
The Algebraic Structure of Attributed Type Signatures

Gerald B. Penn

CMU-LTI-00-164

School of Computer Science
Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Bob Carpenter, Chair
Frank Pfenning
John La�erty
Alon Lavie

Chris Manning

Submitted in partial ful�llment of the requirements
for the Degree of Doctor of Philosophy

c
 Gerald Penn, 2000

To three respected scholars and friends:

Arunas L. Liulevicius,
Lawrence A. McElwee,

and
William Morrison

Abstract

Feature structures are related to frames in arti�cial intelligence and to record
structures in many programming languages. They are widely used as a data
structure for natural language processing and their formalizations often in-
clude multiple inheritance and subtyping, which allow for terser descriptions
and a logical control over non-determinism during search. While it is widely
known that problems in empirical linguistics often under-determine the for-
mal devices that must be employed in their formal expression, it has never
been formally proven what, if anything, is gained by using subtypes, para-
metric types and/or features in a feature logic. This, in turn, has hampered
our understanding of how typed feature structures relate to other algebraic
structures used in natural language processing and logic programming, such
as systemic networks and lattices of Prolog or �rst-order terms. Given a
�xed signature, a declaration of types and features, what kinds of informa-
tion can feature structures distinguish with types relative to what they can
distinguish with features? Are types, parametric or otherwise, just a conve-
nient shorthand for bundles of features? If there is a formal trade-o�, can
we use that to our advantage for better \compilation" of practical large-scale
grammars, when viewed as logic programs over typed feature structures?

This dissertation is a study of the algebraic structures that underlie at-
tributed type signatures and the universes of typed feature structures that
they induce. Speci�cally, it proposes de�nitions of signature subsumption
and equivalence to answer these questions with reference to the logic of typed
feature structures as formalized in Carpenter [1992]. In addition to the ob-
vious advantages of understanding what the rami�cations of changing the
signature of a program/grammar are, the present study also demonstrates,
with the support of empirical results, that the view of signatures proposed
here can substantially improve the eÆciency of programs written over the
logic of typed feature structures by showing how to embed a signi�cant class

v

vi

of signatures into the lattice of Prolog terms. In so doing, it demonstrates
that eÆcient computation with typed feature structures reduces to the more
general problems of standard logic programming in Prolog, graph coloring
and matrix multiplication.

Acknowledgements

The research program that ultimately yielded this dissertation began when
I enrolled at Carnegie Mellon University to study categorial grammar and
mathematical linguistics with Bob Carpenter. Just one semester, he assured
me, studying feature logic and some of the computational issues surrounding
its treatment in his forthcoming book, The Logic of Typed Feature Structures,
and then we could look at the good stu�. That was nine years ago and, as the
reader will quickly notice, this is not a dissertation about categorial grammar.

The fruit of that �rst (and second) semester of study was a logic pro-
gramming language and grammar development system based on typed fea-
ture structures called The Attribute Logic Engine (ALE). Its motivation was
the observation that a very simple method for coping with hitherto unwieldy
feature-based grammars could be arrived at by adapting a few proposed so-
lutions for some more general, and now well-understood, problems in the
theory of programming languages and compiler design to the needs of com-
putational linguistics, and that by being simple and well-adapted, it would
be a good method as well. It worked. ALE has been very widely used as
a programming and development tool for a wide range of problems both in
natural language processing and elsewhere, and to have been involved with it
may very probably remain the most satisfying experience of my professional
career. Bob no longer actively works in the area of feature logic (having
subsequently written a very nice book on categorial grammar), but for hav-
ing provided the inspiration and vision for this line of research, the �rst
acknowledgement and an enormous debt of gratitude goes to him. Perhaps
more importantly, he has also shown me that research can be quite a lot of
fun.

The second acknowledgement and debt of thanks goes to the ALE users
whose questions, comments and bug reports have been an indirect but still
very great source of encouragement for me to continue with its support and

vii

viii

with further research in this area. The work described in this dissertation,
in fact, was undertaken with very much the same motivation that ALE orig-
inally had: the search for simple, well-adapted methods, this time mostly
from discrete mathematics, to extend the state of the art in computing with
typed feature structures. Its results will eventually be incorporated into fu-
ture versions of ALE as well.

I am also particularly grateful to Frank Pfenning for the untiring faith
and guidance he contributed to this work, and for his encyclopedic ability
to connect my questions to relevant problems in other areas of mathematics
and computer science. Dana Scott's advice was also quite helpful in the same
respect. As for the other members of my thesis committee, John La�erty,
Alon Lavie, and Chris Manning, I am also grateful for their support and
willingness to answer my questions. Herbert Simon also provided me with
a great deal of insight into the role played by early arti�cial intelligence
research in the development of typed feature logic.

Very special thanks are due to Sri Sri Swami Satchidananda, Sri Swami
Karunananda Ma, Sri Swami Divyananda Ma, Sri Swami Sevananda, Abhaya
Thiele, Palita Piperidis and the other inmates of Satchidananda Ashram for
the guidance, support and friendship they provided throughout the course of
my graduate studies.

As for the good friends I made during the four years I spent at Carnegie
Mellon, I am humbled by their comradeship and patient indulgence of my
penchant for Indian vegetarian cuisine: Stuart Eisenstadt, Michael Mecca,
Massimo Paolucci, Thomas Polzin, Shrisha Rao, and Akira Ushioda.

This research was primarily conducted during my three years of employ-
ment as a research scientist in the Sonderforschungsbereich 340 at Eberhard-
Karls-Universit�at T�ubingen. To the directors of that project, Erhard Hinrichs
and Dale Gerdemann, I am enormously indebted for their patience and �nan-
cial support for this work. I also bene�tted greatly from the friendship and
interaction I had with Frank Richter, Manfred Sailer, Mike Calcagno, Thilo
Goetz, Shuly Wintner and my other colleagues in T�ubingen: Bjoern Aldag,
Kordula DeKuthy, Frederik Fouvry, John GriÆth, Paul King, Valia Kordoni,
Sandra K�ubler, Detmar Meurers, Guido Minnen, and Adam Przepi�orkowski.

This research also bene�tted from an internship at the Multimedia Com-
munications Research Laboratory at Bell Laboratories during the summer
of 1998. I am indebted to the director, Sid Ahuja, and Bob Carpenter for
providing that opportunity. I also acknowledge and thank Bell Laboratories
for making available one of the grammars used in the evaluation section at

ix

the end of this dissertation during that internship.
Most of this dissertation was actually written at the Language Technolo-

gies Institute at Carnegie Mellon University in late 1999. I am very grateful
to the director, Jaime Carbonell, for providing me with the opportunity,
resources and freedom to complete this document as quickly as possible.

Other individuals have contributed greatly to the contents of this dis-
sertation, through their publications and personal communications to me
during the course of this work: Mats Carlsson, Gregor Erbach, Andrew Fall,
Bob Kasper, Chris Mellish and Drew Moshier. My understanding of feature-
structure-based abstract machines was greatly improved upon by my oppor-
tunity to lecture on the subject at the Seminar f�ur Sprachwissenschaft at
Universit�at T�ubingen in the summer of 1996 and again with Shuly Wintner
at the Graduate Summer School for Behavioral and Cognitive Neurosciences
at Rijksuniversiteit Groningen in the summer of 1997.

Portions of this dissertation have already been published as Penn, 1997;
Penn, 1998; Penn and Carpenter, 1999; Penn, 1999a; Penn, 1999c; Penn,
1999d and Penn, 1999e; and were presented at the Schloss Dagstuhl IBFI
Seminar on \EÆcient Language Processing with High-level Grammar For-
malisms" in late 1999. I am very grateful for the comments and discussion
that have resulted from the early dissemination of these results.

x

Contents

1 Introduction 1
1.1 Feature Structures . 1
1.2 Types . 2
1.3 Statement of Thesis and Objectives 4

1.3.1 Thesis . 5
1.3.2 Objectives . 5

1.4 Structure of the Dissertation 7
1.4.1 Mathematics and Theoretical Computer Science 7
1.4.2 Linguistics . 11
1.4.3 Practical Grammar/Software Development 17

2 Attribute-Value Logic 23
2.1 The Logic of Typed Feature Structures 24

2.1.1 Type Hierarchies . 24
2.1.2 Meet Semi-lattice Completions 30
2.1.3 Feature Structures . 34
2.1.4 Appropriateness and Attributed Type Signatures . . . 39
2.1.5 Subsumption and Uni�cation 42
2.1.6 Well-Typing . 47
2.1.7 Join Preservation . 53
2.1.8 Signature Completion 54
2.1.9 Descriptions and Most General Satis�ers 55

2.2 A Brief History of Typed Feature
Structures . 58
2.2.1 Description Lists . 59
2.2.2 Semantic Networks . 60
2.2.3 KL-ONE . 63
2.2.4 Feature Structure Uni�cation and Beyond 67

xi

2.3 Summary . 71

3 Abstract Feature Structures and Signature Subsumption 73
3.1 Abstract Feature Structures 74
3.2 Order-Embeddings and Join-Preserving Encodings 79

3.2.1 Symmetric Join Preserving Encodings 84
3.3 Signature Equivalence and Subsumption 87
3.4 A Signature of Signatures? . 90
3.5 Summary . 91

4 Recursion, Finiteness, and Appropriate Values 93
4.1 Product isomorphisms . 94

4.1.1 Multi-dimensional inheritance 99
4.1.2 Systemic networks . 100

4.2 Finiteness . 105
4.2.1 Cyclic Types and Finite Most General Satis�ers 106
4.2.2 Recursive Types and Finite Filters 107

4.3 Properties of Finite Signatures 110
4.4 Signature Unfolding . 116
4.5 Summary . 120

5 Parametric Types 121
5.1 Parametric Type Hierarchies 124
5.2 Induced Type Hierarchies . 125
5.3 Appropriateness . 131
5.4 Subsumption with Parametric Signatures 133
5.5 Finiteness . 135
5.6 Appendix: Proof of Theorem 5.1 137
5.7 Summary . 146

6 Arity and Prolog Terms 147
6.1 Subtyping . 149

6.1.1 Tree Encodings . 150
6.1.2 Flat-Term Encodings 151

6.2 Arity Incrementation . 152
6.3 Generalized Term Encoding 157
6.4 Subsumption Preservation . 158
6.5 Summary . 161

xii

7 The Semi-Ring Structure of Signature Speci�cations 163
7.1 Subsumption Matrices and Transitive

Closure . 165
7.2 Rings, Quasi-Rings and Semi-Rings 167
7.3 An Extensible Quasi-Ring Construction 171
7.4 Compiling Type and Appropriateness

Restrictions . 173
7.4.1 Subtyping Cycles . 173
7.4.2 Meet Semi-latticehood 174
7.4.3 Feature Introduction 175
7.4.4 Value Restriction Consistency 178
7.4.5 Appropriateness Cycles 180
7.4.6 Join Preservation Condition 181

7.5 Summary . 181

8 Practical Prolog Term Encoding of Typed Feature Struc-
tures 183
8.1 Subtyping . 185

8.1.1 Modules . 187
8.1.2 Method 1: Colmerauer's method for meet semi-lattices 188
8.1.3 Method 2: Parametrized Search for an Optimal Encoding189

8.2 Features . 194
8.3 Evaluation . 195
8.4 Summary . 202

9 Conclusion 203

xiii

xiv

List of Figures

1.1 A feature structure for subject-verb agreement in English. . . 1
1.2 A directed-labelled-graph representation of Figure 1.1. 2
1.3 A typed feature structure for subject-verb agreement. 2
1.4 A featureless type hierarchy for subject-verb agreement. 3
1.5 A type hierarchy for subject-verb agreement. 3
1.6 A typed feature structure in which the liker and liked are

referred to by the same index -typed feature structure. 13
1.7 A typed feature structure in which the liker and liked are

referred to by indices with the same substructures. 13

2.1 An example of a non-bounded-complete partial order. 25
2.2 An example of a bounded complete partial order. 27
2.3 A worst case for the Dedekind-MacNeille completion at n = 4. 31
2.4 A fragment of an English grammar in which supertype branch-

ing distinguishes \dimensions" of classi�cation. 32
2.5 The MSL completion algorithm. 33
2.6 An example typed feature structure. 35
2.7 A typed feature structure with an in�nite number of nodes. . . 37
2.8 The directed graph representation of a cyclic feature structure. 38
2.9 The AVM representation of Figure 2.8. 38
2.10 The AVM representation of a feature structure with an acyclic

re-entrancy. 38
2.11 The AVM representation of a feature structure with struc-

turally identical but non-re-entrant substructures. 39
2.12 The AVM representation of the feature structure in Figure 2.6. 39
2.13 An example type signature with upward closure and right

monotonicity assumed. 41
2.14 The AVM representation of a feature structure with struc-

turally identical but inequated substructures. 43

xv

2.15 An example of feature structure subsumption. 43
2.16 Two feature structures whose sets of nodes intersect. 44
2.17 Two feature structures whose sets of nodes do not intersect. . 44
2.18 A non-statically typable signature. 50
2.19 Well-typed uni�cation in a non-statically typable signature. . . 51
2.20 A semantic representation from Pollard and Sag, 1987. 69
2.21 A semantic representation from Pollard and Sag, 1994. 70

3.1 An example of the necessity of pre�x-consistent closure in A-
uni�cation. 78

3.2 An example of the necessity of explicitly closing path inequa-
tions under path equality in A-uni�cation. 78

3.3 An example order-embedding that cannot translate least up-
per bounds. 80

3.4 An example of S and R in the proof of Theorem 3.2. 82
3.5 An example of �g in the proof of Theorem 3.2. 83
3.6 A non-classical join-preserving encoding between BCPOs for

which no classical join-preserving encoding exists. 84
3.7 A classical join-preserving encoding from an in�nite ascending

binary tree to an in�nite ascending ternary tree. 86
3.8 A classical join-preserving encoding from an in�nite ascending

ternary tree to an in�nite ascending binary tree. 86
3.9 Figure 1.4 augmented to be equivalent to Figure 1.5. 88
3.10 Part of the correspondence between index values in Figures 1.4

and 1.5. 89
3.11 Two signatures with no least upper bounds along with two of

their minimal upper bounds. 90
3.12 Subsumption between the two lower signatures of Figure 3.11

due to top-smashing. 90
3.13 Two signatures with greatest elements that have no least up-

per bounds and three of their minimal upper bounds. 91

4.1 An in�nite series of equivalent signatures. 95
4.2 An in�nite descending chain of signature approximations. . . . 96
4.3 A signature with a cyclic type. 96
4.4 A signature with cyclic types, and its in�nite descending chain

of approximations. 97
4.5 An example of a systemic network. 102

xvi

4.6 An attributed type signature (after MSL completion) that en-
codes the systemic network in Figure 4.5. 104

4.7 A simple signature with a recursive type. 110

4.8 An outline of the classi�cation of types. 112

4.9 An example �nite signature for demonstrating the failure of
properties given in Section 4.3. 113

4.10 The subtype-appropriateness graph of Figure 4.9. 114

4.11 Part of T T A for the signature in Figure 4.9. 115

4.12 The signature in Figure 1.5 plus a recursive type for lists. . . . 118

4.13 Two equivalent minimal signatures for which no apparent nor-
malization criterion is forthcoming. 119

4.14 Two equivalent minimal signatures with �nite T T A. 119

5.1 A fragment of the HPSG type signature. 121

5.2 A manually unfolded sub-hierarchy. 124

5.3 A subtype that inherits type variables from more than one
supertype. 125

5.4 Fragment induced by Figure 5.1. 126

5.5 The would-be induced hierarchy of Figure 5.1 if anelistlist (1) were
0. 127

5.6 A parametric type hierarchy for which I(P) is not a BCPO. . 128

5.7 A parametric type hierarchy for which I(P) is not a partial
order. 128

5.8 A parametric type hierarchy for which a straightforward map-
ping of parameters to features fails. 138

5.9 An example of a parametric signature that is not parametri-
cally join-preserving. 140

5.10 The �rst extended signature of Figure 5.9. 142

5.11 A schematic illustration of a parametrically separated para-
metric type hierarchy. 143

5.12 A would-be parametric signature with no greatest type that
does not satisfy right monotonicity: p(r2(?)) v q(r2(?)), but
r2(?)6vr1(r2(?)). 145

5.13 A would-be parametric signature whose parametric types are
not totally ordered that does not satisfy right monotonicity:
p(p1(p2(?))) v q(p1(p2(?))), but p1(p2(?))6vr(p1(p2(?))) be-
cause p2(?)6vp1(p2(?)). 145

xvii

6.1 A sample tree-encodable type signature. 148
6.2 A \type signature" for Prolog terms. 148
6.3 A type hierarchy with full-product multiple inheritance. 150
6.4 A type hierarchy with no tree encoding. 151
6.5 A
at-term encoding of Figure 6.4. 151
6.6 A Colmerauer-method encoding of Figure 6.4. 152
6.7 A signature that introduces a feature at a join-reducible type. 153
6.8 A Colmerauer encoding of the signature in Figure 6.7. 153
6.9 An approximate encoding of Figure 6.7 using a singleton vari-

able for inappropriate feature positions. 153
6.10 The second case in the proof of Lemma 6.1. 156
6.11 A statically typable would-be signature that multiply intro-

duces f at join-reducible elements with di�erent value restric-
tions. 157

6.12 A pictorial overview of the generalized encoding. 160

7.1 An example type hierarchy. 165
7.2 The subsumption matrix of Figure 7.1. 166
7.3 The base subsumption matrix of Figure 7.1. 166
7.4 An embedding of BOR into Z for ring multiplication. 168
7.5 The Boolean type hierarchy. 172
7.6 The trivial type hierarchy lifted to produce the Boolean hier-

archy. 172
7.7 The quasi-ring constructed from Figure 7.1. 173
7.8 An example type signature. 176
7.9 The value declaration matrix of Figure 7.8. 176
7.10 The value restriction matrix of Figure 7.8. 177
7.11 The introduction matrix of Figure 7.8. 178
7.12 A type signature with consistent value restrictions. 178
7.13 The value declaration matrix of Figure 7.12. 179
7.14 The value restriction matrix of Figure 7.12. 179
7.15 The convolution of Figure 7.14. 180

8.1 A sample tree-encodable type signature. 187
8.2 A type hierarchy with no tree encoding. 187
8.3 A binary tree and its optimal
at-term encoding. 189
8.4 A type hierarchy whose
at term encoding grows linearly with

d. 191

xviii

8.5 A type hierarchy whose
at term encoding grows logarithmi-
cally with x. 191

8.6 The subsumption matrix for Figure 8.2. 192
8.7 Evaluation on the ALE HPSG grammar. 198
8.8 Evaluation on the Bell Labs Categorial Grammar. 199
8.9 Comparison of LiLFeS and the ALE Colmerauer/optimal en-

coding on naive HPSG. 201

xix

xx

List of Tables

7.1 Preliminary comparison of transitive closure algorithms on two
type hierarchies. 170

8.1 Comparison of LiLFeS and ALE on the nrev30x10K benchmark.202

xxi

xxii

Chapter 1

Introduction

1.1 Feature Structures

Feature structures have enjoyed a very wide use in linguistics, psychology
and elsewhere for the past �fty years and have been employed at every level
of linguistic theory. They are related to the record structures found in many
programming languages, and to the \frames" proposed in the context of
knowledge representation in arti�cial intelligence.

