic Syntactic

iInformation appears earlier in the
network, while high-level semantic
information appears at higher layers.”

Tenney etal. (2019) ¢ face



Kendall’s t

SentLen

Layer TreeDepth  TopConst BShift Tense SubjNum ObjNum SOMO CoordIny
(Surface) (Syntactic)  (Syntactic)  (Syntactic)  (Semantic)  (Semantic) W (Semantic)  (Semantic)  (Semantic)
1 93.9 (2.0) 24.9(24.8) § 359(6.1) 63.6(9.0) 50.3(0.3) 822(18.4 77.6(10.2) W 76.7(26.3)  49.9(-0.1) 53.9(3.9)
2 65.0(64.8) ll 40.6(11.3) (16.1)  55.8(5.8) .5)  82.5(15.3) WBO6(17.1) 8 (4.4) S58.5(8.5)
3 39.7(10.4) (185)  64.9(149) 82.0(14.6) W 80.3(16.6) 8(5.9) 59.3(9.3)
4 39.4(10.8) (183)  74.4(24.5) BL4(19.1)  59.0(8.5) SB.1(8.1)
5 92.0(0.5) Eavss (30.8)  BL4(314)  895(267) B1.2(18.6)  60.2(103)  64.1(14.1)
6 88.4 (-3.0) 63.5(63.4) m 82.9(32.9) 89.8 (27.6) - 60.7(10.2)  7L1(21.2) —
l 7 83.7(-1.7) 56.9(56.7) Byera 83.0(329)  89.9(27.5) 61.6(11.7)
8 82.9 (-8.1) 51.1¢51.0) [l 39.2(10.3) = ra s 62.1(12.2) —
9 BOI(-11.1)  47.9(47.8) ll 38.5(10.8)  83.1(39.8) m m K B1.8(20.5)  63.4(13 ™
10 77.0(-140)  43.4(432) fl 38.1(9.9)  81.7(39.8) Zasin BarE 87.1(22.6) M 80.5(19.9) 3(
B 73.9(-17.0) 42.8(42.7) 36.3 (7.9) 80.3(39.1) 86.8 (36.8) 89.9 (27.8) 85.7(21.9) 78.9 (18.6) 77.6(27.9)
12 69.5(-21.4)  49.1(49.0) f 347(69)  76.5(372) 86.4(364) 895(27.7) 84.0(20.2) @787 (18.4) w 749 (254)

Table 2: Probing task perf@§rmance for each BERT layer. The value within lhelpzlrcmheses corresponds to the
difference in performance off trained vs. untrained BERT.

Layer SentLen wc TreeDepth  TopConst BShift Tense SubjNum ObjNum SOMO CoordIny
(Surface) (Surface) (Syntactic)  (Syntactic)  (Syntactic)  (Semantic)  (Semantic) W (Semantic)  (Semantic)  (Semantic)
1 3.9 (2.0) 359(6.1) 63.6(9.0) 50.3(0.3) 822(184) 77.6(10.2) W76.7(26.3)  49.9(-0.1) 53.9(3.9)
2 40.6(11.3)  TL3(161)  558(5.8) 82.5(15.3) WBO6(17.1)  53.8(44) S58.5(8.5)
3 39.7(104)  TL5(185)  64.9(14.9) . 82.0(14.6) W 80.3(16.6) 8(5.9) 59.3(9.3)
4 39.4(10.8)  71.3(183) 744(24.5) 87.6(252) 81.9(15.0) @814(19.1) 590(8.5) SB.1(8.1)
5 B1.3(308) BL4(314)  895(26.7) g B1.2(18.6)  60.2(103)  64.1(14.1)
6 m w 829(329) 89.8(27.6) - 60.7(102)  71.121.2) —
7 Byera 9)  89.9(27.5) 61.6(11.7)  T4.8(24.9)
8 39.2(10.3) acic ra s 62.1(12.2) —
9 38.5(10.8)  83.1(39.8) m m 81.8 (20.5) ™
38.1(9.9)  BL7(39.8) Zasin BarE 87.1(22.6) M 80.5(19.9)
36.3 (7.9) 80.3(39.1) 86.8 (36.8) 89.9 (27.8) 85.7(21.9) 78.9 (18.6) 77.6(27.9)
34.7(69)  76.5(372) 864(364) 895(27.7) 84.0(20.2) W 78.7(18.4) 749 (254)

Table 2: Probing task perf@rmance for each BERT layer. The value within th

arentheses corresponds to the
difference in performance off trained vs. untrained BERT.

