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Abstract

This paper studies automatic detection of topic transitions
for recorded presentations. This can be achieved by matching
slide content with presentation transcripts directly with some
similarity metrics. Such literal matching, however, misses
domain-specific knowledge and is sensitive to speech recogni-
tion errors. In this paper, we incorporate relevant written mate-
rials, e.g., textbooks for lectures, which convey semantic rela-
tionships, in particular domain-specific relationships, between
words. To this end, we train latent Dirichlet allocation (LDA)
models on these materials and measure the similarity between
slides and transcripts in the acquired hidden-topic space. This
similarity isthen combined with literal matchings. Experiments
show that theproposed approach reducesthe errorsin slidetran-
sition detection by 17-41% on manual transcripts and 27-37%
onautomatic transcripts.
Index Terms: slides transition detection, boundary detection.

1. Introduction
Presentations delivered with slides are pervasive in many aca-
demic and business spheres. Therefore, it i s no surprise that a
large number of presentations have been and will be recorded,
such as lectures, seminars and internal corporate presentations.
Knowing the time stamps of lecture topic transitions is greatly
beneficial to navigating these multimedia archives. Topic tran-
sitionsare also thenatural boundariesto index these archivesfor
thepurposeof searching. In addition, topic transitionshave also
proven useful in automatic summarization of presentations[1].

Topic transitions, however, are only directly accessible
through occasional natural language cues such as“Turning now
to . . . ,” “ Our next topic . . .” etc., so much of the work that as-
pires to use them (including [1]) uses slide transitions instead.1

These are the timestamps indicating when the lecturer changes
the slide displayed on a projector. A straightforward way of
acquiring slide transitions is to mark them during data record-
ing, e.g., throughrecording certain keyboard or clicking events
invoked by the lecturer. Such recordings may not be available
in many presentationenvironments, nor in many older recorded
archives, nor are they preferable in passive recording environ-
ments, as discussed in [3]. There can also be problems with
other keyboard activity on the samedevice, such as running de-
mos, not to mentionspeaker or device error (accidentally paging
forward by too many slides), as well as intentional backwards

1A notable exception is the TextTili ng method[2], althoughthis has
not enjoyed widespread usageon spoken language transcripts, nor does
it avail it self of extra-transcriptional sources of evidence such as slides
or related texts.

navigation, in which the speaker reverses direction in the slides
in order to answer a question or emphasize an earlier point.

As a result, some research has attempted to detect slide
transitions automatically. Some do so by analyzing video
recordings[4][5][6], i.e., by detectingtheslide areaonthevideo
canvas and looking for changes in that area. Such approaches
depend heavily on the recording set-up and video quality, the
variety of presentation environments, and the positioning, pan-
ning and brightnessadaptation of the camera.

Another way of detecting slide transitions is through the
audio channel: matching slide content with presentation tran-
scripts. Only a lapel or head-mounted microphone is typically
required here. Previouswork has studied thedirect matching of
slide content and presentation transcripts using certain similar-
ity metrics[7][8]. Only slides and transcripts themselves, how-
ever, have been used to estimate the similarities.

In this paper, we explore the pragmatic possibilit y of more
accurately guessing topic transitions using evidence not only
from slide transitions, but also from slide content, attained
throughautomatic speech recognition, as well from electroni-
cally available texts on related subject matter. This approach is
particularly interesting because, in principle, it can be extended
to obtain an even finer granularity of topics than a transitionse-
quence— moreof thestructureof atableof contents, with both
coarse and subtler transitions. Textbooks usually have these,
andwherelecturesclosely follow atextbook, someof this struc-
ture can be co-opted. Even onslides alone, this is occasionally
reflected by “bulleting” main points that are covered in the lec-
ture. Such structured multimedia archives provide amore de-
tailed means of navigating the archives, and are also useful for
presentation summarization.

Even where presentations are not based on or accompanied
by supplementary reading material, auxili ary written sources
obtained elsewhere on the same subject can be used to collect
more accurate semantic co-occurrencestatistics to drive aspec-
tral dimensionality reduction. Such reductions are crucial to
avoidingchancekeyword paraphrasesandASRtranscriptioner-
rorsbetween semantically related documentsor sectionsof doc-
uments. The latter is a particularly acute problem as speaker-
independent models in the lecturedomain often haveword error
rates (WERs) of more than 40%.

As we are positing the existence of hidden but well -
defined topics within lectures, we train latent Dirichlet alloca-
tion (LDA) models on relevant written materials and measure
slide-transcript similarities in the acquired hidden-topic space.
These are then combined with literal word-level matching that
iscalculated directly between slidesand transcripts. Our exper-
iments show that the proposed approach reduces the errors in
topic transition detection by 17-41% on manual transcripts and



27-37% onautomatic transcripts. We also analyzethesituations
in our test data where the method produces large errors.