While the formal de�nitions used in these applications, where they are for-
mally de�ned at all, often vary in some important details, feature structures
are fundamentally characterized by a �nite mapping from features, sometimes
called attributes, to values. Figure 1.1 shows one way of depicting a feature
structure that might be used to express the properties of a linguistic entity
in three aspects that are salient to subject-verb agreement in English. These
aspects, which are the features, are conventionally shown in small capitals
at the left-hand side of each pair shown, with their respective values given
on the right. Out of respect for this manner of depiction, feature structures
are sometimes called attribute-value matrices, or AVMs. They can also be
depicted as labelled directed graphs, as shown in Figure 1.2.

2
4person third
number singular
gender masc

3
5

Figure 1.1: A feature structure for subject-verb agreement in English.

1

2 CHAPTER 1. INTRODUCTION

third
person

singular
number

masc
gender

Figure 1.2: A directed-labelled-graph representation of Figure 1.1.2
664
index
person third
number singular
gender masc

3
775

Figure 1.3: A typed feature structure for subject-verb agreement.

In this case, the values might come from some assumed collection of atoms
that are available as values for any feature. Often, it is assumed that values
can be feature structures themselves, in which case it makes sense to speak
of values that lie at the end of some path, or �nite sequence, of features.
The principal bene�t of feature structures is that they provide named access
to properties or substructures in the formal representation of an entity by
means of these paths. This is in contrast to �rst-order terms, for example,
whose subterms are referred to by means of ordinals: �rst argument, second
argument of the �rst argument, etc.

1.2 Types

Semantic typing of feature structures is as old as feature structures them-
selves, since features were originally used to relate concepts, not speci�c
instances of concepts. Types are typically arranged in a partial order inter-
preted by set inclusion, called type hierarchies. Typing and type hierarchies
serve as an additional dimension along which to classify or organize knowl-
edge. In the present study, the type of a feature structure will be indicated
in the upper left-hand corner of its AVM representation, as in Figure 1.3,
which shows the same feature structure having been assigned the type index.

Instead of using features and values, we could use types alone to represent
subject-verb agreement properties in a large type hierarchy rooted at the

1.2. TYPES 3

?

index

index 1

index 1sg

index 2

...

index 3

...

index sg

index sm

index 1sgmasc

index pl

index 1pl index pm

index 1plmasc

index masc

index 1masc

index fem

...

index neut

...

Figure 1.4: A featureless type hierarchy for subject-verb agreement.

?

index
person:person
number:number
gender:gender

person

�rst second third

number

singular plural

gender

masc fem neut

Figure 1.5: A type hierarchy for subject-verb agreement.

type, index, part of which is shown in Figure 1.4. Many times, these partial
orders are written with the opposite orientation; but following Carpenter
[1992], they will be depicted here with ? (pronounced \bottom") as the
most general type, with more speci�c subtypes written above their more
general supertypes, with joins corresponding to least upper bounds, and with
meets corresponding to greatest lower bounds. A central concern to computer
scientists who work with typed feature structures is the eÆcient computation
of joins, called uni�cation, which corresponds to the consistent combination
of information about concept membership.

We could also use feature-value pairs along with types, but in a more
restricted way, by imposing a set of appropriateness conditions to specify
which types of feature structures can bear a certain feature, which types of
feature structures must bear a certain feature, what the type of a feature's
value must be (also called value restrictions), or any combination of these.
A speci�cation of a type hierarchy, a set of features, and appropriateness
conditions is known as a type signature or attributed type signature, with the
speci�c interpretation of the appropriateness conditions remaining implicit.
Figure 1.4 is a type signature with no features. Figure 1.5 is a type signature
with types, features and appropriateness suitable for supporting the expres-

4 CHAPTER 1. INTRODUCTION

sion of subject-verb agreement properties tacitly assumed in Figure 1.3. The
appropriateness conditions are depicted as subscripts on types, with value
restrictions occurring after the feature names.

Figure 1.3 and Figure 1.4 have something in common: they are both
signatures over which feature structures for describing a view of subject-
verb agreement can be articulated. On the other hand, they are not the
same signatures | they have di�erent types, features and appropriateness
conditions | and they may have certain practical qualities that would cause
us to prefer one over the other. Other possibilities also exist. For example,
one could view index as a parametric type that maps a triple of person,
number and gender subtypes to a featureless type such as one of those in
Figure 1.4.

1.3 Statement of Thesis and Objectives

The purpose of this thesis, broadly speaking, is to formalize what it means
for two signatures to bear this kind of similarity, with an eye towards under-
standing the structure that exists among the feature structures they induce,
particularly with respect to least upper bounds or uni�cation. It will be
shown that this minimalist view of signatures and the algebraic structures
they induce can be used to improve our understanding of several practical
problems in computer science as they pertain to logics of computation with
typed feature structures.

In a sense, this dissertation does not argue for any new solutions to logic
programming with typed feature structures. Instead, the claim is that ef-
�cient computation with typed feature structures, normally logic program-
ming or some fragment of it such as natural language parsing or generation,
is merely a collection of already well-studied problems in computer science
| logic programming in Prolog, matrix multiplication and graph coloring, to
name a few salient examples | disguised as new problems by more super�-
cial di�erences that have occupied an all-too-central position within feature-
structure-based research, particularly in computational linguistics. The dis-
guise is removed by a proper understanding of the algebraic structure of
attributed type signatures, their feature structures and the potential equiv-
alences among them.

1.3. STATEMENT OF THESIS AND OBJECTIVES 5

1.3.1 Thesis

The algebraic structures underlying attributed type signatures, their speci�-
cations, and the sets of feature structures that they induce admit a precise
formalization of the equivalences that can intuitively appear to exist among
the information states distinguished by di�erent signatures. This formal
equivalence can be used to substantially increase the eÆciency of the prac-
tical task of programming with typed feature structures, and lends a better
understanding to several more theoretical problems in mathematics and com-
puter science.

1.3.2 Objectives

This dissertation provides a justi�cation of this thesis by making the following
speci�c contributions:

1. Join-preserving Embeddings: it provides a better and more general
abstraction of what characterizes a join-preserving embedding, i.e., em-
beddings of one meet semi-lattice into another that preserve the results
of uni�cation, than the conventional de�nition.

2. Signature Subsumption and Equivalence: using that generalized
de�nition, it presents a formal de�nition of these concepts that corre-
sponds to the intuitive similarity mentioned in the last section.

3. Feature-Subtype Equivalence: it proves that every type signature
is equivalent to a feature-free type signature, i.e., a type hierarchy, but
that features do add more expressivity when one considers the case of
�nite signatures because their equivalent feature-free signatures may
be in�nite. Conventional wisdom on this point, while acknowledging
that there is a di�erence in expressive power, has incorrectly pointed
to another cause.

4. Parametric Typing: it presents the �rst formalization of parametric
typing that is general enough to accord with its use in both the theory of
programming languages and feature-structure-based linguistic theories
such as Head-driven Phrase Structure Grammar (HPSG, Pollard and
Sag, 1994).

5. Parametric Typing Equivalence: it locates an equivalence between
an important class of parametric type signatures and non-parametric

6 CHAPTER 1. INTRODUCTION

type signatures that can be used to extend the abilities of existing
programming languages based on attributed type signatures to handle
parametric types eÆciently and with minimal modi�cation. Paramet-
ric types provide yet another dimension, together with subtypes and
features, along which signatures can vary while remaining equivalent.
In contrast to features, it is proven that parametric types add no extra
expressive power from a formal standpoint, but provide a far more ele-
gant means of higher-order reasoning in a type system, while allowing
for signi�cantly more compact encodings of information.

6. Term Encoding: It uses the generalized notion of join-preserving
embeddings to provide an embedding of typed feature structures over
any statically-typable attributed type signature into Prolog terms, thus
reducing logic programming over typed feature structures to a Pro-
log preprocessing step, and admitting easy solutions to the problems
of coroutining and constraint logic programming with typed feature
structures.

7. Signature Speci�cations: it corrects several previous misconceptions
about algebraic closure operations on partial orders, demonstrates that
the compilation of any attributed type signature reduces entirely to
matrix-theoretic operations on sparse matrices, and characterizes a new
class of sparse matrices useful for knowledge representation for which
specialized multiplication algorithms can be developed. Preliminary
results suggest that these methods can improve compilation times on
large signatures by a factor of 800 or more over naive transitive closure
algorithms and by up to a factor of 5000 over closure by optimized
matrix multiplication algorithms such as Strassen's algorithm.

8. Optimal Term Encoding: combining the matrix-theoretic view of
type signatures in the absence of features with the Prolog term encod-
ing of typed feature structures, it solves the hitherto open problem of
�nding the optimal join-preserving
at �rst-order-term encoding of an
arbitrary �nite semi-lattice, along with a complexity analysis.

The combination of the practical insights derived from this work have led to
the development of an improved version of the Attribute Logic Engine (ALE,
Carpenter and Penn, 1996), a logic programming language based on the logic
of typed feature structures, and its reference English grammar that is faster
than the current version of ALE by a factor of slightly more than 113,000.

1.4. STRUCTURE OF THE DISSERTATION 7

1.4 Structure of the Dissertation

Because of the interdisciplinary nature of this work, it will be useful to con-
sider the broad structure of this dissertation in outline from more than one
perspective, each based on a discipline that will perhaps be informed by it.

1.4.1 Mathematics and Theoretical Computer Science

First and foremost, this dissertation represents an attempt to arrive at a
proper understanding of the algebra of information states that is induced by
combining a partially ordered set of types with appropriateness conditions,
a certain kind of constraint on the presence and values of their features.

Feature structures can be thought of as representing local environments
or call-stack frames, in which case feature values represent logical variables
de�ned within the scope of those environments. The connection between
earlier versions of the logic of typed feature structures and the theory of
programming languages was �rst made by A��t-Ka�ci [1984], and later de-
veloped by Moshier [1988]. The version of the logic used in the present
dissertation together with its connection to domain theory was presented
by Carpenter [1992]. Several connections to category theory have also been
drawn by Moshier [1997a,b]. Central to all of these contributions has been
the attempt to isolate and explore the signi�cance of combining internally
structured objects | records, essentially | with the external structure of
inclusional polymorphism and the subsumption that it induces.

From a mathematical and philosophical point of view, attributed type
signatures can be thought of as very elegant and compact representations of
(often in�nite) partial orders of elements that characterize the possible par-
tial states of knowledge that one can entertain for some empirical domain.
While there is a substantial body of work on the theory of lattices and par-
tial orders that has certainly informed the development of these signatures
| most signi�cantly, the importance of least upper bounds, i.e., uni�cation
| the evolution of attributed type signatures has been driven mainly by
empirical demands, mostly from very early work in arti�cial intelligence and
psychology on the representation of human memory and reasoning, and from
recent work in computational linguistics on the view of parsing a sentence
as the consistent combination of partial information about grammaticality
and meaning that the words of which it is comprised provide. As a result,
attributed type signatures exhibit some rather odd but still meaningful de-

8 CHAPTER 1. INTRODUCTION

partures from more mainstream work in lattices, the theory of programming
languages and knowledge representation.

There has been some previous formal work on logics of feature terms or
typed feature structures. Nearly all of that work has elected to focus on
the formal problem of �nding a model-theoretic denotational semantics that
appropriately relates feature structures to the collections of phenomena in
the world that their partial information describes, rather than to the par-
tial information states themselves. Certainly, many of the earlier attempts
at knowledge representation from which feature structures grew are painful
reminders of how essential such an external criterion is for verifying correct-
ness. While this endeavor is certainly faithful to those reminders and, indeed,
consistent with the introductory paragraphs of a very large body of genera-
tive linguistics literature, if that denotational semantics can only parrot the
syntax of feature structures or their signatures, as these models inevitably
have done, it is a sign either that we know far too little about the phenomena
we seek to describe or that the correct level of abstraction and the essential
properties of the correct objects in these models have still not been found.
In the present case, it is likely a combination of both.

The assumption that underlies the present study is that, introductory
paragraphs notwithstanding, the occupation in which generative linguists
are actively employed is one of providing a formal description not of lan-
guage itself but of the means by which the grammaticality of an utterance is
elegantly ascertainable, i.e., a simple process that functionally and precisely
corresponds to formal competence while still making no epistemic commit-
ment to the biological mechanisms of linguistic comprehension. Such an
assumption entails that the use of features or subtypes is one governed di-
rectly by practical considerations of the behavior of partial information states
relative to the algebra that captures the essential or de�ning characteristics
of that process, rather than by its consequences with respect to predicting
the existence or nature of its empirical subjects. If in providing some mathe-
matical relief to the more immediate concerns of the former, it forsakes what
is arguably more germane to the study of language, this dissertation can
only o�er an apology in chorus with the adherents of the current generative
enterprise.

This algebraic structure itself is thus the criterial semantics that we should
be seeking. Speci�cally, it provides a criterion that can be used to evalu-
ate the correctness of an attributed type signature as a speci�cation of the
organization and interaction of di�erent sources of knowledge (for exam-

1.4. STRUCTURE OF THE DISSERTATION 9

ple, knowledge of language) relative to the process of consistently combining
them. Individual feature structures themselves can then be taken to model
individual descriptions of information relative to that signature. This is a
tacit assumption underlying the work of Carpenter [1992] as well, although
the focus there favors a detailed treatment of the relationship between de-
scriptions and feature structures, much in the style of the feature structure
modelers, rather than of that between signatures and algebras of feature
structures. The present study favors the latter primarily because of appro-
priateness and the non-modular in
uence that it exerts on signatures as a
means of classifying partial knowledge.

The next chapter presents an introduction to the logic of typed feature
structures as presented in Carpenter, 1992, with the crucial di�erence that all
assumptions of �niteness are removed except the assumption that there are
�nitely many features, on which appropriateness intuitively seems to depend.
Mathematically, the assumption that there are �nitely many types, or that
feature structures have �nitely many substructures is an arbitrary restriction
that obstructs a very elegant insight: that the induced algebras of information
states can be viewed as signatures themselves. This chapter also defends
Carpenter's [1992] view of signatures as bounded complete partial orders,
however, by noting that the appropriate abstraction of closure under bounded
completeness in this context is the same as what is known in mathematics
as the Dedekind-MacNeille completion and that, given the assumption that
most pairs of types in the original partial order are join-incompatible, this
completion can be performed eÆciently in practice. Finally, it attempts to
put typed feature structures into an historical context in order to explain
some of their anomalies relative to other description logics and knowledge
representation languages.

Because the algebraic structure of feature structures is one de�ned al-
most exclusively by the uni�cation operator, a central concern in this study
is how to compare the behavior of two carriers with respect to this opera-
tor. Uni�cation-preserving or join-preserving maps are a well-studied class
of functions in both lattice theory and knowledge representation theory as
providing the essential characterization of that comparison. They are not,
however. Chapter 3 presents the classical de�nition of a join-preserving em-
bedding and then generalizes it to what is argued to be a better, more essen-
tial characterization. It also presents an abstraction of feature structures as
the formalization of our intuitive notion of \information states," and com-
bines the two to de�ne the notions of signature subsumption and signature

10 CHAPTER 1. INTRODUCTION

equivalence, which provide an initial formal response to the question posed
at the beginning of this introduction: when can two signatures be regarded
as equivalent? It is then shown that the symmetric closure of signature sub-
sumption entails signature equivalence only in the �nite case, and that the
collection of all signatures forms a proper pre-order.

Chapter 4 presents a di�erent kind of abstraction of feature structures and
uses it to show how attributed type signatures can tractably encode some
related conceptual taxonomies in computational linguistics and computer sci-
ence, such as systemic networks, an encoding problem that was previously
thought to be intractable. It then uses it to re-introduce Carpenter's as-
sumptions of �niteness, and presents a classi�cation of types and signatures
that corresponds to the preservation of �niteness in the induced algebra.
For practical purposes, the relevant interpretation of the above question, of
course, is what sort of equivalence can exist among �nite signatures only.
This also establishes a result regarding the expressive power of features in an
attributed type signature: �nite signatures with features can express algebras
of information states that only an in�nite signature could without them.

The remaining chapters present some noteworthy extensions and appli-
cations of attributed type signatures. Chapter 5 considers the addition of
parametric typing to attributed type signatures. Previous work on combin-
ing inclusional and parametric polymorphism has not been general enough
to account for their use in computational linguistics. This chapter provides
an elegant formalization of the intuition behind their use, again using the
algebraic structure of information states as an external criterion to ensure
the correctness of the formalization. It also considers the expressive power of
parametric types and shows that, in contrast to features, parametric types
do not add any additional expressive power under assumptions of �niteness.
A construction is also presented for inducing �nite subsignatures of in�nite
signatures, which provides a kind of modularity that opens up new potential
applications for parametric types relative to how they are currently used in
linguistics.

Chapter 6 considers the question of Prolog term encodings of typed fea-
ture structures, beginning with a review of some important lesser-known
work on �rst-order term encodings of lattices. It has been an open question
for the last eight years as to how to extend this work to attributed signa-
tures, i.e., to the existence of features and appropriateness conditions. This
chapter shows that, surprisingly, the collection of Prolog-term-encodable at-
tributed signatures is exactly the same as the collection of statically typable

1.4. STRUCTURE OF THE DISSERTATION 11

attributed signatures, i.e., those signatures that require no run-time type
inference. In other words, the potential for non-static typability (due to
the value restrictions of appropriateness conditions) is the only factor that
distinguishes algebras of typed feature structures from the lattice of Prolog
terms. As a result, appropriateness can be viewed as a set of empirically
mandated constraints that steer what would otherwise be a record algebra
with in�nite-branching terms back to a very conservative extension of the
same terms used to generalize the partial information states of �rst-order
terms, thus providing a very elegant, although unwitting, convergence of the
needs of empirical linguistics and computational logic.

Chapter 7 takes a slight departure and considers the relationship between
signatures and speci�cations of signatures, which typically assume various
closure operations such as the transitive closure of subsumption. This chapter
reconsiders the algebra that underlies transitive closure, which, contrary to
some earlier misconceptions, is argued to be matrices over the closed boolean
semi-ring. It is shown that an extension of this algebra can be constructed
from any �nite bounded complete partial order with features and appropri-
ateness, i.e., any �nite signature. It also identi�es a new class of sparse matrix
multiplication algorithms that will be particularly important to typed pro-
gramming language and knowledge representation research as the number of
concepts or types in their inheritance or class hierarchies becomes suÆciently
large.

Chapter 8 reconsiders the problem of Prolog term encoding in the light
of the results of Chapter 7. The same matrix-theoretic reduction given there
can also be used to solve the open problem of �nding the smallest-arity
at
�rst-order term encoding of a �nite lattice. This can also be viewed as an
interesting extension of the classical keyword con
icts or minimal intersec-
tion graph problems. An empirical evaluation of some potential encoding
algorithms for typed feature structures is also given at the end.

1.4.2 Linguistics

This dissertation concerns provable, logical equivalences of attributed type
signatures and their consequences for the representation of partial empir-
ical knowledge with typed feature structures. The logic of typed feature
structures is also widely used as a means of stating principles in theoretical
linguistics, although the boundary between its usage as a formal theoreti-
cal device and its usage as a tool for grammar engineering has often been

12 CHAPTER 1. INTRODUCTION

blurred. The present study focuses on partial information about empirical
objects, which is relevant not only to considerations of processing but also
to the representation of theoretically interesting sets of those objects, which
partial information states can be taken to denote. The �rst-class represen-
tation of these sets, rather than just as a disjunction of elements, is a much
more elegant way to state generalizations over them in the principles of the
grammar.

The goal of the linguist in the theoretical pursuit is often to provide a
statement of those principles that is the simplest to conceive of, the easiest
to extend to other human languages, the most conservative in its perturba-
tion of commonly accepted principles as it encompasses new data, and/or
the most natural in terms of capturing generalizations that are important to
a given research community. One of the consequences of the logical equiva-
lences that exist between attributed type signatures is that empirical data,
from linguistics or any other domain, necessarily under-determine their own
expression in the logic of typed feature structures when considered from a
purely formal point of view. More aesthetic criteria such as those listed above
can be, and have been used to argue for the superiority of one or another of
various equivalent expressions as signatures.