Surface Semantic

Syntactic



Kendall's t (non-parametric)

Determines the strength of association between two
random variables based upon the number of pairs of
paired samples that are “concordant”:

A 1 1

B 2 2
Layer > % j ;1

E 3 5 Ordinal ranks

F 6 5

G 7 «— 8

H 3 7

| g 10

J 10 g

K 11 12

L 12 11



Jawahar et al. (2019) Probing Result
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Limitation of Tenney et al.’s (2019) Architecture

SOLUTION

Self-attention Pooling

e Tenney et al. used the same set of (Lee et al., 2017):

scalar attention weights for every

inpt_Jt sentence: cannot capture o = ,wa[ FENN,, () ]
variance of attention patterns o)
across sentences. ;1 = ‘

e The probe examines one (or two) | END(:)
span representations: cannot observe Z exp(a)
task knowledge across token k=START(2)
positions. END (%)

Li = E it It

t=START(%)



e Token Position
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e Token Position

. . _ e Layer
GridLoc Probe Token position attention: e Randomness &
Training

Aken(0) — goftmax (Wyogen - RNN(H))

X = X N X N x - o . x
AL r'Az‘L’j f"‘\am f"_A(‘” Token Position Attention Al —5ao
= — . —_

Layer L \ MO | | O | | D | - | A

BERT Embedding

- M) fx-'Aztz)_ }»,_As(z?' rx»‘At(z)“ Token Position Anem a2 _L@——QD— A

M@ | | 2D | | AgD |~ | HD

Layer 2

) A X Ag®) *> A Token Position Attention n(1 __."‘
b f» 2 r» o lf. . H( ) @
i ™ — : S———— Layer
Layer 1 ‘ Hq L) ’ 1 Ho L) \ \ HaL) ’ H L) el
‘9 BERT Encoder Probing Task Output
e 1 o
Input (22, ' a — o
Sequence [cLs] ‘ ‘ I ‘ L eat ‘ == N [SEP] 7 <AB> <A1> <A2> ...

12



_ e Token Position
Layer attention: e Layer

2 Randomness &
Ala}’cr — SDf[max(wla}fcr ] H[fj) o

GridLoc Probe

Training
ﬁ
R0 rx"éz“?,‘ F'Aa“f fx"_A«‘Q Token Position Attention Ef)_. AL | a0
Layer L H, (L) ’ ( Ho (L) | [ ) ’ H(L)
BERT Embedding
) fx"Az‘z’, }'._As‘?" rx'fA(‘z)f Token Position Attention (f)—> AR | 5 a@ —¢— A
Layer 2 H1(2) ’ ‘ Hz(z) I ( H3(2) ’ Ht(z)
X >, M) D) X /a0 x ]A(Il) Token Position Attention \CID_, ~(1) | =
5 5 %« A
ayer
Layer 1 H (@ ’ ‘ Ho (@) l | Ha(D) ’ H(D e
‘9 BERT Encoder Probing Task Output
e 1 o
Selc?tf):r:ce ‘VELS] ‘ ‘ I ‘ eatil [SEP] <AO> <A1> <A2> ...

13



Layers Alone do Not Rediscover the CNLP

Surface
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Layer attention weight

Layer Variance across Sentences
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First 3 sentences of the Bigram Shift task test split.

Same GridLoc probe model at the same epoch.

Very different layer attention weights.