2. Problem formulation
2.1. Alignment framework

Research on finding correspondences in parallel texts per-
vadesnatural language processing(NLP). In statistical machine
translation[10], words or phrases from each bili ngual sentence
pair need to be aligned in order to train translation models.
In automatic text summarization, the correspondence between
human-written summariesandtheir original textshasbeen stud-
ied. Someresearch [9], for example, hasdecomposed sentences
of human-written summaries to decide whether and where the
texts are cut and pasted from the original documents.

In keepingwith much of thiswork, weformulate thetransi-
tion detection problem in an HMM framework. We are given a
sequenceof slides S = s1, s2, ..., sm, and corresponding tran-
script T = t1, t2, ..., tn, where each ti is a window of words
starting from the ith word. The window size is adjustable and
hence ti can contain just one word or a sequence of words. In
the latter case, ti shares words with some windows before and
after it. A slide si corresponds to a hidden state, and ti corre-
sponds to an output symbol. For a given output sequence, i.e.,
transcript T = t1, t2, ..., tn, oncethe optimum hidden state se-
quenceis decided, the correspondencebetween slides and tran-
scripts is indicated and hencethe slide transition points are dis-
covered. These in turn approximate topic transition points.

The output probabiliti es p(tj |si) are estimated using nor-
malized similarities between slides and transcript windows:
p(tj |si) = sim(tj, si)/

P

k
sim(tk, si). In our baseline and

experimental methods, we employ several common distance
metrics to directly measure the similarities between slides and
transcript windows: L1 (Manhattan) distance, L2 (Euclidean)
distance, KL divergence, and cosine distance. The state transi-
tion probabiliti esp(sj |si) are set to ensure that a slide can only
transit to itself (with probabilit y λ) or to the next slide (with
probabilit y 1 − λ).2 With this assumption, the transition prob-
abiliti es have only one parameter λ, as shown in the formula
below, which iseasy to estimate with limited data.

p(sj |si) =

8

<

:

λ : j = i
1 − λ : j = i + 1
0 : otherwise

We use λ = 0.9 for our experiments, which was determined
on a development set. Since almost all presentations start from
the first slide, the initial stateprobabilit y can be set as: p(si) =
1 if i = 1 and 0 otherwise. Once all the parameters above
are estimated, a standard decoding algorithm can be applied to
determine the hidden state (slide) sequence.

2.2. Topic models

Relevant written materials provide semantic, i.e., domain-
specific knowledge for understanding presentation content. For
our task, we incorporate this auxili ary information to improve
the similarity measurements between slides and transcripts. To
this end, we adopt a well -known topic model, Latent Dirichlet
Allocation (LDA) [11]. LDA is a generative model for mod-
elli ng documents, in which each document is regarded as a bag

2One can changethestatetransitionmatrix to allow for moreflexible
models, e.g., those permitting transitions to previous slides or skipping
slides, but wedo not discussthese here.

Figure 1: Latent Dirichlet Allocation.

of words and generated by taking a mixture of hidden topics.
For example, a document on prototyping evaluation methods
in computer science is likely to be a mixture of words from
the topic of EVALUATION and the topic of PROTOTYPING.
Each topic itself isrepresented byadistribution over words, and
this distribution is obtained throughtraining LDA models over
a collection of documents. Once the models are obtained, a
document can be represented by its distribution over the topics
in LDA. We can then calculate the similarity of two documents
based onthisnew representation. Thedomain-specific semantic
knowledge, which isevident throughword collocations, isnatu-
rally considered in this new similarity measure. For example, a
slidethat mentionsFSA (finitestate automata) but not automata
can have anon-zero similarity scorewith the corresponding part
of a transcript that mentions automata but not FSA, sinceboth
FSA and automata appear in textbooks on the same topic. The
new measure can be naturally combined with one of the base-
line similarity measures obtained throughmatching slides and
transcriptsdirectly, to estimate theoutput probabiliti esP (T |S)
of the HMM. In this paper, we use alinear combination of the
baseline P (T |S) and topic-based P (T |S), each derived from
itsown normalized similarity computations.

Compared to singular value decomposition, a widely used
dimensionality reductionmethod, LDA providesamoresophis-
ticated model of word count distribution. Althoughthe proba-
bili stic analogue of SVD (pLSI) uses a similar model assump-
tion, it i s not fully generative. In particular, it i s difficult to
estimatetheprobabilit y of anew document not appearing in the
training data. This is criti cal for our task, among others — we
train the models on relevant written documents (textbooks) and
then need to assign a probabilit y to a slide and transcript win-
dow, which arenot part of the training data.