This dissertation rejects the use of these criteria here on the grounds that:

1. they assume a prior set of formally equivalent alternatives, and thus
assume a common and correct knowledge of formal equivalence among
attributed type signatures that did not exist (until now);

2. they have not yet been formalized themselves to the extent that they
can be used to objectively judge otherwise equivalent signatures; and

3. none of them enjoy a consensus of opinion on their importance or truth.

Some of the results of this dissertation can, in fact, be used to furnish the
alternatives to such debates. An understanding of the formal equivalences
presented here, however, is a necessarily independent and preliminary one to
their own appreciation.

On the other hand, a proper understanding of attributed type signatures
alone may be enough to resolve many representation issues. For example, a
wide range of agreement phenomena in language is represented by what is
often called structure-sharing, here called re-entrancies, among the person-
number-gender indices referred to above. A semantic state of a�airs in which
someone likes himself may be represented as in Figure 1.6. The numerical tag

1.4. STRUCTURE OF THE DISSERTATION 13

2
6666664

liking

liker

2
664

1 index
person third
number singular
gender masc

3
775

liked 1

3
7777775

Figure 1.6: A typed feature structure in which the liker and liked are
referred to by the same index -typed feature structure.

2
666666666666664

liking

liker

2
664

4 index
person 1 third
number 2 singular
gender 3 masc

3
775

liked

2
664

5 index
person 1

number 2

gender 3

3
775

4 = 5

3
777777777777775

Figure 1.7: A typed feature structure in which the liker and liked are
referred to by indices with the same substructures.

indicates that the value of liker is extensionally the same feature structure
as the value of liked. But the signature that induces this feature structure
also induces the feature structure in Figure 1.7. In this feature structure, only
the person, number and gender values are re-entrant. The potential re-
entrancy of the indices themselves is prohibited by an inequation, a kind of
negative re-entrancy. The same signature also induces the feature structure
in which both indices and all of their substructures are distinct (inequated),
which conventionally means that the indices refer to two di�erent individuals.

The question for the theoretical linguist then arises as to how it might be
possible to construct an experiment that would determine when Figure 1.7 is
the correct representation. If it is to be interpreted as meaning that the in-
dividuals are the same, then the experiment should distinguish it from cases
in which Figure 1.6 is correct, because these are not mutually consistent,
i.e., they cannot refer to the same object in the world. If it is to be inter-

14 CHAPTER 1. INTRODUCTION

preted as meaning that the individuals are di�erent, then the experiment
should distinguish it from cases in which the third, fully-inequated alterna-
tive is correct, because these are not mutually consistent either. This is an
important question | if one principle of grammar prohibits agreement by in-
equating indices, and another principle requires identical person, number
and gender information, the feature structure in Figure 1.7 is still licensed
by the grammar.

This is a case in which a convention of representation, here the convention
of using features for person, number, and gender information in indices, has
persisted in the absence of a coherent picture of what information states
are actually posited by its signature (Figure 1.5). The alternative signature,
one in which only subtypes are used (Figure 1.4), does not su�er from the
existence of a spurious extra possible feature structure, but was presumably
avoided because of the nuisance of working with so many explicit types.
This is a matter of convenience, however, not a matter of representation. As
Chapter 5 shows, there is another alternative, one in which a parametric type,
index(third,singular,masc), is used to represent indices. This simultaneously
is as compact as the feature-based representation, but avoids dealing with
an extra possibility like Figure 1.7 because parameters cannot be re-entrant.
Parametric types have not been used in theoretical linguistics apart from
lists and sets of other types, again because of a lack of formal understanding
of their consequences.

Theoretical linguists working in the realm of typed-feature-structure-
based formalizations of grammar will hopefully be able to glean from this
dissertation a better understanding of the consequences that the design deci-
sions and changes they make with their attributed type signatures will have.
Some of those will render their grammars more or less eÆciently parseable.
The more important consequences, however, pertain to precisely predicting
all and only the grammatical utterances of some (fragment of) natural lan-
guage. The promissory note that every \constraint-based" theory of gram-
mar, including HPSG, has issued is that there will be something fundamen-
tally more modular, declarative, transparent, and, ultimately, empirically
revealing about grammars articulated as collections of constraints that de-
lineate regions of ungrammaticality on an otherwise grammatical easel. That
this note can actually be paid is not at all a certainty: every large-scale at-
tempt at a feature-structure-based grammar, again including those based on
HPSG, has inevitably been forced to retreat into a more deductive perspec-
tive, to a great extent because of the overwhelming number of common-sense

1.4. STRUCTURE OF THE DISSERTATION 15

constraints that must be explicated in order to exclude pathological absur-
dities from consideration in a truly constraint-based approach | an extra
principle, for example, could be added above to \unlicense" Figure 1.7. These
absurdities must be addressed because they exist on that easel; and that easel
is created by the structure of the presumed attributed type signature. If there
is any chance of producing a large-scale constraint-based grammar using the
logic of typed feature structures, it surely demands a precise understanding
of the algebra of typed feature structures induced by its signature.

Chapter 2 presents an introduction to typed feature structures as for-
malized in Carpenter, 1992. This can be viewed as a formalization of the
approach to feature structures taken in early work on HPSG [Pollard and
Sag, 1987], and, when augmented with constraints that force every feature
structure to have a maximally speci�c type and every pair of substructures to
be either inequated or re-entrant, as a formalization of the feature structures
used in later work, as epitomized in Pollard and Sag, 1994. An overview
of their development in psychology and arti�cial intelligence research is also
provided. One important issue that arises in the course of this survey is
whether typed feature structures are the right representation language for
semantic information that typically involves the use of a wider range of func-
tional abstractions than can elegantly be encoded using simple types and
features.

Chapter 3 presents the de�nitions of signature subsumption and signa-
ture equivalence. These establish two formal criteria for determining the
equivalence of signatures. Signature equivalence is of more direct concern to
theoretical linguists, as it provides a bijective (and thus one-to-one) mapping
between the feature structures that obey appropriateness in one signature
and those of another. Principles of grammar over one signature, translated
into the terminology of another signature, are guaranteed to have the same
e�ect in that other signature. Crucially, the grammaticality predictions of
a set of translated principles are also preserved. Signature equivalence thus
provides the formal criterion for determining whether a signature plus prin-
ciples of grammar, recast into a more elegant or explanatory terminology, is
genuinely equivalent to an original grammar. It is also proven for the case
of �nite signatures, i.e., signatures with a �nite number of feature structures
licensed by appropriateness, that this equivalence can be inferred when two
signatures mutually subsume each other, in the sense de�ned by signature
subsumption.

Chapter 4 shows how attributed type signatures can be used to encode

16 CHAPTER 1. INTRODUCTION

multi-dimensional inheritance and systemic networks without an explosion
in the number of types or features. A proper understanding of the expressive
power of features in an attributed signature reveals how this can be accom-
plished. That expressive power is then shown to be strictly greater than
the expressive power of signatures with no features, due to the existence of
recursive types, types, such as the type for non-empty lists, to which both
a feature structure and one of its substructures can simultaneously belong.
A great many types in HPSG are recursive, with some important linguis-
tic consequences. Lists have routinely been used in HPSG to express the
generalization that a linguistic sign can stand in a particular relation with
an unbounded number of other linguistic objects. If, in principle, syntactic
heads can have any number of arguments, or any number of long-distance
dependencies can exist in a single sentence, or any number of quanti�ers
can exist, with readings corresponding to any permutation of their scopes,
or even if the principles of immediate dominance allow for recursive phrase
structures, such as an unbounded nesting of complement clauses or of noun
phrases within relative clauses, then features must be used in these encodings.
Another interesting example is the encoding of mutual subcategorization be-
tween an attributive adjective and its noun in Pollard and Sag, 1994. This
requires the use of not only recursive types but cyclic feature structures, i.e.,
feature structures that are re-entrant with one or more of their substruc-
tures. Cyclic feature structures can only exist in the presence of recursive
types. The number of features used can be reduced to a bare minimum,
of course, which is a trend that has emerged within very recent research in
HPSG. An understanding of recursive types and their relationship to the
�niteness of the induced algebra of feature structures provides the formal
criterion for guiding that minimization.

Chapter 5 is probably the most important chapter relative to current
feature-structure-based linguistics. Parametric types are discussed here as an
example of how to use the algebraic structure of attributed type signatures
as a guide for extending the formal language of typed feature structures it-
self. Parametric types are very widely used in HPSG-based linguistics. They
are used exclusively with lists and sets and typically as a kind of macro in
which the parameter is a description of a feature structure. In this chapter,
it is shown that parametric types cannot sensibly be regarded as macros,
and that parameters cannot be sensibly regarded as descriptions if the de-
scription language contains variables. The good news is that signatures with
parametric types can, with some restrictions, be regarded as macros for nor-

1.4. STRUCTURE OF THE DISSERTATION 17

mal signatures, and that the restricted application of parametric types to lists
and sets is unnecessary. As mentioned above, parametric types can be used
much more proli�cally to provide elegant, compact, \type-based" encodings
of other linguistic objects.

Chapter 6 examines the relationship between Prolog term encodings and
typed-feature-structure encodings of partial empirical knowledge. The use of
typed feature structures in linguistics was originally justi�ed on the basis of
its possession of named attributes and the fact that it provided strictly more
expressive power than �rst-order-term encodings. In spite of that original
claim, the last twenty years of linguistic applications of feature structures
have seen a stronger type discipline and restrictions on the use of features
| culminating in appropriateness conditions | that have actually pushed
feature structures back towards �rst-order terms in expressive power. It has
been known for several years that at least one formalization of HPSG is
�rst-order equivalent, namely SRL [King, 1989], in which feature structures
denote total information and therefore have only the discrete information
ordering among them. This formalization had a profound impact on the
view of feature structures taken in Pollard and Sag, 1994 and later work on
HPSG. The logic of Carpenter [1992] can be viewed as a generalization of SRL
that accommodates the representation of partial information. The present
chapter shows that a signi�cant fragment of the logic of Carpenter [1992] is
equivalent in its expressive power to Prolog terms, which in turn generalize
�rst-order terms. The �nal chapter pursues the practical application of this
equivalence.

1.4.3 Practical Grammar/Software Development

In addition to concerns of importance to the theoretical linguist, grammar
developers, as well as developers working with knowledge representation tools
in other domains, must pay particular attention to the eÆciency and scala-
bility of their code, with respect to both parsing and generation in the case
of natural language processing, as well as to certain other development tasks
such as incremental compilation in general. Typed feature structures are
quite useful for this kind of development because the combination of seman-
tic typing, subtyping, named attributes and appropriateness allows one to
use a very terse description language to refer to a sparse amount of informa-
tion over what are typically very large structures or terms. The reduction of
a large amount of processing to the one fairly eÆcient operation of uni�ca-

18 CHAPTER 1. INTRODUCTION

tion is also quite appealing from the standpoint of constructing simple but
eÆcient implementations.

Modularity in this framework, however, is quite another matter. The
pre-eminence of uni�cation, when combined with appropriateness and the
reliance on paths of features relative to a common superstructure to refer
to the sharing of information, confers upon feature structures a disturbing
degree of non-modularity, which can re
ect poorly on their grammars' scal-
ability and robust modi�cation. A recent trend within HPSG, which was
motivated to a great extent by this, has been to enumerate classes of lin-
guistic information as explicit types whenever possible rather than as feature
values. This does make the representation more modular, in practice. Fea-
tures cannot be made to disappear altogether, however, although not for the
reason that one might at �rst suspect, and as a result, the signature remains
the basic modular unit of this logic.

This dissertation can be viewed as a study of that unit, along with some
practical consequences. In particular, the question of determining when two
signatures are equivalent invites some speculation as to when it might be
practically advantageous to convert from one signature to another equivalent
one, either internally within a development system or explicitly by a grammar
developer, since not all logically equivalent signatures will necessarily have
the same computational properties. Where a representation prefers subtypes,
as in Figure 1.4, those types have typically been represented as strings, which
are hashed by a programming language compiler. Where a representation
prefers feature values, as in Figure 1.5, the feature structures containing
those values have typically been represented as records, such that access
to the feature values involves some amount of pointer chasing at run-time.
Both of those are purely conventional. In Chapter 8, it will be shown that
in certain circumstances it is actually preferable to encode semi-lattices of
types in a record-like structure for transparency and eÆciency, whereas in
Chapter 4 it will be shown that, in other circumstances, feature-value-based
representations can be unfolded into subtype-based ones for an improvement
in eÆciency.

Chapter 2 presents an introduction to the logic of typed feature struc-
tures as formulated in Carpenter, 1992 along with an historical overview of
its development. This is a very widely used version of typed feature logic,
and is the logical basis of the ALE system and its successors. Chapter 3
then presents the formal de�nitions of signature subsumption and signature
equivalence that are required in order to certify the correctness of these trans-

1.4. STRUCTURE OF THE DISSERTATION 19

formations. For internal transformation by a grammar development system,
signature subsumption of the transformed signature by the original signature
is all that is required. Such a system can map principles, queries etc. into the
terminology of the transformed signature by the map that witnesses signature
subsumption, carry out the computations there, and map back so that the
answer is stated in terms of the original signature. For explicit transforma-
tion by the grammar developer, signature equivalence, a stronger condition,
is necessary in order to ensure that the explicitly transformed signature and
grammar can be modi�ed or augmented with the same e�ect as would have
taken place with the original signature and grammar. It is also proven that
symmetric signature subsumption is equivalent to signature equivalence only
in the �nite case.

It is commonly believed that there are certain feature values that cannot
be equivalently expressed as subtypes in a signature. That perception is
based on the unique ability of feature values to participate in re-entrancies.
Chapter 4 shows that re-entrancies are only contingently related to the extra
expressive power that features provide, and that the real source of extra
expressive power is the possible presence of recursive types, types, such as
the type for non-empty lists, to which both a feature structure and one of
its substructures can simultaneously belong. Recursive types can only exist
in the presence of features under certain appropriateness conditions, and
the same information that they are capable of conveying can be conveyed
only by potentially in�nitely many subtypes alone. Recursive types are the
unique aspect of signatures that can prevent a totally unconstrained mapping
among feature-based and subtype-based encodings of information through
transformations of �nite signatures.

Chapter 5 extends the logic of typed feature structures by adding para-
metric types. While parametric types are already used in HPSG, they have
only been used for lists and sets, and even then somewhat informally. Prop-
erly understood, they can be used much more widely to provide more compact
encodings of information than subtypes alone can, while still retaining many
of the same bene�ts. Parametric types e�ectively provide a third alternative
to using features or subtypes to encode information in attributed type sig-
natures. While signatures often serve as a �nite presentation of what would
otherwise be an in�nite number of types, it is also possible to induce a smaller
subsignature relative to a �xed grammar that is suÆcient for processing with
that �xed grammar. Even in the absence of parametric types, this is a very
useful idea for grammar development, as the number of types and features in

20 CHAPTER 1. INTRODUCTION

a signature typically does correlate with how eÆcient the encoding of feature
structures relative to that signature can be.

The remaining chapters will probably be of the most relevance to gram-
mar developers and other software developers working in knowledge represen-
tation who are interested in using the logic of typed feature structures given
their great, direct potential to improve upon the performance of feature-
structure-based logic programming languages. Chapter 7 considers the alge-
braic structure underlying the speci�cation of signatures given by users of
knowledge representation tools and object-oriented programming languages.
This structure can be used to improve the eÆciency of compiling the tran-
sitive closure of signature declarations and other closure operations that are
implicitly assumed to hold by grammar development systems and typed pro-
gramming language compilers that use record-like data structures. The de-
velopment of a large conceptual knowledge base, such as a signature, typically
involves making a very large number of small changes to the knowledge base,
possibly interleaved with tests that ensure the validity of intermediate stages
of development. Compilation of the declarations that de�ne the knowledge
base is essential for ensuring this validity, and yet incremental compilation
is extremely diÆcult due to the non-modularity of the signatures themselves
and the non-locality of least-upper-bound computations. As the number of
types and features becomes larger, the cost of complete, non-incremental
compilation can become very expensive unless close attention is paid to the
algorithms used. It is also conceivable that as object-oriented programming
languages become more modular, secure and portable, the number of de-
clared classes in programs written in those languages could also become pro-
hibitively large for their compilers. Chapter 7 shows that all of the tasks
that must be performed in compiling and verifying the well-formedness of an
attributed type signature can be reduced to operations on sparse matrices.
Preliminary results have been so promising that incremental compilation of
signatures may not be necessary at all | the closures might simply be re-
computed in their entirety.

Chapters 6 and 8 consider the problem of encoding typed feature struc-
tures as Prolog terms in an implementation of a programming language or
grammar development system. Logic programming languages based on typed
feature structures such as ALE and its successors bear a great deal of simi-
larity to Prolog, but it has been assumed since the �rst release of ALE itself
that it was impossible to encode typed feature structures as Prolog terms in
such a way that feature structure uni�cation could reduce simply to Prolog

1.4. STRUCTURE OF THE DISSERTATION 21

term uni�cation. Such a reduction has obvious practical advantages both
for system developers and system users, since both the heavily optimized
compilation for the core logic programming language itself and many of the
enhanced pieces of functionality o�ered by commercial Prolog systems be-
come available essentially for free. As it happens, a very large and signi�cant
class of signatures, namely those that are statically typable, do admit such a
reduction. This is proven in Chapter 6, and some optimizations of the reduc-
tion and an evaluation of its performance in a practical setting is provided
in Chapter 8. These results require a serious reappraisal of using commercial
Prolog technology to support feature-structure-based logic programming and
grammar development as an alternative to designing and building customized
abstract-machine-based compilers.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Attribute-Value Logic

The present study will use the logic of typed feature structures as formulated
in Carpenter, 1992 as its starting point. This formulation is a relatively
recent one, by comparison, and is general enough in its view of typing and
feature structures that it captures the essential characteristics of most other
formulations as speci�c instances. It is also one of the more widely used
in both linguistic and formal work based on attribute-value logic. Many of
the practical results of the present study, in addition, cannot accrue unless
appropriateness conditions with a fairly restrictive interpretation are assumed
to apply to type signatures, as they are through much of the development of
Carpenter, 1992.

The next section of this chapter provides an introduction to the typed
feature logic of Carpenter [1992] with some passing comparisons to several re-
lated logics. It also takes two digressions to consider the feasibility of assum-
ing that all type systems are bounded complete partial orders, which, in the
�nite case, is equivalent to assuming meet-semi-latticehood (Section 2.1.2),
and of assuming that the set of types to which any feature is appropriate has
a unique most general type | sometimes called unique feature \introduc-
tion" at that most general type (Section 2.1.8). Both of these assumptions
are fairly restrictive for a knowledge representation language and have been
widely criticized since the publication of Carpenter, 1992 as being incon-
venient to adhere to and computationally intractable to restore when not
adhered to. As these two sections show, restoring meet-semi-latticehood in a
compilation stage can, in fact, be eÆciently performed in practice, although it
is intractable in theory, and restoring unique feature introduction can always
be achieved in time bounded by a low-degree polynomial.

23

24 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

The third section provides an account of the early history of feature struc-
tures to place their design in its proper context.