Layer Variance across Random Seeds

average: 8.8414 std: 2.156257415059714 average: 7.0077 std: 0.7827136832839962

hhhhhh

3000

Probe results are
not Immune to

random initialization 777 ¢ ¢ e

effects! Seed: O, Best Epoch: 7 Seed: 1, Best Epoch: 8

Distribution of the best-performing layer over the
Bigram Shift test set sentences for two probing runs
with different random seeds.
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Layer Variance through Training Time

Average layer attention weight
distribution change through training
iteration.

(SOMO, seed:0, best epoch: 3)

0.35 4

0.30 4

025 A

0.20 4

0.15

0.10 4

0.05 1

0.00 -

performance: valid:0.724(0.717) train:0.709(0.705)

10 11 12
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Consistently Idiosyncratic Token Positions

For most sentences, the token position attention at every layer attends to the same token,
hence the bright vertical line.

The choice of that token position is not arbitrary — there are linguistic reasons for them.

(==
= pol
. ' r B
» = §
= E
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- |
=1 ;
18




ntion: sentence 109992

42599 1 260 0 4 24.697 56,057

18,887

Token
Position?

1,943

[CLS] whispered with that trembled smile

Sentence Length Word Content Tense
sent id: 109992) (sentid: 110004 sent id: 110010)

sentencs token position 2

17.692

whispered il with [cLs) #Hi anger



Conclusion

e Did BERT rediscover a CNLP? Not in a naive,
architectural sense.

e Probing results regarding BERT layers are unstable; the
distribution along token positions is relatively more
stable.

e No evidence that pseudo-cognitive appeals to layer
depth are to be preferred as the mode of explanation for
BERT’s inner workings.
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Grammaticality

“‘well formed; in accordance with the productive

rules of the grammar of a language”
- lexico.com (Oxford)

From grammatical, “of or pertaining to grammar”

16" century: = literal

18t century: a state of linguistic purity

19t century: relating to mere arrangement of words, as
opposed to logical form or structure

21



Grammaticality vs. Probability

“l think we are forced to conclude that ... probabilistic

models give NO particular insight into some of the
basic problems of syntactic structure.”
- Chomsky (1957)

22



Grammaticality vs. Probability (Chomsky, 1955)

colorless green ideas sleep
furiously

furiously sleep ideas green
colorless

23



Grammaticality vs. Probability (Saul & Pereira, 1997)

colorless green ideas sleep furiously
(-40.44514457)

furiously sleep ideas green colorless
(-51.41419769)

This is not only a probabilistic model, but a probabilistic
language model (Agglomerative Markov Process).

24



(-39.5588693)

colorless sleep green ideas furiously G
colorless ideas furiously green sleep N
colorless sleep furiously green ideas G

colorless green ideas sleep furiously
(-40.44514457)
furiously sleep ideas green colorless

(-51.41419769)

_

green furiously colorless ideas sleep
green ideas sleep colorless furiously

(-51.69151925)

25



Scandal!

Our ACL 2019 submission: What Chomsky (1957)
originally claimed still essentially holds: current
language models do not have the ability to produce
grammaticality judgements.

ACL 2019 reviewer: The treatment of the research
literature ... comes across as inflammatory.

26



CGISF too small?
CoLA (Warstadt et al., 2019)

10,657 (English) examples taken from linguistics
papers.

LSTM LM + threshold:

* 65.2% in-domain accuracy

* 71.1% Out-of-domain Accuracy
Not bad?

27



CGISF too small!
CoLA (Warstadt et al., 2019)

10,657 (English) examples taken from linguistics
papers.

LSTM LM + threshold:

* 65.2% in-domain accuracy

* 71.1% Out-of-domain Accuracy
Not bad?

But, roughly 71% of their test set
are labelled positively.

28



Grammaticality vs. Probability:
Accuracy isn’t the most suitable
PBC is a better way to go
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Point-Biserial Correlations

Grammaticality taken to be a binary variable (yes/no).
The probability produced by a language model for a
string of words is continuous.