A graphical representation of LDA for a corpus is shown in
Figure 1. It is a three-level hierarchical Bayesian model. Each
document is represented as a set of N words (the inner plate),
andthe corpushasM documents(theouter plate). Each word w
in a document is generated from a topic distribution βz , which
is a multinomial distribution over words. The topic indicator
z of the word w is assumed to have amultinomial distribution
θ over topics, which in turn has a Dirichlet prior with parame-
ter α. The parameters of the LDA model can be estimated by
maximizing the data likelihood of training documents. We set
the hyperparameter α as in [11]. Then we integrate out θ and
learn β using theEM algorithm. TheE step isbased onaGibbs
sampling of topic indicatorsz, andtheM step only needs to cal-
culate the sufficient statistics for β. For our task, we train LDA
models on textbooks, in which a subsection, as defined by its
table of contents, is treated as a document. Once the model is
trained, we can map a slide or transcript window into the hid-
den topic spaceby computing its θ. This is given by an EM
procedure that treatsθ as a parameter with z missing.



3. Experiment set-up
We use a corpus of lectures recorded at a large research univer-
sity. Only thelecturer’svoiceisrecorded, usingahead-mounted
microphone. The lectures that wehave used in our experiments
arefrom two undergraduate computer science courses: asecond
year introductory course and a fourth-year advanced course,
each with a different instructor. The former course is an in-
troduction to Unix andseveral programming environments. We
use five lectures for which we have both manual and automatic
transcripts. The average length of a classis 45 minutes, while
the averagenumber of slides isapproximately 13 per class. The
course is based on four textbooks, which contain an aggregate
of 868 subsections. We treat each subsection as an individual
document and use them to train an LDA model. One lecture is
held out as the development set to tune undecided parameters,
such as the number of hidden topics (300), the sizeof the tran-
script windows(between 0.2 and 0.6 timesthenumber of words
in a lecture’s transcript divided by thenumber of slides) and the
λ in the HMM transition model (0.9). Stop-words are removed
and stemming is applied to the textbooks before training.

The fourth-year course is a human-computer interaction
(HCI) course. We have four recorded classes with both man-
ual and automatic transcripts. The average length of a classis
45 minutes, with 28 slides per lecture — approximately twice
as many as for the introductory course. Thedifferenceisdue to
the fact that introductory course’s lectures often involve many
example programs, andmore interactionwith students. The ad-
vanced course uses only one textbook, which has 186 subsec-
tions, resulting in only 100 hidden topics being trained.3

The evaluation metric of our task is straightforward — au-
tomatically acquired transitions are compared against the gold
standard to calculate a collection of offsetsmeasured in number
of words. The offsets are averaged over all t ransitions to eval-
uate the transition detection performanceon the whole corpus.
We call these offsets transition errors. Our gold standard for
topic transitions was obtained throughmanual annotation. The
annotator was given the lecture video, transcripts, and slides to
decide topic transitions. Note that topic/content transitionsmay
not happen at exactly the same time as the instructor changes
the slides. For example, right after the instructor of a lecture
switches slides, he may receive questions from students on the
previous slide andtherefore continues to talk about theprevious
slide’smaterial even thoughthenew slideisbeing displayed. In
such cases, the annotator marks real content transitions.

4. Experimental results
4.1. Detection performance

Table 1 shows the experimental results obtained using manual
transcripts. The first row counts baseline transition errors with-
out using the LDA models trained on textbooks. In this and
the following row, we report the average word offset score per
transition, the sum being obtainable by multiplying these num-
bers by computing the total number of transitions in the corpus
(172).4 Incorporating an LDA model trained on textbooks re-

3Considering that this course’s discussion of its sole textbook is
more detailed than the introductory course’s, we trained an alternative
model on 300 hidden topics, using each of the textbook’s 1186 para-
graphs as documents rather than its subsections. The paragraph-level
model had similar performanceto thesubsection-level model, so all the
results reported here usesubsection-level LDA models.

4The recall/precision metric is considered unsuitable for topic
segmentation[12]. Furthermore, our approach is different from regular

duces transition errors with all four standard distance metrics.
The relative error reductions range between 17% - 41%.