2.1 The Logic of Typed Feature Structures

The key to understanding Carpenter, 1992 is that, in spite of its title, it
does not present a logic of typed feature structures, but a logic about typed
feature structures. In particular, the logic developed in the course of that
work is one of expressions from a description language with features and
types drawn from a �xed signature. The rules of the various versions of the
logic presented there choose among several classes of axiom schemes that
enforce a wide range of di�erent requirements on these descriptions, from
various hygienic properties such as the associativity and distributivity of
their connectives, to several degrees of discipline in typing relative to the
type system of the signature. Depending on the choice of rules, a respective
collection of typed feature structures relative to the same signature serves
as the semantic model for the closure of derivations over descriptions with
the chosen logic. In this respect, Carpenter, 1992 bears more similarity to
work in domain theory, in which feature structures can be taken as models of
recursive computations (following, for example, Pereira and Shieber [1984]),
than to the more classical model-theoretic treatment of descriptions [King,
1989, Smolka, 1988] or of typed feature structures as syntactic terms in their
own right [Johnson, 1988], which characterizes much of the other work on
attribute-value logics.

The actual logics themselves will not be introduced here | the inter-
ested reader is referred to Carpenter, 1992 for their de�nitions and proofs
of their soundness and completeness. The present study will consider only
the algebraic operations on feature structures that were proven in that book
to correspond exactly to the closure of descriptions under those logics, i.e.,
to the least �xed points of the functions corresponding to inference steps in
these calculi.

2.1.1 Type Hierarchies

In Carpenter, 1992, feature structures are typed, and those types are related
to each other in a particular kind of partial order.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 25

a

b

c

g

f

e

d

Figure 2.1: An example of a non-bounded-complete partial order.

De�nition 2.1. A partial order on a set, P , is a relation, � � P �P , such
that, for all x; y; z 2 P :

� (re
exivity) x � x,

� (anti-symmetry) if x � y and y � x, then x = y,

� (transitivity) if x � y and y � z, then x � z.

The partial order we consider is subsumption, written v. If types are
interpreted as sets, then subsumption is interpreted as the inverse inclusion
relation on those sets. Intuitively, a v b says that every feature structure
of type b is also of type a. Figure 2.1 shows an example of a partially
ordered set. We write them in a way that assumes re
exivity, anti-symmetry,
and transitivity, so that only a base immediate subsumption relation, whose
re
exive and transitive closure is the real subsumption relation, needs to be
given. a (immediately) subsumes b, because a is lower than b, and therefore
b does not subsume a. Similarly, b (immediately) subsumes c; so a also
subsumes c by transitivity. a also implicitly subsumes itself.

Not every a and b may be comparable with v; but we can identify subsets
of P that are totally ordered by v:

De�nition 2.2. A chain is a subset, C, of a partially ordered set, hP;�i,
such that for every x; y 2 C, either x � y or y � x.

The type system is presented as a partially ordered set, rather than just
as a set of incomparable types because the intention is to use types as labels
on feature structures to represent knowledge or information about objects,
rather than objects in the world themselves. This view of types is, in part, the
legacy of knowledge representation languages such as KL-ONE [Brachman,
1977], which could perform certain automated classi�cation tasks to assist

26 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

the user in drawing conclusions from partial information about the world.
It has also been reinforced by research in computational linguistics, notably
by Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag, 1987,
1994, which used feature structures to represent partial information about
linguistic entities to create a sophisticated formal language for specifying
constraints on the structure of language that could be used to parse sentences.

Carpenter [1992] is particularly interested in partial orders of types for
which uni�cation makes sense, i.e., partial orders in which the combination of
consistent partial information about type membership results in the inference
of membership in some least speci�c type that can be used to label a feature
structure. Uni�cation may still fail because not all of our type hierarchies will
have a greatest element. Alternatively, one could also require the existence of
a greatest element, >, and say that it is \implemented" as failure in practice
during uni�cation. This is the approach taken in A��t-Ka�ci, 1984 and Fall,
1996, for example. We will also need to look at partial orders of types in this
way in Chapter 7; but it is trivial to add a topmost element to any BCPO.

De�nition 2.3. Given a partially ordered set, hP;�i, the set of upper bounds
of a subset S � P is the set Su = fy 2 P j 8x 2 S:x � yg. The set of lower
bounds, Sl, is de�ned dually.

De�nition 2.4. A partially ordered set, hP;�i, is bounded complete (BCPO)
i�, for every S � P such that Su 6= ;, Su has a least element, called the least
upper bound, or join, of S, written

W
S.

The greatest lower bound, or meet, of S, when it exists, is de�ned dually
and is written

V
S.

De�nition 2.5. Given a BCPO, hP;�i, p 2 P is join reducible i� there
exist distinct consistent q; r 2 P not equal to p such that

W
fq; rg = p. Meet

reducibility is de�ned dually.

De�nition 2.6. A type hierarchy is a non-empty, countable, bounded com-
plete, partially ordered set.

In the case of type hierarchies, where the partial order is subsumption, we
then write

W
S as

F
S, and in the special case where S has only two elements

x and y, as xty. Least upper bounds realize our intuitions about uni�cation
on partially ordered sets of types. Figure 2.1 is not a BCPO. For example,
the set, S = fb; eg has the set of upper bounds, Su = fc; dg, which has no
least element. Figure 2.2, on the other hand, is a BCPO. h is a join-reducible

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 27

h

c d

?

a

b

g

f

e

Figure 2.2: An example of a bounded complete partial order.

element. These are represent the \interesting" cases of type uni�cation.

The biggest departure here from Carpenter, 1992 is that the latter admits
only �nite BCPOs as type hierarchies. Many of the remarks made in the
course of this dissertation will be speci�c to �nite BCPOs, because of their
obvious computational importance; and it will be indicated explicitly where
�niteness is assumed.

There are actually three particular kinds of �niteness that one can impose
on type hierarchies as de�ned here. Non-empty bounded complete partial or-
ders always have a least type (and thus are always non-empty), because S = ;
has the non-empty set of upper bounds, Su = P , which must have a least
element. This element is written as ? (pronounced \bottom"). Denotation-
ally, ? corresponds to the set of all objects in a model, or to put it another
way, the set of objects that satisfy an empty set of constraints or information
that we have about those objects. Viewed in this way ? is empty in the in-
formation that it provides about its objects | anything could be of type ?.
We will be looking at partially ordered types as successive re�nements of ?
that add information about their objects. Many times, it will be convenient
to assume that a type's denotation cannot be achieved by an in�nite number
of distinct such re�nements:

De�nition 2.7. A partially ordered set, hP;�i, is well-founded i� it has no
in�nite descending chains.

Well-foundedness will be critical at several points, because it will be con-
venient to de�ne characteristic functions that map types to cardinals by
exploiting the natural isomorphism that exists between a given type and the

28 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

set of \paths" through the type hierarchy from ? to that type. With well-
foundedness, those paths are all �nite, which will allow us to dispense with
trans�nite cardinals as potential values of the characteristic functions. The
most important of these functions is:

De�nition 2.8. Given a well-founded type hierarchy, hT;vi, and a type t 2
T , the path length of t is given by the function Æ : T �! Nat, where:

Æ(t) =

(
0 if t = ?;
1 + max

t02ftglnftg
Æ(t0) otherwise.

The path length of t is the length of the longest path of immediate sub-
sumption links, measured in types, from ? to t. In Figure 2.2, Æ(a) = 1,
Æ(b) = 2, but Æ(h) = 4, because of the path ?� g � f � e� h.

A second kind of �niteness also concerns how \deep" subtyping can ex-
tend.

De�nition 2.9. A partially ordered set, hP;�i, is Noetherian i� its dual,
hP;�i, is well-founded.

Noetherian sets have no in�nite ascending chains, and well-founded sets
have no in�nite descending chains. An in�nite ascending chain is a chain
with an in�nite number of elements and no greatest element. These chains
still allow us to talk about path length, for example, since the values on an
in�nite ascending chain will all be �nite, although unbounded.

The third kind of �niteness concerns how \broad" subtyping can fan out,
i.e., how many subtypes a given type can immediately subsume.

De�nition 2.10. Given a type hierarchy, hT;vi, and a type t 2 T , the
branching factor of t is given by the function b : T �! Nat [f1g, where:

b(t) = jfx 2 ftgu j 8y 2 ftgu:(y v x) y = x or y = t)gj :

b(t) is the number of minimal elements of the set of upper bounds of t.

De�nition 2.11. A type hierarchy, hT;vi, is �nitely branching i� there is
an n 2 Nat such that for all t 2 T , b(t) � n.

The n for Figure 2.2 is 2, which is attained at h and ?.
These three structural conditions are suÆcient to characterize �niteness

in the usual sense of cardinality:

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 29

De�nition 2.12. A type hierarchy, hT;vi, is �nite i� jT j is �nite.

Theorem 2.1. A type hierarchy is �nite i� it is:

� well-founded,

� Noetherian, and

� �nitely branching.

Proof. If hT;vi is �nite, then it is trivially well-founded, Noetherian and
�nitely branching. Suppose hT;vi is well-founded, Noetherian and �nitely
branching. Since it is well-founded, we can use our path length function, Æ.
Since it is �nitely branching, there is an upper bound, n on b(T), the image
of b on T . Since T has a least element, there are at most n types with a
Æ-value of 1. Since every type, t, with Æ(t) > 1, lies on a path that passes
through a type, t0, with Æ(t0) = Æ(t)�1, there at most nk types with Æ-values
of k. Thus for any path length, there are a �nite number of types with that
path length.

Hence, if there is a bound, d, such that for all t 2 T , Æ(t) � d, then jT j is
�nite. Suppose there is no such bound. T has at least one maximal type or
else T contains an in�nite ascending chain, and is thus not Noetherian. T has
an in�nite number of maximal types, or else the path length of the maximal
type(s) with the largest path length provides the bound d. Similarly, for any
path length p, there are in�nitely many maximal types with path length p or
greater. Let t0 = ?, which has path length 0 and subsumes in�nitely many
of the maximal types (in fact, all of them). For every ti, since it has only
�nitely many subtypes of path length i+1, there is a subtype, ti+1 A ti such
that Æ(ti+1) = i+1 and ti+1 subsumes in�nitely many of the maximal types.
The sequence, t0 @ t1 @ : : : forms an in�nite ascending chain in T . So the
bound, d, exists, and jT j is �nite.

The only fact required from bounded completeness is the existence of a
least element. There is also a useful dual notion of branching factor, to which
we did not need recourse for characterizing �niteness:

De�nition 2.13. Given a type hierarchy, hT;vi, and a type t 2 T , the
supertype branching factor of t is given by the function � : T �! Nat [f1g,
where:

�(t) =
��fx 2 ftgl j 8y 2 ftgl:(x v y) y = x or y = t)g

�� :
�(t) is the number of maximal elements of the set of lower bounds of t.

30 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

2.1.2 Meet Semi-lattice Completions

Just because it would be convenient for uni�cation to be well-de�ned does
not mean it would be convenient to think of any empirical domain's concepts
as a bounded complete partial order, or that it would be convenient to add
all of the types necessary to a would-be type hierarchy to ensure bounded
completeness. In the case of �nite partial orders, bounded completeness is
equivalent to another more localized condition:

De�nition 2.14. A partial order, hP;vi, is a meet semi-lattice i� for any
x; y 2 P , x u y#.

Proposition 2.1. A �nite partial order is bounded complete i� it is a meet
semi-lattice.

u is the binary greatest lower bound, or meet operation, and is the dual
of the join operation. Figure 2.1 is not a meet semi-lattice because c and d
do not have a meet, nor do a and g, for example.

The question then naturally arises as to whether it would be possible,
given any �nite partial order, to add some extra elements (types, in this
case) to make it a meet semi-lattice, and if so, how many extra elements it
would take, which also provides a lower bound on the time complexity of the
completion.

It is, in fact, possible to embed any �nite partial order into a lattice that
preserves existing meets and joins by adding extra elements. The resulting
construction is the �nite restriction of the Dedekind-MacNeille completion
[Davey and Priestley, 1990, p. 41].

De�nition 2.15. Given a partially ordered set, P , the Dedekind-MacNeille
completion of P , hDM(P);�i, is given by:

DM(P) = fA � P jAul = Ag

This route has been considered before in the context of taxonomical
knowledge representation [A��t-Ka�ci et al., 1989, Fall, 1996]. While meet
semi-lattice completions are a practical step towards providing a semantics
for arbitrary partial orders, they are generally viewed as an impractical pre-
liminary step to performing computations over a partial order. Work on more
eÆcient encoding schemes began with A��t-Ka�ci et al., 1989, and this seminal

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 31

123 124 134 234

1 2 3 4

Figure 2.3: A worst case for the Dedekind-MacNeille completion at n = 4.

paper has in turn given rise to several interesting studies of incremental com-
putations of the Dedekind-MacNeille completion in which LUBs are added
as they are needed [Bertet et al., 1997, Habib and Nourine, 1994].

There are partial orders P of unbounded size for which jDM(P)j =
�(2jP j). As one family of worst-case examples, parametrised by n, consider
a set S = f1; : : : ; ng, and a partial order P de�ned as all of the size n � 1
subsets of S and all of the size 1 subsets of S, ordered by inclusion. Figure 2.3
shows the case where n = 4. Although the maximum subtype and supertype
branching factors in this family increase linearly with size, the partial orders
can grow in depth instead in order to contain this.

That yields something roughly of the form shown in Figure 2.1.2, which
is an example of a recent trend in using type-intensive encodings of linguistic
information into typed feature logic in HPSG, beginning with Sag [1997].
These explicitly isolate several dimensions1 of analysis as a means of classi-
fying complex linguistic objects. In Figure 2.1.2, speci�c clausal types are
selected from among the possible combinations of clausality and headed-
ness subtypes. In this setting, the parameter n corresponds roughly to the
number of dimensions used, although an exponential explosion is obviously
not dependent on reading the type hierarchy according to this convention.

There is a simple algorithm for performing this completion, which as-
sumes the prior existence of a most general element (?), given in Figure 2.5.
Most instantiations of the heuristic, \where there is no meet, add one" [Fall,
1996], do not yield the Dedekind-MacNeille completion [Bertet et al., 1997],
and other authors have proposed incremental methods that trade greater ef-
�ciency in computing the entire completion at once for their incrementality.

Proposition 2.2. The MSL completion algorithm is correct on �nite par-
tially ordered sets, P , i.e., upon termination, it has produced DM(P).

1It should be noted that while the common parlance for these sections of the type
hierarchy is dimension, borrowed from earlier work by Erbach [1994] on multi-dimensional
inheritance, these are not dimensions in the sense of Erbach [1994] because not every
n-tuple of subtypes from an n-dimensional classi�cation is join-compatible.

32 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

�
n
-w
h
-�
ll
-r
el
-c
l
in
f-
w
h
-�
ll
-r
ec
l-
cl

re
d
-r
el
-c
l

si
m
p
-i
n
f-
re
l-
cl
w
h
-s
u
b
j-
re
l-
cl

b
ar
e-
re
l-
cl

�
n
-h
d
-�
ll
-p
h

in
f-
h
d
-�
ll
-p
h
�
n
-h
d
-s
u
b
j-
p
h

w
h
-r
el
-c
l

n
on
-w
h
-r
el
-c
l

h
d
-�
ll
-p
h

h
d
-c
om
p
-p
h

h
d
-s
u
b
j-
p
h

h
d
-s
p
r-
p
h

im
p
-c
l

d
ec
l-
cl

in
te
r-
cl

re
l-
cl

h
d
-a
d
j-
p
h

h
d
-n
ex
u
s-
p
h

cl
au
se

n
on
-c
la
u
se

h
d
-p
h

n
on
-h
d
-p
h

C
L
A
U
S
A
L
IT
Y

H
E
A
D
E
D
N
E
S
S

p
h
ra
se

F
ig
u
re
2.
4:
A
fr
ag
m
en
t
of
an
E
n
gl
is
h
gr
am
m
ar
in
w
h
ic
h
su
p
er
ty
p
e
b
ra
n
ch
in
g
d
is
ti
n
gu
is
h
es

\d
im
en
si
on
s"
of
cl
as
si
�
ca
ti
on
.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 33

1. Find two elements, t1; t2 with minimal upper bounds, u1 : : : uk, such that

their join t1 t t2 is unde�ned, i.e., k > 1. If no such pair exists, then stop.

2. Add an element, v, such that:

� for all 1 � i � k, v v ui, and

� for all elements t, t v v i� for all 1 � i � k, t v ui.

3. Go to (1).

Figure 2.5: The MSL completion algorithm.

Proof: Let V (P) be the partially ordered set produced by the algorithm.
Clearly, P � V (P). It suÆces to show that (1) V (P) is a complete lattice
(with > added), and (2) for all v 2 V (P), there exist subsets A;B � P such
that v =

W
V (P)A =

V
V (P)B.

2

Suppose there are v; w 2 V (P) such that vuw". There is a least element,
so v and w have more than one maximal lower bound, l1; l2 and others. But
then fl1; l2g is upper-bounded and l1 t l2", so the algorithm should not have
terminated. Suppose instead that v t w". Again, the algorithm should not
have terminated. So V (P) with > added is a complete lattice.

Given v 2 V (P), if v 2 P , then choose Av = Bv = fvg. Otherwise, the
algorithm added v because of a bounded set ft1; t2g, with minimal upper
bounds, u1; : : : uk, which did not have a least upper bound, i.e., k > 1. In
this case, choose Av = At1 [At2 and Bv =

S
1�i�k Bui. In either case, clearly

v =
W

V (P)Av =
V

V (P)Bv for all v 2 V (P). �
Termination is guaranteed by considering, after every iteration, the num-

ber of sets of meet-irreducible elements with no meet, since all completion
types added are meet-reducible by de�nition.

In LinGO [LinGO, 1999], the largest publicly-available LTFS-based gram-
mar, and one which uses such type-intensive encodings, there are 3414 types,
the largest supertype branching factor is 19, and although dimensionality is
not distinguished in the source code from other types, the largest subtype
branching factor is 103. Using supertype branching factor for the most con-
servative estimate, this still implies a theoretical maximum of approximately
500,000 completion types, whereas only 893 are necessary, 648 of which are

2These are sometimes called the join density and meet density, respectively, of P in
V (P) [Davey and Priestley, 1990, p. 42].

34 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

inferred without reference to previously added completion types.
Whereas incremental compilation methods rely on the assumption that

the joins of most pairs of types will never be computed in a corpus before the
signature changes, this method's eÆciency relies on the assumption that most
pairs of types are join-incompatible no matter how the signature changes. In
LinGO, this is indeed the case: of the 11,655,396 possible pairs, 11,624,866
are join-incompatible, and there are only 3,306 that are consistent (with
or without joins) and do not stand in a subtyping or identity relationship.
In fact, the cost of completion is often dominated by the cost of transitive
closure, which is discussed in Chapter 7 in more detail.

While the continued eÆciency of compile-time completion of signatures
as they further increase in size can only be veri�ed empirically, what can be
said at this stage is that the only reason that signatures like LinGO can be
tractably compiled at all is sparseness of consistent types. In other geometric
respects, it bears a close enough resemblance to the theoretical worst case to
cause concern about scalability. Compilation, if eÆcient, is to be preferred
from the standpoint of static error detection, which incremental methods
may elect to skip. In addition, running a new signature plus grammar over
a test corpus is a frequent task in large-scale grammar development, and
incremental methods, even ones that memoise previous computations, may
pay back the savings in compile-time on a large test corpus. It should also be
noted that another plausible method is compilation into logical terms or bit
vectors, in which some amount of compilation (ranging from linear-time to
exponential) is performed with the remaining cost amortised evenly across
all run-time uni�cations, which often results in a savings during grammar
development.