. . . . M, — M,
e Point-biserial correlations:  rp = ———,/pq

Sn

e M, = mean of the continuous values assigned to
samples that received the positive binary value.

e M, = mean of the continuous values assigned to the
samples that received the negative binary value.
S, = standard dev. of all samples’ continuous values.
p = Proportion of samples with negative binary value.
g = Proportion of samples with positive binary value.
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What about GPT-27?

OpenAl’'s GPT-2 has been promoted as “an Al” that exemplifies an

emergent understanding of lan

uage after mere unsupervised training on

about 40GB of webpage text. ﬁsounds really convincing in interviews:

Q: Which technologies are worth watching in 2020? _

A: 1 would say it is hard to narrow down the list. The world is full of
disruptive technologies with real and potentially huge global impacts.
The most important'is artificial intelligence, which is becoming
exponentially more powerful. There Is also the development of self-

driving cars. There is a lot that we can do with artificial intelligence to
improve the world....

Q: Are you worried that ai [sic] technolog%/ can be misused? _
A: Yes, of course. But this Is a global problem and we want to tackle it
with global solutions....

--- “Al can do that”, The World in 2020 — The Economist

Surely something this sophisticated can predict grammaticality, right?
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Wrong

GPT-2 GPT-2 XL,
Model | Norm. —p5m EXP LOG EXP
apT.o | Raw | 0.1839 [ 0.0117 | 0.1476 | 0.0123
Modele | Norm | 0.2498 | 0.1643 | 0.2241 | 0.1592

SLOR | 0.2489 | 0.092 | 0.2729 | 0.0872

Should conclusions about grammaticality be based upon
scientific experimentation or self-congratulatory PR stunts?

* People are very good at attributing interpretations to
natural phenomena that defy interpretation.



Legitimate Points of Concern

 Is grammaticality really a discrete variable?

Several have argued that a presumed correlation between neural
language models and grammaticality suggests that
grammaticality should be viewed as gradient (Lau et al., 2017;
Sprouse et al., 2018).

« Eliciting grammaticality # blindly probing the elephant.

Numerous papers on individual features of grammaticality
(Linzen et al., 2016; Bernardy & Lappin, 2017; Gulordava et al.,
2018).

« How do you sample grammaticality judgements?

Acceptability judgements (Sprouse & Almeida 2012; Sprouse et
al., 2013) are not quite the same thing — experimental subjects
can easily be misled by interpretability.

Round-trip machine translation of grammatical sentences for
generating ungrammatical strings (Lau et al., 2014,;2015).
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The Deep Learning Advantage?

e There is now a robust thread of research that uses language models for
tasks other than predicting the next word, not because they are the best

approach, but because the people using them are scientifically illiterate:
o What language consists of and how it works,
o How to evaluate performance and progress in the task.

When these models work well at all, they often get credit just for placing.
Grammaticality prediction is one of these tasks.
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The Deep Learning Retort

e In the case of grammaticality, the reply by this community has been:
o To blame linguists for coining a task (they didn’t) that is ill posed (it isn’t),
o To shift to a different, easier task, relative grammaticality, which is also known
to be more stable across samples of human annotations.

e Pedestrian attempts at promoting deep learning will often represent fields
such as CL as blindly hunting for “hand-crafted” features in order to
improve the performance of their classifiers.

e |n fact, several discriminative pattern-recognition methods were already in
widespread use before the start of the “deep learning revolution” that had
made this approach very unattractive.
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The Deep Learning Advantage

e Nevertheless, deep learning is adding value, but more in terms of:
o Modularity of the different network layers that allows for separation and

recombination,
o Novelty of the approaches, even if performance isn’t state of the art, and
o the “liberated practitioner,” who can now produce a baseline system with

very little expertise that has a higher accuracy than earlier naive
baselines.
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Encoder "LMs”— thinking outside the box

[ ws

I

' )
Transformer encoder
\_ =/
I
The summary of <sentence> s [ [MASK] ]

PromptBert (Jiang et al., 2022)
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