Table 1: Transition errors on manual transcripts

L1 L2 KL COS
No textbookmodels 18 24 24 32
UsingLDA models 15 19 20 19

Reduction 17% 21% 17% 41%

Table 2 presents the experimental results on automatically
generated transcripts. The WER of the transcripts is 45%
on average. The transcripts were generated with the SONIC
toolkit [13]. The acoustic model was trained on 30 hours of
the Wall Street Journal Dictation Corpus. The language model
was trained oncorpora obtained from the Web throughsearch-
ing the words appearing onslides as suggested by Munteanu et
al. [14]. Table 2 reveals that for all but the cosine distancemet-
ric, larger error reductionsare achieved onautomatic transcripts
than onmanual transcripts. Thiscan be observed bycomparing
the third rows of Table 1 and Table 2. Focussing oncolumn L1
in thesetwo tables, we can seethat without usingtheLDA mod-
els trained onthe textbooks, the transition errors increase from
18 to 29 (61% relative increase) due to the speech recognition
errors; after incorporating textbooks, the transition errors rise
from 15 to just 21 words (40% relative increase). This means
that with L1 distance, the use of textbooks makes transition de-
tection more robust to speech recognition errors. Actually, the
usefulnessof written documents in spoken document process-
ing hasalso been observed in spoken document retrieval (SDR),
where query and document expansion using written documents
is also very effective[15].

Table 2: Transition errors on automatic transcripts

L1 L2 KL COS
No textbookmodels 29 32 30 51
UsingLDA models 21 22 22 32

Reduction 28% 31% 27% 37%

4.2. Error analysis

We conduct a further analysis to understand the detailed dis-
tribution of transition errors. As shown in Table 3, we group
transitions by their baseline errors (no textbooks, L1 distance,
manual transcripts). Transitions with more baseline errors are
more likely to be improved with the use of textbooks. For ex-
ample, amongtransitionswith baseline errors lessthan 5words,
using textbooks only improve 37.2% of them, but for transi-
tions with baseline errors over 20 words, using textbooks helps
51.2% of them. This agrees with our intuition: when a base-
linesystem makes small errors, it means literal matchingworks
well , i.e., there are enoughwords overlapping between slides
andtranscripts. In such cases, domain-specific semantic knowl-
edge does not provide much more additional information.

Figure2 depicts the absolute error reductions (below the x-
axis) and increases (above the x-axis) for each slide transition.
The x-axis contains slides sorted by their (L1) baseline errors

topic segmentation in that the number of segments obtained is same as
in thegold standard, so we can measureoffsetsdirectly instead of using
the more complicated metrics designed for general topic segmentation.



Table 3: Improved transitions grouped by baseline errors

Baseline errors < 5 5 − 19 > 19
Improved transitions (%) 37.2 43.0 51.2

in increasing order. These are shown in grey. The reduction or
increase that results from using textbooks, in number of words,
is shown in black for each slide transition.
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Figure 2: Per-transition error deltas from using textbooks.

It shows that while error reduction magnitudes roughly in-
crease in correlation to the baseline number of errors (correla-
tion coefficient: -0.4462), error increases do not (correlation:
0.0429) and are smaller overall . Thus the improvement comes
more from the transitions with worse baseline performance.

Even our best configuration (manual transcripts, L1 dis-
tance, with textbooks) fails in several transitionswith very large
offsets. Figure 3 is the histogram of errors made by this con-
figuration. Thex-coordinate is transitionerrors(beginningwith
zero) andthey-coordinate countsthenumber of transitionswith
that number of transition errors. From the figure, we can ob-
serve that there are only 11 transitions (6% of the total number
of transitions) with transition errors over 50 words. The offsets
on these 11 transitions, however, account for 40% of the total
sum. Otherwise, the automatic detection performswell onmost
transitions — on over 60% of the transitions, the transition er-
rors are smaller than 10 words. Nine of these 11 transitions,
furthermore, are adjacent to a slide with very littl e text on it
— these slides either contain mainly images or contain exam-
pleprogrammingcode, andso they provide littl e information to
match with transcripts. The remaining two transitions are be-
tween slides that differ only slightly from each other. In such
cases, transitions are difficult to decide on, too.

5. Conclusions and future work
This paper studies the automatic detection of topic transitions
for recorded presentations. Our experimental results show that
incorporatingtextbookswith thetopic model LDA improvesthe
performance of transition detection on both manual and auto-
matic transcripts over a baseline that uses slides alone. Incor-
porating textbooks also makes the detection task more robust
to speech recognition errors on most distancemetrics. The ap-
proach we use cannot handle a few transitions well , such as
those adjacent to slides with littl e textual content, or littl e tex-
tual differentiation.
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Figure 3: Histogram of transition errors.

A direct follow on to this study would be to extend the ap-
proach to align slide content with presentation transcripts on
a finer level, e.g., the slide “bullet” level. This would not only
provide amoredetailed meansof navigatingrecordings, but can
be useful for other tasks such as summarization and automatic
slide generation. In addition, comparing LDA with other mod-
els such as latent semantic analysis may render a further under-
standing of these tasks.
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