2.1.3 Feature Structures

A type hierarchy, hT;vi, along with a �nite set of features, Feat, and a set
of nodes, Q, induces a set of typed feature structures:

De�nition 2.16. A typed feature structure is a tuple, F = hQ; �q; �; Æ;=i
where:

� Q is a countable set of nodes,

� �q 2 Q is the root node,

� � : Q �! T is a total node typing function,

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 35

a �q

q1 b
f

q2
g c

q4 ef

q5 f

g

q3 d
h

/

/

Figure 2.6: An example typed feature structure.

� Æ : Feat �Q �! Q is a partial feature value function, and

� = � Q�Q is an anti-re
exive and symmetric inequation relation.

such that for every q 2 Q, there is a �nite sequence of features f1; : : : ; fn 2
Feat such that q = Æ(fn; Æ(fn�1; � � � Æ(f2; Æ(f1; �q)))), i.e., a �nite sequence
that connects �q to q with Æ.

F denotes the set of all feature structures relative to the (implicit) set of
types, T , and features, Feat.

An example feature structure induced by the type hierarchy in Figure 2.2
and the set of features Feat = ff;g;hg can be represented as a directed
graph, as shown in Figure 2.6. It has the set of nodes Q = f�q; q1; q2; q3; q4; q5g
with the following node typing and feature value functions, and inequation
relation:

�(�q) = a Æ(f; �q) = q1 q2 = q3
�(q1) = b Æ(g; �q) = q2 q4 = q5
�(q2) = c Æ(h; �q) = q3
�(q3) = d Æ(f; q2) = q4
�(q4) = e Æ(g; q2) = q5
�(q5) = f

Notice that in this formalization of feature structures, types are not values
themselves, but only decorate the real values | nodes | through the typing
function, �.

The relation,=, represents the set of inequations that hold between nodes
in a feature structure. This is not simply the complement of equality. These
are persistent, negative constraints on the identi�cation of nodes, much like
those proposed for Prolog II [Colmerauer, 1984, 1987].

Not much can be said about nodes apart from the fact that they can bear
types and features with values. The set, Q, has no algebraic structure of its

36 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

own, and, with the exception of extensional typing, the description language
used in Carpenter, 1992 provides no means of regulating the number of fea-
ture structures in F , or the number of them of any particular type. It also
provides no means of determining whether two di�erent feature structures
have intersecting node sets unless they are both substructures of a common
feature structure, so that they can be referred to by paths of features. In
fact, no description language can, whose descriptions are intended to describe
single feature structures (and their substructures), rather than arbitrary col-
lections of them.

Nodes are not types; and the fact that Æ(f) maps nodes to nodes rather
than types to types is a signi�cant departure (with precedents) from early
conceptions of feature structures, as elaborated upon in Section 2.2. They
correspond roughly to instances of a particular concept or type; but we are
entirely dependent upon their types, features values and the existence of a
common root node (and therefore, a common super-structure) to distinguish
them, i.e., to observe whether two nodes q1; q2 2 Q are such that q1 = q2 or
q1 6= q2. In general, there are some nodes that we simply cannot distinguish
from each other, particularly if they do not belong to a set Q of a common
feature structure.

Following one of the extensions discussed in Carpenter, 1992, the set of
nodes for a given feature structure is allowed to be countably in�nite here,
which admits two possible kinds of in�nity for typed feature structures. Just
as with type hierarchies, typed feature structures can be \deeply" in�nite,
by having unboundedly long paths of nodes, or \broadly" in�nite, by hav-
ing nodes, q 2 Q, for which there are in�nitely many features, f 2 Feat
such that Æ(f; q)#. The latter is rejected here by the assumption that the
set of features, Feat, is �nite, following Carpenter [1992].3 This is often re-
stricted further by appropriateness, as explained below. This assumption is
ultimately responsible for almost every practical bene�t of the logic of typed
feature structures documented in this dissertation or earlier; and its validity
hinges on an apparent lack of empirical necessity in any domain for formal
descriptions of objects with an in�nite number of attributes or, put in the
language of �rst-order logic, in�nitely branching terms.

3It also depends on the assumption that Æ is a function, i.e., that it can only take one
value for every pair of feature and node. With the arguable exception of set-valued features
[Carpenter, 1993a, Manandhar, 1994, Moshier and Pollard, 1994, Richter, in prep.] this
assumption seems to be fairly universal, and even for set-valued features, an auxiliary
accessibility relation is typically used instead of Æ).

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 37

�q

a

q1

a
f

q2

a
f

� � �
f

Figure 2.7: A typed feature structure with an in�nite number of nodes.

To understand the former better, we need a formal notion of paths and
path values:

De�nition 2.17. A path is a �nite sequence of features, � 2 Feat�.

De�nition 2.18. Given a typed feature structure, F = hQ; �q; �; Æ;=i, its
partial path value function is a function, Æ0 : Feat� �Q �! Q such that:

� Æ0(�; q) = q, and

� Æ0(f�; q) = Æ0(�; Æ(f; q))

Following Carpenter [1992], Æ will be used to refer to both the feature
value function and the path value function.

De�nition 2.19. If F = hQ; �q; �; Æ;=i, and Æ(�; q)#, then the restriction of
F to � is F@� = hQ0; �q0; �0; Æ0;=0i, where:

� Q0 = fÆ(��0; �q)j�0 2 Feat�g,

� �q0 = Æ(�; �q),

� Æ0 = ÆjFeat�Q0,

� �0 = �jQ0, and

� =0 ==jQ0�Q0.

De�nition 2.20. A typed feature structure, F = hQ; �q; �; Æi, is �nite i� Q
is a �nite set.

Figure 2.7 depicts part of a feature structure with an in�nite number of
nodes, each of which is of type a and has a single attribute, f. This is a
well-de�ned typed feature structure, but it is not �nite.

Typed feature structures, even �nite ones, can also be \in�nite" in the
sense of having cycles, and therefore having a path value function that takes
a value for in�nitely many paths. For example, a feature structure can have
two nodes, �q and q such that Æ(f; �q) = q and Æ(f; q) = �q. That can be

38 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

a �q q a

f

f

Figure 2.8: The directed graph representation of a cyclic feature structure.

2
4 1 a

f

�
a
f 1

�35
Figure 2.9: The AVM representation of Figure 2.8.

depicted as a labelled directed graph with cycles, as shown in Figure 2.8,
or as an AVM, as shown in Figure 2.9. The boxed numerical tags are used
to indicate the identity of nodes relative to paths, or \re-entrant nodes,"
i.e., nodes that have an in-degree of greater than 1 in the directed graph
representation of a feature structure.4

A related ability of feature structures is to have acyclic re-entrancies be-
tween paths, i.e., sharing of substructures. Figure 2.10 is distinguished from
Figure 2.11, for example, in that its f and g values are not only of the same
type with the same features, but actually the same node. Boxed numerical
tags are also used in AVM representations to identify nodes that participate
in the inequation relation. Figure 2.12 shows the AVM representation of the
feature structure shown in Figure 2.6. In AVM representations, if no= pairs
are shown, it is assumed that == ;.

4The exception is the root node, �q, which is considered re-entrant if it has an in-degree
greater than 0.

2
664
a

f 1

�
b
h c

�
g 1

3
775

Figure 2.10: The AVM representation of a feature structure with an acyclic
re-entrancy.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 39

2
66664
a

f

�
b
h c

�

g

�
b
h c

�
3
77775

Figure 2.11: The AVM representation of a feature structure with structurally
identical but non-re-entrant substructures.2

66666666664

a
f b

g

2
4 1 c
f 2 e
g 3 f

3
5

h 4 d
1 = 4

2 = 3

3
77777777775

Figure 2.12: The AVM representation of the feature structure in Figure 2.6.

2.1.4 Appropriateness and Attributed Type Signatures

Given a set of types, T , and a �nite set of features, Feat, the set of feature
structures, F , includes, for every combination of features from Feat, a feature
structure that has a node bearing that combination, with, for every selection
of types from T , values of those respective types. This may not always make
sense. We may, in the case of linguistic knowledge representation, want to
allow some nodes that represent what is known about the syntactic status of
a verb to bear a feature mood and other nodes that represent what is known
about the syntactic status of a noun to bear a feature case; but it would
not make sense to bestow attributes such as mood and case on the same
node. In addition, a feature such as mood could reasonably have a value of
a type such as indicative or subjunctive, but not of the type nominative or
masculine.

Pollard and Sag [1987, p. 38] �rst suggested that the type system could
be used not only to classify di�erent kinds of objects in the world, but to
prevent the cooccurrence of certain features in formal representations of those
objects. Its importance derives, again, from viewing feature structures as
models of states of partial information about objects, in which it is important

40 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

to distinguish between features whose values are inapplicable or irrelevant to
a particular state of information and features whose values are relevant but
unknown or missing. Of course, the type system can also be used to declare
which values make sense for a given feature.

King [1989] �rst rei�ed the intuition that only certain features are relevant
or appropriate for a particular type. Knowledge of which features these are
for each type augments our knowledge about the types and features used in
the speci�cation of a grammar. The formalization of that extra knowledge
used here, known as appropriateness conditions, is taken from Carpenter
[1992].

De�nition 2.21. Given a type hierarchy, hT;vi, and a �nite set of features,
Feat, an appropriateness speci�cation is a partial function, Approp : Feat �
T �! T such that, for every f 2 Feat:

� (Feature Introduction) there is a type Intro(f) 2 T such that:

{ Approp(f; Intro(f))#, and

{ for every t 2 T , if Approp(f; t)#, then Intro(f) v t, and

� (Upward Closure / Right Monotonicity) if Approp(f; s)# and
s v t, then Approp(f; t)# and Approp(f; s) v Approp(f; t).

De�nition 2.22. An (attributed) type signature is a structure, hT;v;Feat;
Appropi, where hT;vi is a type hierarchy, Feat is a �nite set of features, and
Approp is an appropriateness speci�cation.

Figure 2.13 depicts a type signature. It looks like a type hierarchy, but
feature-value pairs have been added to some of the types. By convention, a
feature annotates its introducing type, and the value (type) it occurs with
is the value of Approp at that type. For example, in the example shown,
Intro(f) = a and Approp(f; a) = ?. Upward closure is assumed, so all
subtypes of an introducing type also have its introduced features. In this
way, features can be left implicit where their presence can be inferred from
upward closure and their values can be inferred from right monotonicity. For
example, f is appropriate to b in Figure 2.13, also with value ?. The types c
and d both re�ne the value of Approp on f, but e does not, and the value of
Approp(f; e), h, can be inferred from the uni�cation of the values at c and
d. e does introduce a new feature, g, however.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 41

e
g:?

c
f:f

d
f:g

b h

a
f:?

f g

?

Figure 2.13: An example type signature with upward closure and right mono-
tonicity assumed.

The usage of signature is borrowed from King [1989], although the de�-
nition of a signature and of appropriateness there is slightly di�erent. They
are also closely related to class hierarchies in object-oriented programming,
in that they specify where features (methods) are introduced and how they
are inherited. Just as in object-oriented programming, one could interpret
these speci�cations as defaults and entertain various conventions for over-
riding them [Carpenter, 1993b, Lascarides and Copestake, 1999], although
these will not be pursued here.

In terms of identifying what provides the basic vocabulary or building
blocks of a feature structure or a description language, it might be more
fair to refer to the set of types plus the set of features as the signature;
but type subsumption and appropriateness play a very important role in
the logic(s) of Carpenter [1992], in that the axiom schemes that make up
those logics depend on them in order to form genuine axioms. Thus, a
signature, as de�ned here, is precisely what is needed to construct a logic to
accompany the descriptions that are constructed from a set of types and a
set of features. Appropriateness is also distinguished from the more general
recursive constraint system presented as an application in Carpenter, 1992
in that satisfaction is decidable.

As mentioned above, the emphasis in this presentation will be on the
algebraic operations on feature structures that correspond to the closure of
descriptions under various rules of inference. Some of these operations are
what \enforce" the requirements that an appropriateness speci�cation states
over feature structures because the (totally) well-typed feature structures are
exactly the feature structures that model those �xed points | the existence
of Approp by itself guarantees nothing. Of principal practical interest, how-

42 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

ever, is the operation of feature structure uni�cation and its progenitor, the
subsumption relation on feature structures.

2.1.5 Subsumption and Uni�cation

The view of feature structures as representing partial or underspeci�ed infor-
mation is what inspired us to use partially ordered sets of types. That partial
order �ttingly induces a partial order on feature structures themselves, that
corresponds to subsumption of information content:

De�nition 2.23. Given a common signature, a typed feature structure, F =
hQ; �q; �; Æ;=i subsumes another typed feature structure, F 0 = hQ0; �q0; �0; Æ0;=0i,
written F v F 0 (or, where unclear, vF) i� there is a total function, h : Q �!
Q0, called a morphism, such that:

1. h(�q) = �q0,

2. for every q 2 Q, �(q) v �0(h(q)),

3. if Æ(f; q)#, then h(Æ(f; q)) = Æ0(f; h(q)), and

4. if q1 = q2, then h(q1)=
0 h(q2).

If F v F 0, we also say that F 0 extends F .

The second criterion forces feature structure subsumption to obey type
subsumption on individual nodes. The other criteria require the morphism to
establish a correspondence between nodes that preserves the starting node,
feature (and thus path) values, and inequations. The more speci�c feature
structure, F 0, can thus simulate F in the sense that we can map to a cor-
responding node using h, ask questions about path values, path equalities,
type information and inequation information, and we get the same or more
speci�c answers that we would have received from F itself. In this sense, F 0

has the same information that F has plus possibly more.
The feature structure in Figure 2.11, for example, subsumes the feature

structure in Figure 2.10. The morphism that witnesses this is not an injec-
tion, because the nodes corresponding to the paths f and g in the former
are both mapped to the node corresponding to both the path f and g in
the latter in order to satisfy the third criterion. So feature structures can be
more speci�c by virtue of having extra path equations. The feature struc-
ture in Figure 2.11 also subsumes the feature structure in Figure 2.14. In

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 43

2
6666664

a

f 1

�
b
h c

�

g 2

�
b
h c

�
1 = 2

3
7777775

Figure 2.14: The AVM representation of a feature structure with structurally
identical but inequated substructures.

�
a
f b

�
v

2
4af b
g c

3
5

Figure 2.15: An example of feature structure subsumption.

general, a feature structure with a pair of nodes with consistent types has
a pair of more speci�c feature structures: one where their paths map to the
same node, and one where the nodes are inequated. Neither of these sub-
sumes the other. When a pair of nodes has inconsistent types, then only the
inequated variant exists. This is the more intensional version of inequated
feature structure presented in Carpenter, 1992. The other, called fully in-
equated feature structures [Carpenter, 1992, p. 120], has neither, because it
assumes that inequations can only hold between nodes in a feature structure
when there is a more speci�c feature structure in which their paths could be
shared.

The single direction of implication in the fourth criterion says that they
can also have extra path inequations.

To consider another example, the feature structures in Figure 2.15 stand
in the subsumption relation shown because of the condition that Æ(f; q)# in
the third criterion. Thus, feature structures can also be more speci�c by
virtue of having extra features de�ned on a particular node.

Just as type subsumption induces type uni�cation by forming least upper
bounds, feature structures subsumption induces feature structure uni�cation.
The problem, as mentioned above, is that we have no way to determine that
two feature structures have non-intersecting node sets. We do not want
the uni�cation of the feature structures in Figure 2.16 to di�er from the

44 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

�q1

a

b

f

b

g

�q2

a

b

gf

Figure 2.16: Two feature structures whose sets of nodes intersect.

�q1

a

b

f

b

g

�q2

a

b

f

b

g

Figure 2.17: Two feature structures whose sets of nodes do not intersect.

uni�cation of those in Figure 2.17. As individual feature structures, both
structures in both pairs have the same information, so uni�cation should
yield a feature structure with the same information as well. This is related
to the fact that feature structure subsumption is not a partial order because
there can exist F1 and F2 such that F1 v F2 and F2 v F1. We should not
care which feature structure uni�cation returns, provided that it has the right
information content.

We can solve both concerns by creating an equivalence relation that re-
lates mutually subsuming feature structures. Subsumption modulo this re-
lation is then a partial order. Using the axiom of choice, we can also �nd
equivalent feature structures under this relation with non-intersecting nodes
as a precursor to uni�cation. In the next chapter, it will be shown that this
relation corresponds exactly to abstraction away from the set of actual nodes
in a feature structure, leaving only its relevant information.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 45

De�nition 2.24. Given a set, S, an equivalence relation is a relation, � �
S � S such that, for all s; s0; s00 2 S:

� (re
exivity) s � s,

� (symmetry) if s � s0, then s0 � s, and

� (transitivity) if s � s0 and s0 � s00, then s00 � s000.

De�nition 2.25. Typed feature structures, F1 and F2 are alphabetic vari-
ants, written F1 � F2, i� F1 v F2 and F2 v F1.

Proposition 2.3. � is an equivalence relation.

De�nition 2.26. Given a set, S, and an equivalence relation, �, and an
element s 2 S, the equivalence class of s under � is:

[s]� = fs0 2 Sjs � s0g:

De�nition 2.27. Given a set, S, and an equivalence relation, � � S � S,
the quotient set of S modulo � is:

S=� = f[s]�js 2 Sg:

De�nition 2.28. Given a common signature, and F � hQ; �q; �; Æ;=i and
F 0 � hQ0; �q0; �0; Æ0;=0i such that Q \ Q0 = ;, let ./ be the �nest-grained
equivalence relation on Q [Q0 such that:

� �q ./ �q0, and

� if Æ(f; q)#, Æ0(f; q0)# and q ./ q0, then Æ(f; q) ./ Æ0(f; q0).

The uni�cation of F and F 0 is then de�ned to be:

F t F 0 = h(Q [Q0)=./; [�q]./; �
./; Æ./;=./i;

where:

� �./([q]./) =
F
f�(q0)jq0 ./ q; q0 2 Qg t

F
f�0(q0)jq0 ./ q; q0 2 Q0g,

� Æ./(f; [q]./) =

�
[Æ(f; q)]./ if q 2 Q;
[Æ0(f; q)]./ if q 2 Q0

� [q]./ =
./ [q0]./ i� there exists q00 and q000 such that q00 = q000, q00 ./ q and

q000 ./ q0,

46 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

provided that the joins in the de�nition of �./ exist where needed and =./ is
anti-re
exive. F t F 0 is unde�ned otherwise.

Proposition 2.4. Given a common signature, and F; F 0 2 F , if there exists
an F 00 2 F such that F v F 00 and F 0 v F 00, then F t F 0# and F t F 0 v F 00.

Proof. Proven by Moshier [1988] and extended to the typed case by Carpen-
ter [1992].

Notice that F t F 0 2 F because our lack of interest in the structure of
nodes allows F t F 0 2 F to use a set of equivalence classes as its set of
nodes. Each equivalence class, in turn, contains nodes of F and F 0. As a
result, F t F 0 corresponds to one of many alphabetically variant minimal
upper bounds of F and F 0 with respect to v, and so t can be viewed as a
partial function from F�F to F . Notice that the result may have a di�erent
type than either of the operands because of joins in the type hierarchy.

By considering feature structures and subsumption modulo alphabetic
variance, the structure assumed for types, a bounded complete partially or-
dered set, is mirrored in the structure of feature structures:

Proposition 2.5. vF is re
exive and transitive.

Proof. It is re
exive because the identity function, id : Q �! Q is a mor-
phism. It is transitive because composition of morphisms yields a mor-
phism.

De�nition 2.29. Given v and �, invariant subsumption, v� � F=� �
F=� is de�ned such that [F1]� v

� [F2]� i� there exist F 0
1 2 [F1]�, F

0
2 2 [F2]�,

such that F 0
1 v F 0

2.

Theorem 2.2. hF=�;v�i is a type hierarchy.

Proof. Countability follows from the countability of node sets and of the
(implicit) set of types, T .

v� is re
exive and transitive because v is re
exive and transitive. Sup-
pose [F1]� v� [F2]� and [F2]� v� [F1]�. Then there exist F 0

1 2 [F1]�,
F 0
2 2 [F2]�, such that F 0

1 v F 0
2 and F 00

1 2 [F1]�, F
00
2 2 [F2]� such that

F 00
2 v F 00

1 . But then F
0
2 � F 00

2 v F 00
1 � F 0

1, so F
0
1 � F 0

2 and [F1]� = [F2]�. So
invariant subsumption is a partial order.

Given [F1]� and [F2]�, suppose there exists [F3]� such that [F1]� v� [F3]�
and [F2]� v� [F3]�. Then there exist F 0

1 2 [F1]�, F
0
2 2 [F2]�, and F

0
3; F

00
3 2

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 47

[F3]�, such that F1 � F 0
1 v F 0

3 and F2 � F 0
2 v F 00

3 � F 0
3. By Proposition 2.4,

F1 t F2# and F1 t F2 v F 0
3; so [F1 t F2]�# and [F1 t F2]� v� [F3]�. So v

�

is bounded complete.

Of course, the use of the term \type hierarchy" here is chosen mostly for
shock value. We are really proving that it is a countable BCPO. For the case
of feature structures without inequations, this follows directly from the proof
in Carpenter, 1992 that hF=�;v�i is a domain. We were not thinking of the
elements in a type hierarchy themselves as sets of feature structures (although
these are their most natural denotations); but because we never speci�ed
exactly what our types were, they could just as well be. hF=�;v�i may not
be the same type hierarchy as the one in the signature that induced it; but
recognizing this duality is the �rst step towards understanding the under-
determination of signature encodings by empirical data. We will examine
this issue more carefully | in particular, the conditions under which feature
structures form a �nite BCPO | in Chapter 4.

2.1.6 Well-Typing

The next class of algebraic operations identify subsets of F that respect
the appropriateness speci�cation of its implicit signature. There are a few
other noteworthy subsets of F that will not be discussed in detail here.
One is the set of feature structures that respect a stronger version of type
inferencing called extensionality, where nodes whose feature values and types
are identical are assumed to be the same node. Another is of those that
are fully inequated, i.e., that inequate every pair of paths whose nodes have
inconsistent types. A third is of those that are sort-resolved, i.e., that label
their nodes with only maximally speci�c types. The �rst two are elaborated
upon in Carpenter, 1992. The third is discussed somewhat there, but was
not completely understood until Carpenter and King, 1995.

Semi-well-typedness

There are at least three ways in which one can interpret and enforce appro-
priateness speci�cations. One, perhaps the most basic, is as a speci�cation
of which features a node is permitted to bear, given its type.

De�nition 2.30. A typed feature structure, F = hQ; �q; �; Æ;=i is semi-well-
typed i� for every q 2 Q, if Æ(f; q)#, then Approp(f; �(q))#.

48 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

ST F denotes the set of semi-well-typed feature structures.

De�nition 2.31. Let TypDom : F �! F be the partial function such that,
given F = hQ; �q; �; Æ;=i 2 F , TypDom(F) = hQ; �q; �D; Æ;=i, where �D(q) =
�(q) t

F
fIntro(f)jf 2 Feat&Æ(f; q)#g provided the joins in the de�nition of

�D exist, and is unde�ned otherwise.

Proposition 2.6. For every F 2 F , if TypDom(F)#, then TypDom(F) 2
ST F .

Proof. If the joins required by �D exist, then we know Approp(f; �D(q)) wher-
ever Æ(f; q)# by feature introduction (Approp(f; Intro(f))#), the fact that
Intro(f) v �D(q), and by upward closure.

The name, semi-well-typed, was bestowed by King and Goetz [1993], who
used it to present an alternative to well-typing without reference to a unique
introducing type for every feature, although unique introducing types are
retained here (see Section 2.1.8). One can show that TypDom promotes any
feature structure to its least semi-well-typed extension, if one exists:

Proposition 2.7. If F 2 F , and F 0 2 ST F , then F v F 0 i� TypDom(F) v
F 0.

Proof. Proven by King and Goetz [1993].

Corollary 2.1. F 2 ST F i� TypDom(F) � F .

Proof. By Propositions 2.7 and 2.6, the forward direction holds. The reverse
holds since ST F is clearly upward closed.

Another central issue is whether uni�cation preserves the condition that
this operator establishes. As it happens, once we know that we are working
in ST F , uni�cation will allow us to stay there, so we will not need TypDom
anymore:

Theorem 2.3. If F; F 0 2 ST F and F t F 0#, then F t F 0 2 ST F.

Proof. Uni�cation can only make types more speci�c, which is consistent
with Approp by upward closure.

Another way to look at this result is that uni�cation in F automatically
gives us uni�cation in ST F | we never need to worry about dealing with
non-semi-well-typed feature structures if we wish to avoid them.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 49

Well-typedness

A second view of appropriateness is that of a value restriction | using the
value of Approp to constrain the value of an appropriate feature. Of course,
this view will only make sense if we combine it with semi-well-typedness, to
make sure that Approp has a value, where necessary.

De�nition 2.32. A typed feature structure, F = hQ; �q; �; Æ;=i is well-typed
i� for every q 2 Q, if Æ(f; q)#, then Approp(f; �(q))# and Approp(f; �(q)) v
�(Æ(f; q)).

T F denotes the set of well-typed feature structures.

De�nition 2.33. Let TypRan : ST F �! ST F be the partial function such
that, given F = hQ; �q; �; Æ;=i 2 ST F, TypRan(F) = hQ; �q; �R; Æ;=i, where
�R(q) = �(q) t

F
fApprop(f; �(q0))jf 2 Feat&q0 2 Q&Æ(f; q0) = qg provided

the joins in the de�nition of �R exist, and is unde�ned otherwise.

Proposition 2.8. For every F 2 ST F , if TypRan(F)#, then TypRan(F) 2
T F.

De�nition 2.34. Let TypInf : F �! T F be the partial function such that
TypInf = TypRan Æ TypDom.

Proposition 2.9. If F 2 F , and F 0 2 T F, then F v F 0 i� TypInf (F) v
F 0.

Proof. Proven by Carpenter [1992].

Corollary 2.2. F 2 T F i� TypInf (F) � F .

Proof. On analogy to Corollary 2.1.

By analogy to TypDom, TypInf (\type inferencing") promotes any feature
structure to its least well-typed extension, if one exists.

Just as with TypDom, we should also ask whether uni�cation preserves
the work of TypInf. Unfortunately, this is not always the case. Figure 2.18
shows a counter-example. If we unify a well-typed feature structure of type b
with a well-typed feature structure of type c, we may wind up with a feature
structure of type d, whose f value is only of type g, not h, and which is there-
fore not well-typed. There are some signatures in the present formulation
that are inherently not statically well-typable. As a result, uni�cation in T F
looks like uni�cation in F followed by an application of TypInf in order to
extend the result back into T F :

50 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

d
f:h

h

b
f:e

c
f:f

g

a
f:?

e f

?

Figure 2.18: A non-statically typable signature.

Theorem 2.4. If F; F 0; F 00 2 T F , then F v F 00 and F 0 v F 00 i� TypInf (Ft
F 0) v F 00.

Proof. Proven by Carpenter [1992].

Figure 2.19 depicts what must happen in the case of the T F induced by
the signature in Figure 2.18.

Total Well-typedness

The third view of appropriateness is that of necessary conditions on the
occurrence of certain features. This is the converse of semi-well-typing, and
says that if a feature is appropriate to a node, then the node must bear that
feature, thus naturally bringing semi-well-typing along with it. We will also
require well-typing.

De�nition 2.35. A typed feature structure, F = hQ; �q; �; Æ;=i is totally
well-typed i� it is well-typed and, for every q 2 Q,f 2 Feat, if Approp(f; �(q))#,
then Æ(f; q)#.

T T F denotes the set of totally well-typed feature structures.

De�nition 2.36. Let Fill : T F �! T F be a total function such that, given
F = hQ; �q; �; Æ;=i 2 T F, Fill(F) = hQ [QFill ; �q; �Fill ; ÆFill ;=i, where QFill

is a smallest set such that:

� QFill \ Q = ;, and for every qFill 2 QFill , if ÆFill(f; q) = qFill and
ÆFill(f'; q0) = qFill , then f = f' and q = q0,

� ÆFill(f; q) =

8>><
>>:

Æ(f; q) if Æ(f; q)#;
qFill some qFill 2 QFill ; if Æ(f; q)" and

Approp(f; �(q))#
unde�ned otherwise

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 51

�
d
f h

�

TypInf

�
d
f g

�
t

T F F nT F

�
b
f e

� �
c
f f

�

Figure 2.19: Well-typed uni�cation in a non-statically typable signature.

� �Fill(q) =

�
�(q) if q 2 Q;
Approp(f; �(q0)) if q 2 QFill ; q = ÆFill(f; q0)

Proposition 2.10. For every F 2 T F , Fill(F) 2 T T F.

Notice that Fill is a total function. We can promote any well-typed
feature structure to a totally well-typed one. If we combine it with TypInf,
then we obtain a uni�cation function for T T F | a partial function that
promotes any T T F -extensible F -uni�cation to its minimal totally well-typed
extension.

Proposition 2.11. If F 2 T F and F 0 2 T T F , F v F 0 i� Fill(F) v F 0.

Proof. Proven by Carpenter [1992].

De�nition 2.37. Let TWT : F �! T T F be the partial function such that
TWT = Fill Æ TypInf .

Corollary 2.3. F 2 T T F i� TWT (F) � F .

Proof. On analogy to Corollary 2.1.

52 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

Theorem 2.5. If F; F 0; F 00 2 T T F, then F v F 00 and F 0 v F 00 i� TWT (Ft
F 0) v F 00.

Proof. Proven by Carpenter [1992].

Total well-typing is the interpretation of appropriateness used throughout
the rest of this dissertation. Some of its advantages with respect to simulating
non-total but well-typed interpretations will be demonstrated later; but there
are two important prior arguments for this choice as well. The �rst is that
total well-typing captures one of the main intuitions of appropriateness |
distinguishing unknown or absent information from irrelevant information.
Feature structures of a particular type represent our knowledge about objects
in the world, and those objects are known to have certain attributes on the
basis of belonging to that type, whether we know what their attributes' values
are or not. The view of feature structures as partial information allows us
to use non-maximally speci�c types as the types of vague values of unknown
attributes, so the existence of the attributes themselves is still consistent
with that view, and should be inferred.

The other argument is a computational one. Total well-typing allows us to
infer exactly how many attributes a feature structure of a particular type will
have. That means we have information about the size of its representation,
which can be used to simplify memory allocation and uni�cation algorithms
that act on it. Because features can be introduced at any type, that still
does not mean that the arity or size of a feature structure's representation
will never change. When uni�ed with another feature structure, the type of
the result could promote, and it may acquire new features. The type of a
feature's value could also promote upon application of TypInf because of a
di�erent (but still consistent) value restriction. The fact that the type can
in fact promote and the fact that its arity may change when it does so are
the two signi�cant sources of complexity in working with the uni�cation of
typed feature structures in comparison to �rst-order terms; but it would be
even worse if the arity were not constant even for a �xed type.

For totally well-typed feature structures, we also have the same duality
as with general feature structures:

Corollary 2.4. hT T F=�;v�
T T Fi is a type hierarchy.

Proof. v�
T T F is just the restriction of v� to T T F , so it is also a partial

order. By Theorem 2.5, it is bounded complete.

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 53

This can also be proven [Carpenter, 1992] by showing that TWT is a
closure operator over domains.

2.1.7 Join Preservation

In the last subsection, we saw that there are some signatures for which F -
uni�cation does not extend automatically to T F- or T T F-uni�cation. Those
signatures can be explicitly characterized (this de�nition will be reformulated
in Chapter 6):

De�nition 2.38. (Tentative) An appropriateness speci�cation is said to pre-
serve joins i�, for all features f 2 Feat, for all types s; t such that s t t#:

Approp(f; s t t) =

8>>>><
>>>>:

Approp(f; s) t Approp(f; t) if Approp(f; s)# and
Approp(f; t)#

Approp(f; s) if only Approp(f; s)#
Approp(f; t) if only Approp(f; t)#
unrestricted otherwise

Proposition 2.12. Approp is join-preserving i� for any F; F 0 2 T F such
that F t F 0#, F t F 0 2 T F .

Proof. The forward direction was proven by Carpenter [1992]. Suppose Ap-
prop is not join-preserving. Then there are types s and t and a feature
f 2 Feat for which s t t# and one of the three conditions above do not hold,
depending on whether Approp(f; s)# and/or Approp(f; t)#. Let Fs; Ft 2 F
be feature structures with no features and one node of type s, and t re-
spectively. Clearly, TWT (Fs) and TWT (Ft) exist, which are the least (by
subsumption) totally well-typed feature structures of types s and t respec-
tively. They are also in T F . Since they are least, they have no re-entrant
nodes, i.e., there is a unique node q for every pair of feature and node, f' and
q0, for which Æ(f'; q0)#, and �(q) = Approp(f'; �(q0)). By right monotonicity
of Approp and the bounded completeness of the type hierarchy, TWT (Fs)
and TWT (Ft) are then uni�able. But in TWT (Fs) t TWT (Ft), consider
q = Æ(f; �q). Its type is either Approp(f; s), Approp(f; t), or Approp(f; st t),
depending on which case of join-preservation s and t belong to. They vio-
late that case, however. By right monotonicity, �(q) v Approp(f; s t t), so
Approp(f; s t t) 6v �(q), and thus TWT (Fs) t TWT (Ft) 62 T F .

54 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

Proposition 2.13. Approp is join-preserving i� for any F; F 0 2 T T F such
that F t F 0#, Fill(F t F 0) 2 T T F .

Proof. Suppose Approp is join-preserving. By the preceding proposition, for
every F; F 0 2 T T F , (F t F 0) 2 T F . Fill is a total function from T F to
T T F , so Fill(F t F 0) 2 T T F .

Suppose Approp is not join-preserving. In the proof of the preceding
proposition, two feature structures in T T F were used, and their uni�cation
was shown not to be in T F . So they fall out of the domain of Fill.

With join-preservation, one can use only Fill plus F -uni�cation; and Fill
is total, unlike TWT. Carpenter [1992] identi�es two further restrictions on
Approp, either one of which allow one to eliminate Fill as well, leaving only
F -uni�cation.

2.1.8 Signature Completion

Feature introduction has been argued not to be appropriate for certain empir-
ical domains either. Just as with the condition of bounded completeness, we
may ask whether it is possible to take a would-be signature without feature
introduction and restore this condition through the addition of extra unique
introducing types for certain appropriate features. The following algorithm
achieves this:

1. Given candidate signature, S, �nd a feature, f, for which there is no
unique introducing type. Let K be the set of minimal types to which
f is appropriate, where jKj > 1. If there is no such feature, then stop.

2. Add a new type, v, to S, to which f is appropriate, such that:

� for all k 2 K, v v k,

� for all types, t in S, t v v i� for all k 2 K, t v k, and

� Approp(f; v) = Approp(f; k1)uApprop(f; k2)u: : :uApprop(f; kjKj),
the generalization of the value restrictions on f of the elements of
K.

3. Go to (1).

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 55

In practice, the same signature completion type can be used for di�erent
features, provided that their minimal introducers are the same set, K. This
clearly produces a partially ordered set with a unique introducing type for
every feature. It may disturb bounded completeness, however, which means
that the result must undergo meet semi-lattice completion, as described in
Section 2.1.2. If generalization has already been computed, the signature
completion algorithm runs in O(fn), where f is the number of features, and
n is the number of types.

2.1.9 Descriptions and Most General Satis�ers

The �nal algebraic operation to be considered is that of the most general
satis�er. This operation, unlike the others, maps a description to a feature
structure, and is essentially what links the description language presented in
Carpenter, 1992 to feature structures themselves.

De�nition 2.39. The set of descriptions over a countable set of types, T a
�nite set of features, Feat and a countable set of variables, Var, is the least
set Desc such that:

� x 2 Desc, for all x 2 Var,

� 6
:
=x, for all x 2 Var,

� t 2 Desc, for all t 2 T ,

� � : � 2 Desc, for all � 2 Feat�; � 2 Desc,

� � ^ ; � _ 2 Desc, for all �; 2 Desc.

NonDisjDesc is the disjunction-free fragment of this language.

This language is a consolidated and somewhat simpli�ed form of the lan-
guage plus its various extensions used in Carpenter, 1992. In the spirit of
H�ohfeld and Smolka [1988], and as suggested by Carpenter [1992] and pursued
in Steinicke and Penn, 1999, the path equations and path inequations estab-
lished by variables are taken as constraints on variable assignment functions,
and the scope of variables (which in many practical applications, is larger
than a single description) is implicitly closed under existential quanti�cation
of the variable assignment. For example, we should read the description,
f : g : h : x ^ i : j : k : x as denoting those feature structures F , for
which there exists a feature structure, G such that the value of the path

56 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

f : g : h in F and the value of the path i : j : k in F are both G. One
may also notice the absence of a general negation operator. In a description
language over types with subsumption, general negation is potentially non-
monotonic. In Figure 2.13, for example, :b is true of feature structures of
type a, but not of feature structures of any subtype of a. As proven by Car-
penter and Penn [1993], provided one works in the domain of sort-resolved
feature structures (in which subsumption reduces to identity), general nega-
tion on a variable-free fragment of this language reduces to syntactic sugar.
As proven by Steinicke and Penn [1999], that reduction does not hold in the
full language. One can only have two of variables, inequations, and general
negation | with all three, there is again no sound and complete calculus for
satis�ability. Inequations are necessary in order to encode the negation of
path equations. Variables are quite useful to have in a logic programming
setting, and have been shown to reduce the size of disjunctive descriptions
exponentially [Kasper, 1987b]. So general negation is excluded here.

A description from this language describes a feature structure. Typically,
many feature structures are described by a particular description. Carpenter
[1992] gives a semantic notion of satis�ability in which feature structures are
taken to model descriptions:

De�nition 2.40. An assignment is a total function � : Var �! F . Let
Assign by the set of all assignments.

De�nition 2.41. Where F 2 F is said to satisfy � 2 Desc, written F j=� �,
j=� is the smallest relation such that:

� F j=� x i� �(x) = �q,

� F j=� 6
:
=x i� �(x) 6= �q,

� F j=� t i� t v �(�q),

� F j=� � : � i� F@� j=� �,

� F j=� � ^ i� F j=� � and F j=� ,

� F j=� � _ i� F j=� � or F j=� .

� is satis�able i� there is a F 2 F such that F j=� �.

In the absence of disjunction, there is a least such feature structure for
a satis�able description, and the set of feature structures that satisfy a de-
scription is upward closed:

2.1. THE LOGIC OF TYPED FEATURE STRUCTURES 57

De�nition 2.42. Given a description � 2 Desc, the satis�ers of � are the
feature structures that satisfy � under some assignment function: Sat(�) =S

�2AssignfF jF j=� �g.

Proposition 2.14. If F 2 Sat(�) and F v F 0, then F 0 2 Sat(�).

Proof. Proven by Carpenter [1992].

Proposition 2.15. If � 2 NonDisjDesc, and � is satis�able, then there is a
most general satis�er MGSat(�) 2 F such that F 2 Sat(�) i� [MGSat(�)]� v

�

[F]�.

Proof. Proven by Carpenter [1992].

MGSat can also be generalized to a function whose codomain is a set of fea-
ture structures in the case of disjunctive descriptions. In the non-disjunctive
case, these two propositions establish a one-to-one correspondence between
descriptions and feature structures, up to alphabetic variance of nodes |
the set of feature structures that satisfy a description is rooted at a unique
least equivalence class of satis�ers, whose principal �lter in hF=�;v�i (the
set of feature structure equivalence classes that it subsumes) is none other
than the equivalence classes of that set of satis�ers.

In practice, one normally uses TWT ÆMGSat , which provides a represen-
tative from the equivalence class of least totally well-typed feature structures
that satisfy a description. Totally well-typed feature structures have the very
nice property that their descriptions can be extremely terse. When a fea-
ture, f, is mentioned in a description, �, the type, Intro(f), is inferred for
TWT (MGSat(�)) because of feature introduction; and when a type is men-
tioned or inferred, all of the features appropriate to that type are known
to be present on TWT (MGSat(�)). In this way, total well-typing allows
descriptions to identify only those paths in a potentially very large feature
structure to which reference to salient information, i.e., information more
speci�c than that provided by a most general satis�er, is needed. This extra
level of indirection combined with a syntactic notion of variables that remains
independent of feature structures themselves are the primary practical ad-
vantages of description logics such as those of Carpenter [1992] or Smolka
[1988], which also employs a description language with variables, over term
or record logics such as the -terms of A��t-Ka�ci [1984]. In the latter, tags, the
analogue of variables, are actually part of the terms or records themselves,
and thus introduce an additional level of alphabetic variance, in a manner

58 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

roughly similar to that in which nodes in the formalization presented here
do. -terms can also have inconsistent types. Feature structures as de�ned
in Carpenter, 1992 do not | there are simply some descriptions with incon-
sistent types that are not satis�able by any feature structure.

For the purposes of this study, the charm of most general satis�ers also
works the other way | we can simply continue to work with and think about
(totally well-typed) feature structures rather than descriptions, because we
know that satis�able descriptions have most general satis�ers. The only
problem that remains is the alphabetic variance introduced by nodes, which
will be addressed in the next chapter.

2.2 A Brief History of Typed Feature

Structures

It has been said that Aristotle sometimes mistook the rules of
Greek grammar for immutable verities of logic. We can raise an
analogous issue about computer simulation. To what extent do
we make implicit assumptions of psychological theory when we de-
cide to write a simulation program in an information-processing
language? . . . it is probable that psychological postulates enter
the simulation by way of the structure of the programming lan-
guage. | Allen Newell and Herbert A. Simon, Computers in
Psychology, p. 422, 1963

The feature structure has, under various names, occupied a central position
in arti�cial intelligence research from the very beginning. It began life in
experimental psychology as a means of characterizing mental representations
of concepts. From the study of volitive acts, Narziss Ach (1871 { 1946) and
his colleagues in the W�urzburg school had concluded that human thought was
not only guided by associations, crudely put, but also by what Ach termed
\determining tendencies," in
uences from the presentation of a goal or task
that direct or determine the associations that most prevalently or strongly
accrue on the perception of a stimulus [Ach, 1951, 1905]. These determining
tendencies were alleged to give thought its intentional, ordered nature, as
opposed to some cacophonous chorus of random associations [Humphrey,
1951, pp. 83{4].

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 59

This idea was later used by psychologists working on concept learning
and category formation to formulate descriptions of objects that were used
to illustrate concepts to be learned, in which these determining tendencies
were encoded as attributes, and the concepts themselves were characterized
as collections of attribute-value pairs [Hunt, 1962]. This began with the more
formal work of Hovland [1952] on learning theory, and became popular with
its adoption for experimental work on concept learning, notably in Bruner
et al., 1956.

2.2.1 Description Lists

In terms of its use as a structure for representing knowledge in actual imple-
mentations, feature structures were �rst used as a data structure for encoding
relational formulae from logic in a computer's memory in a manner inspired
by and faithful to research in experimental psychology. When Allen Newell
and Herbert Simon embarked upon the task of creating a programming lan-
guage for simulating human reasoning, they knew that they would need very
expressive data structures that could also serve as representations of human
memory. They saw that it was possible to encode arbitrary quanti�er-free
predicates using nested lists of attribute-value pairs by regarding attributes as
binary relational or functional symbols. They also saw that lists of attribute-
value pairs can directly represent Ach's directed associations, where the at-
tribute is used to select the most appropriate association given a particular
context for a stimulus, and thus its determining tendencies (H. Simon, p.c.).
These lists, called description lists, were realized as early as 1956 in Logic
Language (LL), a language for supporting the automated theorem proving
system, Logic Theorist (LT) [Newell and Simon, 1956]. LL later developed
into the more widely circulated series of languages, IPL [Newell and Shaw,
1957], where their use was quickly generalized to empirical domains other
than logic itself, e.g., relations among goals and moves in a chess-playing
program [Newell et al., 1958]. Plain lists were also included in IPL for rep-
resenting normal (unlabelled) associations.

Having been incorporated into IPL, description lists were also one of the
topics presented at the Dartmouth Conference (H. Simon, p.c.) where the
term \arti�cial intelligence" is said to have been coined. As a result of that
meeting, they were borrowed, along with lists, into LISP [McCarthy, 1960],
although not as a full-
edged construct, but rather as a useful internal de-
vice (renamed \property lists") for tracking state information in early LISP

60 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

interpreters. Their subservient status, however, did not prevent their contin-
ued use as an explicit knowledge representation device. The SIR (Semantic
Information Retrieval) system [Raphael, 1964, 1968] was a natural language
dialog system with no built-in world knowledge that could acquire directed
associations from interaction with a user and then answer questions based
on those associations. It was implemented in LISP and used property lists
to represent the directed associations.

SIR was a �rst in several respects. It appears to have been the �rst natural
language processing system to use this kind of data structure, although it
used it for representing only knowledge about the domain under discussion,
not linguistic knowledge to support the vehicle of discussion. SIR also marks
a methodological turning point in that it appears to have been one of the �rst
systems to allow the choice of this data structure to guide its decisions about
knowledge representation rather than vice versa: in Raphael, 1968 (p. 48),
the choice of semantic representation is very candidly ascribed to one among
what was available in the arti�cial intelligence programming languages of
the day. Among these decisions, and perhaps the most lasting legacy of
SIR, was the decision to explicitly represent hyponymy or subsumption as
an attribute-value pair, along with a select, closed class of other common
semantic relationships. This is the �rst use of the so-called ISA link in an
implementation of knowledge-based reasoning or memory.5 The attribute,
SUBSET, was represented in SIR just as any other attribute, although the
justi�cation given for its inclusion and its prevalence in the examples given
in Raphael, 1968 clearly indicate that it was already the princeps principium
of attributes.

2.2.2 Semantic Networks

Quillian [1968] also used IPL, along with its description lists and plain lists, to
implement a semantic network for encoding the meanings of words roughly
as they appear in dictionary de�nitions. Each concept or word meaning
could be analyzed as a bundle of properties, according to Quillian [1968,
p. 242]. These properties were represented by token nodes connected in a
subnetwork (called a plane by Quillian [1968]) to represent their association

5Semantic networks [Quillian, 1968] or frames [Minsky, 1975] are perhaps more com-
monly credited with the idea; but the former never directly linked two concepts in a
hyponymous or any other relationship and the latter explicitly argued against \in
exible,
inclusion-oriented" knowledge representation schemes [Minsky, 1975, p. 251].

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 61

with the concept being de�ned, represented by a type node. The \meaning"
of a concept was then de�ned as the subnetwork, taken as a whole, accessible
from its type node. The only properties that could de�ne concepts were other
concepts, so there were also special links, interplanar links, to connect type
nodes to their token node instances in other planes.

The associations themselves in the network were generally unlabelled. At-
tributes were only used with numerical values, and were drawn from a closed
class including intensity, number and criteriality to indicate the \degree" to
which a property was associated with other nodes. Quillian [1968, p. 229]
was aware of the relevance of directed associations, of the use of attributes to
represent them in mathematical psychology, and of the potential contradic-
tion to that work that existed in assuming that associations were undirected,
but somehow believed that the use of IPL as the underlying programming
language conferred an air of respectability on this philosophical problem,
i.e., that there was no contradiction because there existed a programming
language that provided lists and description lists at the same time.

In other details, Quillian [1968] was very much driven by the practical
problem of encoding dictionary de�nitions in a fairly literal fashion. It used
the convention that any associative link between a type node and a token
node in a plane, i.e., other than interplanar links, implied a hyponymous
relationship, as commonly found in dictionary entries of the form, \An X
is a Y that is/has A, B and C," in which X is taken to be a subclass of
Y. Links between token nodes were used to represent adjectival or adverbial
modi�cation. There were also special links for representing conjunctive lists
and disjunctive lists in de�nitions, and a special kind of three-way link that
connected triples of token nodes with a relation-subject-object interpreta-
tion to encode events and their role assignments. Planes of token nodes were
connected mainly in a tree pattern, although token nodes could also have
multiple associations as a result of pronominal or other kinds of coreference
in a dictionary de�nition, in which case the network was conventionally de-
picted with a special tag to indicate the identity of those paths. This is the
historical antecedent of re-entrant nodes in feature structures. Attributes and
their numerical values were only employed to encode the shades of meaning
contributed by modal quanti�ers such as \most" or \probably" in dictionary
de�nitions.

Although Quillian [1968] believed that concepts could be decomposed
into more elemental properties, concepts (as type nodes) stood in a network
alongside the properties (as token nodes) of which they were composed, and

62 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

the properties themselves were merely other associated concepts. This is not
the same type-token distinction used in philosophical literature on language;
in fact, it was introduced simply in order to partition the network into swaths
of nodes, consisting of one type node along with many token nodes, in order
to use their con�guration as a representation of meaning for the type node's
concept [Quillian, 1968, p. 234]. In no formal sense did this kind of network
provide a semantics for its concepts. Type nodes remained uninterpreted ab-
stractions of addresses in a computer's memory for the purposes of describing
a particular computer program more lucidly, not concepts.

On the other hand, this graph-theoretic view of knowledge representa-
tion essentially characterizes all subsequent work in this area. Typed fea-
ture structures are no exception. Of course, type nodes have been moved
to a network of their own, the type signature, and types decorate the (to-
ken) nodes of graphs that correspond to individual feature structures with
an assignment function. The legacy becomes acutely apparent, however,
whenever feature structures are used to encode higher-order functions or ab-
stractions other than the �rst-order entity-to-truth mapping that the type
assignment function can straightforwardly encode, and whenever non-trivial
choices must be made between positing sub-concepts and positing individu-
als or instances of those concepts. In the former case, as can happen with
feature-structure-based representations of natural language semantics, such
as HPSG's treatment of quanti�ers or representation of situation-style nuclei,
the representation of functions as nodes in a graph alongside representations
of objects to which they could potentially apply has the same
at-earthed feel
to it as semantic networks and, in particular, makes the prospects of �nding
a transparent, syntactic representation of state, abstraction, application or
composition rather grim. The latter case arises, for example, in the choice
between subtype-based encodings and feature-value-based encodings of dis-
tinctions among information states that is one of the central subjects of this
study. That choice exists to a great extent because there is no external crite-
rion or constraint to evaluate what the semantic types should correspond to.
A model-theoretic denotation could be constructed so that nodes, for exam-
ple, are interpreted in a very heterogeneous universe of entities in the world,
functions on those entities, abstract properties that they may have such as
number and gender, and whatever else is necessary | the model theories
that currently exist for typed feature structures permit that | but at that
point, feature structures are not being used as a formal device to represent
knowledge, but as a formal device to represent data structures that encode

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 63

formal devices to represent knowledge. The problem is that, historically, this
was all that they were intended to achieve in work such as that of Quillian
[1968].

Curiously, one of the few sources of external criteria came at around this
time from Chomsky and Halle [1968], who were inspired in their choice of
feature structures directly by their continued application in psychology. It
was also the �rst use of feature structures, although of a very simple form, to
represent properly linguistic knowledge, which is now where they �nd their
widest range of application. Values of features were always plus or minus,
and the features themselves were a \substantively" universal collection of
phonetic features, over which any language must articulate its phonological
rules. Although there was no explicit semantic typing of these structures (as
with all early uses of feature structures) and although a featureless network of
types could have been used to achieve the same e�ect, given the very limited
range of feature values, there was a clearly expressed agenda of using feature
structures to decompose language-speci�c phonemes into bundles of these
language-universal phonetic properties. This is certainly much more in keep-
ing with the conceptual decomposition to which Quillian [1968] had alluded,
and has become the standard way of using feature structures within the area
of phonology. The use of claims about universal substantives in grammar has
never been generalized to the application of feature structures to other areas
of linguistics. In syntax, for example, the trend has been to claim that par-
ticular implicational constraints of grammar are either language-universal or
language-speci�c, but that all of those constraints are free to avail themselves
of the same types and features in a common signature.

2.2.3 KL-ONE

A very useful history and survey of KL-ONE and its successors can be found
in Woods and Schmolze, 1990, upon which much of this subsection is based.

The advent of KL-ONE [Brachman, 1977, Brachman and Schmolze, 1985]
marked the beginning of a formally and computationally mature approach
to knowledge representation and classi�cation networks. Although the in-
ventors of languages such as IPL had thought a great deal about necessary
and suÆcient conditions for representations of concepts, memory etc. from
the perspective of research in empirical psychology, subsequent applications
of those languages had become increasingly parochial and informal in their
coining of primitives and conventions of usage in order to achieve a partic-

64 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

ular suÆciency for the domain in which they were to be applied, primarily
because no precise prescription came with these languages to indicate what
the psychologically inspired structures they provided actually meant, or how
they were to be properly used.

The original goal of Brachman [1977] was to provide a level of \epis-
temological" primitives (including ISA links) below that of actual concepts,
that could be argued to be suÆcient regardless of the empirical domain being
represented. The desire to certify the validity of that argument formally ulti-
mately led to the additional adoption of an external, denotational semantics
that could be used to prove correctness, culminating in the KL-ONE succes-
sor language, KRYPTON [Brachman et al., 1983], and every successor since
then.

KL-ONE followed the tradition of using graphs as an abstraction for re-
lating concepts, but did not decorate the edges of the graphs with attributes.
Instead, a di�erent
avor of node was used to represent attributes (called
\roles" in KL-ONE) in the graph, which could then be connected to the con-
cepts that bore them. In this way, the connections between nodes could be
restricted to a closed class of suÆcient primitives, while still allowing for an
open class of labelled associations at the conceptual level. KL-ONE was also
the �rst formal system to provide value restrictions, although it and its suc-
cessors have typically had a much more
exible approach to appropriateness
than the one assumed by Carpenter [1992].

KL-ONE was also crucially in
uenced by work on frames [Fahlman, 1977,
1979, Minsky, 1975], which, along with contemporaneous work on object-
oriented programming languages, was responsible for a paradigm shift in
arti�cial intelligence from the view of relatively atomic concepts being as-
sociated to other external such concepts to a view of concepts as classes of
internally structured instances that possess attributes and values that are,
in turn, internally structured instances of other concepts. This concept-
oriented or object-oriented view of knowledge representation structures in
turn provoked an inquiry into how instances of subconcepts acquire or in-
herit attributes and values from superconcepts that they are also instances
of. Until KL-ONE, however, work on frames centered on providing a pre-
cise operational characterization of how inheritance was computed as well as
eÆcient algorithms and data structures for achieving that [Fahlman, 1979],
rather than a denotational characterization of what the nature and struc-
ture of a given instance actually was. The object-oriented, recursive nature
of feature structures as well as the importance attached to the inheritance

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 65

of attributes stems from this work, although inheritance was initially con-
ceived of as inherently subject to default reasoning, a trend that did not
return to formalizations of feature logic until relatively recently [Lascarides
and Copestake, 1999].

The use of denotational semantics as a means of ensuring correctness did
have some antecedents as far back as work in semantic networks, e.g., Schu-
bert, 1976, and frames, e.g., Hayes, 1979. The most signi�cant contribution
that the early KL-ONE languages made was in showing that a formal no-
tion of correctness plus a suÆcient, universal substrate of concept-structuring
primitives could be used to automate signi�cant portions of the classi�cation
process itself. The �rst so-automated portion was a pair of greatest lower
bound and least upper bound constructions called \most speci�c subsumer"
and \most general subsumee" [Woods, 1979], with the latter being roughly
analogous to a most general satis�er. Such algorithms were made possible
because of common agreement on the suÆciency and meaning of the provided
primitives and thus of higher-order notions based on them. The correctness
of the algorithms that implemented these operations could then be derived
from the formal semantics of the language. Semantic networks, by contrast,
required human intervention to ensure that a new concept was inserted in its
proper place.

Along with automatic classi�cation come concerns about the tractability
of the tasks that are being automated. The goal of providing formally correct
as well as tractable automated classi�cation in a knowledge representation
language was �rst articulated by Levesque [1981a,b], and eventually imple-
mented in KRYPTON by distinguishing a \T-box," or terminological reason-
ing component, in which conceptual terms that can participate in constraints
or rules are de�ned, from an \A-box," or assertional reasoning component,
in which the constraints or rules themselves are stated. Although not every
subsequent system has been as strict in enforcing this separation, the T-box is
generally where restricted but automated, tractable reasoning and classi�ca-
tion can occur, while the A-box is typically where functionality is supported
that is still very much in demand but cannot necessarily support automatic or
tractable inference. Some languages, e.g., LOOM [MacGregor, 1991, 1988],
include full �rst-order reasoning in their assertional component. Within the
realm of typed feature structures, signatures correspond to T-boxes | they
de�ne the types and features that can occur in rules or constraints. Com-
putation of least upper bounds (uni�cation), inheritance (subsumption) and
appropriateness (value restriction) are all typical operations that a KL-ONE-

66 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

style language would support in its T-box.

KRYPTON actually drew a few other subtle but important distinctions
among the statements of its language [Brachman, 1983]. Those included
modality, i.e., whether a statement is an analytic or contingent truth, quan-
ti�cation, i.e., whether a statement is universally true or simply true by
default, and matrix, i.e., whether an ISA statement is to be interpreted set-
theoretically as inclusion or predicatively as a material conditional. These
distinctions have largely been eroded in successive languages simply because
of the diÆculty that exists in classifying some statements according to one
or more of them

In the present formulation of typed feature structures, quanti�cation is
not an issue in the signature; but several programming languages based
on the logic of typed feature structures employ Prolog-like reasoning with
negation-by-failure, which e�ectively admits defaults into their assertional
components. The duality between set-theoretic and material conditional in-
terpretations of signatures can be seen by comparing Carpenter, 1992 with
its contemporaries' mostly set-theoretic treatments of feature logic. Well-
typedness of feature values, for example, is enforced by the implication, \if
Æ(f; q)#, then Approp(f; �(q)) v �(Æ(f; q))," without an indication of what
the denotations of Approp(f; �(q)) and �(Æ(f; q)) actually are, or of what
nodes such as q and Æ(f; q) really represent. Of course, a set-theoretic inter-
pretation can easily be provided; in fact, all of the formulations of feature
logic that do provide models say next to nothing about the universe of ob-
jects which they claim that nodes represent. It is also interesting to note
that, of the four distinctions drawn by Brachman [1983], matrix is the only
one not implemented in KRYPTON.6

As for modality, another trend in typed feature logic, notably in King
and Goetz, 1993, Gerdemann and King, 1994, and Gerdemann, 1995a, has
been to simultaneously reject total well-typing as the interpretation of ap-
propriateness, the unique feature introduction requirement, and the use of
assertional-component functionality, e.g., general implicational constraints,
to specify necessary conditions that might otherwise be relegated to appropri-
ateness, such as feature value cooccurrence restrictions or subtype partition-
ing conditions. Total well-typing is a necessary and suÆcient interpretation

6In a later version, KRYPTON eventually prohibited primitive concepts from having
necessary conditions attached to them in the T-box, which can be read as a rejection of
material conditional content from the T-box.

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 67

of appropriateness conditions, while well-typing with unique feature intro-
duction is only suÆcient, and without it, neither necessary nor suÆcient for
deterministic type inference. The result is an impaired ability to exploit nec-
essary conditions in type inferencing, and an ad hoc criterion for distributing
constraints between the T-box (signature) and A-box (theory) (speci�cally,
one based on a very literal reading of Pollard and Sag, 1987, 1994). The
trend in KRYPTON and other KL-ONE-like languages has been in the ex-
actly opposite direction: to exclude purely suÆcient conditions entirely, or at
the very least from the T-box, or to blur the entire T-box/A-box distinction,
as in CLASSIC [Borgida et al., 1989, Patel-Schneider et al., 1998], in which
case suÆcient conditions are still excluded from the de�nitional statements
that are used to drive automatic classi�cation. There, the emphasis has been
on isolating a collection of necessary conditions (sometimes even contingent
necessary conditions) that can tractably and infallibly apply to terms in the
assertional component to force early contradictions.

2.2.4 Feature Structure Uni�cation and Beyond

A very good introduction to feature logics in the modern sense can be found
in Keller, 1993.

Feature structures began to take their present form beginning with Kay
[1979], who used them as the basis of a language of descriptions in a model
of human language production and comprehension. While informally pre-
sented, the exposition makes it clear that feature structures were viewed as
being composed of sets of \basic" equations between paths and either atomic
values (roughly, types) or other paths (re-entrancies), much like the abstract
feature structures that will be presented here in Chapter 3. Kay [1979]
also identi�ed uni�cation as the operation par excellence to be performed on
these structures, as it was the role of grammar in this model to state the
constraints on making incomplete descriptions of utterances more complete,
either by adding semantic and functional information to a description of a
phonological string, which constitutes parsing, or by adding the necessary
phonological string to a description of semantic and functional constraints,
which constitutes generation or surface string realization. Graph-theoretic
approaches to knowledge representation prior to this time had only explored
the possibility of unifying individuals' attribute graphs themselves (as op-
posed to calculating least upper bounds of concept pairs) to a limited extent
as a means of inference in arti�cial intelligence. A salient example in vision

68 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

research was that of Winston [1975], who calculated similarities and di�er-
ences between pairs of graphs for scene comparison and identi�cation in a
process that closely resembles graph uni�cation between feature structures.

This new view of grammar, presumably inspired by early work on uni�-
cation [Robinson, 1965] and logic programming [Kowalski, 1974] in computer
science, sparked a revolution in formal approaches to natural language syntax
in the early 1980s, leading to the advent of three new and very productive
schools of grammar, all with di�erent variations on what feature structures
were and how they were to be used: Lexical-Functional Grammar (LFG) [Ka-
plan and Bresnan, 1982], Generalized Phrase Structure Grammar (GPSG)
[Gazdar et al., 1985], and Kay's own theory, which developed into what is
now called Functional Uni�cation Grammar (FUG) [Kay, 1979, 1984]. Kay
[1985] elaborated on the signi�cance of feature structures and uni�cation
in computational linguistics relative to developments in logic programming
(which experienced an explosion of interest at around the same time), and
claimed that the two major bene�ts of feature structures over logic program-
ming with Prolog-like terms was the use of attributes for named access to
substructures, and unbounded arity. While this dissertation rejects the em-
pirical necessity of in�nitely branching terms as a matter of principle, the
formalization of appropriateness presented by Carpenter [1992] and followed
here does still allow for a limited degree of arity incrementation relative to
the type system (which Kay [1979, 1985] did not have). As discussed earlier
in this chapter, all feature structures of a given type have the same arity,
but as that type is re�ned, the arity can increase in �xed signature-speci�ed
increments.

The �rst formal treatment of feature description languages in this \mod-
ern" view came with A��t-Ka�ci [1984]. -terms, as they were called there, have
already been discussed in the previous section. A��t-Ka�ci [1984], particularly
his use of semantic types with type subsumption, along with the in
uence of
LFG and FUG, caused a substantial revision of GPSG, called Head-driven
Phrase Structure Grammar (HPSG, Pollard and Sag, 1987). HPSG was the
�rst of these linguistic theories to take typing seriously. HPSG also had a
signi�cant impact on the logic of Carpenter [1992], in so far as a straight-
forward encoding of HPSG's type system and principles was an important
special case of its overall application. That e�ect can be felt in both its
treatment of types | Carpenter, 1992 and (again, by way of HPSG) King,
1989 are the only two formal approaches to feature structures that use a
partially ordered set of types | and appropriateness, which was actually

2.2. A BRIEF HISTORY OF TYPED FEATURE STRUCTURES 69

2
664
basic-circumstance
reln see
seer kim
seen sandy

3
775

Figure 2.20: A semantic representation from Pollard and Sag, 1987.

�rst conceived of by King [1989] as a formalization of typing constraints that
appeared to be assumed in HPSG's treatment of feature structures. It is also
apparent in the applications presented by Carpenter [1992], such as recursive
type constraints and logic programming.

The intuition behind feature structures in HPSG initially took the view
that feature structures were partially ordered terms corresponding to succes-
sively re�ned information states about an utterance from the perspective of
language processing, as had Kay [1979]. A later version of the theory [Pollard
and Sag, 1994] partially rejected that view in favor of a mixture of a theory
of language proper and a practical view of how to parse relative to that in
a tractable manner. That revision came mostly as a result of the persuasion
of King [1989], who had recast HPSG in light of some of the philosophical
aspirations expressed in Pollard and Sag [1987], and in so doing, recast the
language of typed feature structures as a conservative fragment of the lan-
guage of �rst-order logic. This essentially shifted the meaning of \feature
structure" from the descriptions of utterances to formal entities denoting the
utterances themselves | a distinction that was not entirely clear to begin
with in HPSG. Relative to those, Carpenter [1992] falls somewhere in be-
tween, taking feature structures not to be the same as descriptions, but still
thinking of them as partially ordered.

The speci�c allocation of types and features in signatures also drifted be-
tween Pollard and Sag, 1987 and Pollard and Sag, 1994. Pollard and Sag,
1987, for example, represented semantic content using feature structures of
type, circumstance, with a feature, reln, describing the kind of semantic
relation that holds, along with various other features appropriate (in the
non-technical sense) to that relation. Figure 2.20, for example, could de-
pict the circumstance of someone named Kim seeing someone named Sandy,
where basic-circumstance is a subtype of circumstance for semantic relations
that are quanti�er-free and coordination-free. In Pollard and Sag, 1994,
types such as see instead appear as subtypes of basic-circumstance (renamed
quanti�er-free-psoa), with the features appropriate to seeing being introduced

70 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

2
4see (w basic-circumstance)
seer kim
seen sandy

3
5

Figure 2.21: A semantic representation from Pollard and Sag, 1994.

by see itself and reln eliminated entirely, as in Figure 2.21. This adjustment
re
ects an e�ort on the part of the authors to de�ne signatures as closely
as possible to their intended use, speci�cally, to the intended cooccurrences
that should exist among types and features, as well as an adherence to some
intuitions concerning how types in the logic should correspond to the seman-
tic types being represented. In simple quanti�er-free, coordination-free cases
such as those shown here, that correspondence can be rather transparent.

The early view of feature structures in LFG was formalized by Johnson
[1988], essentially as only a path function on \attribute-value elements," that
roughly correspond to nodes in Carpenter, 1992. They also include atomic
values which, as in the original proposal of Kay [1979], could be cast into
Carpenter, 1992 as mutually incomparable extensional types with no appro-
priate features. This implies, among other things, that two feature paths
that terminate in an atomic value are considered to be re-entrant i� they
terminate in the same atomic value. Feature structures to Johnson [1988]
are also not partially ordered, but represent \total" information about ac-
tual linguistic entities. Just as in Carpenter, 1992, they are also taken to
be models of an attribute-value description language, but unlike Carpen-
ter, 1992, are taken themselves to be interpretable on Gorn trees | this
particular interpretation is connected with LFG's tight association of feature
structures that represent functional linguistic information, called f-structures
with phrase-structure trees that represent certain information pertaining to
constituency, called c-structures. Johnson [1988] was also one of the �rst
to consider cyclic feature structures, along with Moshier [1988]. The use of
regular expressions in feature paths, called functional uncertainty and quite
common in LFG research beginning with Kaplan and Zaenen [1986], however,
was not incorporated into a feature logic until Keller, 1993. One may also
note, in this context, the possible extension of feature logic to negative and
disjunctive feature values [Karttunen, 1984], which appear quite frequently
in feature-structure-based linguistics literature, as well as set-valued features
[Carpenter, 1993a, Manandhar, 1994, Moshier and Pollard, 1994, Richter, in
prep.], which have been essential to HPSG among other approaches.

2.3. SUMMARY 71

A closely related treatment of feature logic to those of Johnson [1988]
and King [1989] was that of Smolka [1988], who presented a description lan-
guage along with a model-theoretic semantics of which feature structures (as
unordered, totally informative structures again) were one admissible model.
Smolka [1988] was the �rst to combine a semantic notion of typing with the
proper level of intensionality in a description language for talking about fea-
ture structures. Although sorts with no partial order among them were used,
terms could describe objects that were both sorted and feature-bearing.

The view of feature structures and description language in Carpenter,
1992 itself was more heavily in
uenced by earlier work that took feature struc-
tures to be partially ordered information states, starting with Pereira and
Shieber, 1984 and culminating in Moshier, 1988, which is perhaps the closest
work in spirit to Carpenter, 1992, and description languages for them, most
notably Rounds-Kasper Logic [Kasper, 1987a, Kasper and Rounds, 1986,
1990, Rounds and Kasper, 1986]. Both Moshier, 1988 and Rounds-Kasper
Logic were untyped in the semantic sense, although they both provided access
to a collection of atoms, much like Kay, 1979.

Carpenter [1992] also was the �rst to generalize the type system to in-
clude both intensional and extensional types, the �rst to provide a notion
of appropriateness that can essentially be used to de�ne the approaches to
typing taken in other accounts, and the �rst to give inequations a �rst-class
status both in feature structures and the description language. Smolka, 1988
and successor languages that viewed objects being described as total have
used classical negation, with the usual set-theoretic interpretation; but, in
fact, negation was a signi�cant sticking point for earlier work that assumed
partially ordered objects. Inequations are a particular subset of negated
descriptions that can be treated very elegantly and monotonically in a par-
tially ordered setting. The in
uence towards this choice again came from logic
programming, speci�cally treatments of negation in constraint logic program-
ming, as in Colmerauer, 1984, 1987. An in
uential alternative proposal was
the use of intuitionistic negation in the description language [Moshier and
Rounds, 1987].

2.3 Summary

This chapter presented some basic facts from Carpenter, 1992 that will be
useful in the development presented later on, along with a brief history of the

72 CHAPTER 2. ATTRIBUTE-VALUE LOGIC

use of feature structures and related structures within arti�cial intelligence.
Feature structures have proven to be useful because of their ability to combine
named attributes with subsumption in a way, due to appropriateness and
total well-typing, that allows terse descriptions to pinpoint a sparse amount
of information within potentially very large data structures.

We have also seen our �rst glimpse of the duality that exists between
subtype-based and feature-based encodings of information by noting that
the set of totally well-typed feature structures modulo alphabetic variance
is essentially a type hierarchy. That duality is visible due to certain gen-
eralizations in the treatment of typed feature logic here that depart from a
more mundane, practical view of feature structures in which in�nite feature
structures are disallowed and the number of types must be �nite rather than
merely countable.

On the other hand, some of the other restrictions conventionally assumed
in the course of studies of feature logics, such as unique feature introduction
and bounded completeness, have been adopted here as well. These have been
widely criticized as restricting the applicability of feature logic to linguistics.
The sections on meet semi-lattice completions and signature completions
have argued that those assumptions are warranted insofar as even very large
non-compliant signatures to date can be modi�ed so as to observe them in a
very small amount of time.

Chapter 3

Abstract Feature Structures

and Signature Subsumption

In the last chapter, several results were presented that allow us to regard
F and T T F as type hierarchies, in a rather loose rendering of the term,
provided that we �rst collect their feature structures into equivalence classes
as de�ned by alphabetic variance. In the same way that a semantic view
of feature structures abstracted away from some of the irregularities that
syntactic descriptions must admit, we can further abstract away from the al-
phabetic variance that the nodes of feature structures admit. Abstract feature
structures were �rst introduced in the context of acyclic feature structures
with typed terminal nodes by Moshier and Rounds [1987], extended to cyclic
feature structures by Moshier [1988], and extended to typed feature struc-
tures by Pollard and Moshier [1990]. They are also discussed by Carpenter
[1992]. Their presentation here extends them to typed feature structures
with inequations. It will also be shown that the notion of total well-typing,
together with its inclusion operation, TWT, can be extended to abstract
feature structures.

Totally well-typed abstract feature structures are the right level of ab-
straction for looking at the information content of feature structures. As
such, they are also the right level of abstraction for thinking about the abil-
ity of signatures to simulate the behavior of other signatures with respect to
uni�cation, because that simulation intuitively means that one can conduct
computations for one signature in another one, translate back, and emerge
with the same information, not with any particular correspondence between
nodes.

73

74 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

After introducing abstract feature structures, we will be ready to de�ne
signature equivalence and signature subsumption. The former formalizes the
question posed in the introduction about what it means for two signatures
to be empirically equivalent. The latter also establishes an encoding of one
signature by another but only in one direction. This can have some practi-
cal advantage since not all logically equivalent signatures are computation-
ally equivalent. It is also related to term encoding problems in knowledge
representation, where the embedding is implicitly into the \signature" of
�rst-order terms, or a similar canonical representation. These topics will be
addressed in later chapters.

Central to the idea of signature equivalence and subsumption is the math-
ematical construct known as a join-preserving encoding or embedding. This
rather well-studied class of functions provides a characterization of what it
means for a correspondence between partial orders to preserve the behavior
of their elements under uni�cation. It will be argued here that the stan-
dard de�nition of this class is not quite general enough to capture all of the
salient join-preserving correspondences that can exist, and a generalization
that accommodates these exceptions is then given. This generalization will
be important in Chapter 6, when it is used to establish a useful correspon-
dence between feature structures and Prolog terms.

Given a notion of subsumption among signatures themselves, it is only
natural to ask what structure the collection of all signatures possesses |
possibly even enough structure to be a signature itself. The fourth section
of this chapter considers this question.

3.1 Abstract Feature Structures

Moshier's key insight was that nodes are valuable only insofar as they identify
paths. Instead of de�ning types, path equations and path inequations on
nodes, then, we use types, subject to a few commonsensical restrictions:

De�nition 3.1. Given a set of types, T , and a set of features, Feat, an
abstract feature structure is a tuple A = h�;�;�F ; 6�F i where:

� � � Feat� is the set of paths,

� � : � �! T is the total path typing function,

� �F � �� � is the path equation relation, and

3.1. ABSTRACT FEATURE STRUCTURES 75

� 6�F � �� � is the path inequation relation,

such that:

� pre�x closure: � is pre�x-closed,

� path equivalence: �F is an equivalence relation on �,

� inequation negativity: 6�F is symmetric and anti-re
exive,

� inequation disjointness: �F \ 6�F = ;,

� pre�x consistency: if �f 2 � and � �F �
0, then �0f 2 � and �f �F

�0f,

� inequation consistency: if �1 6�F�2, �1 �F �01 and �2 �F �02, then
�01 6�F�

0
2, and

� typing consistency: if �1 �F �2, then �(�1) = �(�2).

A is the set of abstract feature structures.

These are an abstraction from typed feature structures with normal in-
equations. Fully inequated feature structures [Carpenter, 1992, p. 120] would
have more restrictions on where inequations can occur.

One can also de�ne an operation on feature structures that casts them
into their abstract feature structures.

De�nition 3.2. Let Abs : F �! A be the total function such that given
F = hQ; �q; �; Æ;=i 2 F , Abs(F) = h�;�;�F ; 6�F i such that:

� � = f�jÆ(�; �q)#g,

� �(�) = �(Æ(�; �q)),

� �1 �F �2 i� Æ(�1; �q) = Æ(�2; �q), and

� �1 6�F�2 i� Æ(�1; �q)= Æ(�2; �q).

Proposition 3.1. Abs is a surjection, i.e., every abstract feature structure
stands in the image of Abs.

Proof. Given A = h�;�;�F ; 6�F i, let F = h[�]�F
;��F ; Æ�F ;=�F i such that:

� ��F ([�]�F
) = �(�),

� Æ�F (f; [�]�F
)# i� �f 2 � and Æ�F (f; [�]�F

) = [�f]�F
,

76 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

� [�]�F
=�F [�0]�F

i� � 6�F�
0.

��F is well-de�ned by typing consistency. Æ�F is well-de�ned by pre�x clo-
sure and pre�x consistency. =�F is well-de�ned by inequation negativity,
consistency and disjointness. As can easily be veri�ed, Abs(F) = A.

Abstract feature structures admit a direct characterization of subsump-
tion, just as was shown for hF=�;v�i.

De�nition 3.3. Given A = h�;�;�F ; 6�F i; A
0 = h�0;�0;�F

0; 6�F
0i 2 A, A

subsumes (is extended by) A0, A v A0, i�:

� � � �0,

� �F � �F
0,

� 6�F � 6�F
0, and

� for all � 2 �, �(�) v �0(�).

Proposition 3.2. F v F 0 i� Abs(F) v Abs(F 0).

Proof. The characteristics of a morphism that witnesses F v F 0 (p. 42)
directly correspond to the requirements for abstract feature structure sub-
sumption.

Signi�cantly, the elements of A correspond exactly to the equivalence
classes established by the alphabetic variance relation, �:

Proposition 3.3. Abs(F) = Abs(F 0) i� F � F 0.

Proof. By the de�nition of � and the previous proposition.

As a result, the abstraction operation corresponds to reading the informa-
tion from a feature structure, and abstract feature structures correspond
to information states. We can now de�ne uni�cation over abstract feature
structures without recourse to alphabetic variance to solve the problem with
non-intersecting node sets. Because uni�cation is really only intended to
combine information from feature structures, it is more natural to think of
it as an operation on abstract feature structures.

De�nition 3.4. Given A;A0 2 A such that A = h�;�;�F ; 6�F i, and A
0 =

h�0;�0;�F
0; 6�F

0i, the uni�cation of A and A0 is A t A0 = h�00;�C ; C; Ii,
where:

3.1. ABSTRACT FEATURE STRUCTURES 77

� �00 is the pre�x-consistent closure of �[�0, i.e., the least set containing
� [�0 that is pre�x-consistent (as de�ned on p. 75),

� C is the transitive, pre�x-consistent closure of �F [�F
0,

� I is the closure of (6�F [6�F
0) under C,

� �C(�) =
F
f�t(�0)jh�0; �i 2 Cg, and

� �t(�) =

8>><
>>:

�(�) t �0(�) if � 2 � \ �0;
�(�) if only � 2 �;
�0(�) if only � 2 �0;
? otherwise;

provided:

� the joins required by �C and �t exist, and

� C \ I = ;,

and is unde�ned otherwise.

Proposition 3.4. A-uni�cation is well-de�ned.

Proof. Pre�x closure, pre�x consistency and path equivalence trivially hold.
Inequation symmetry follows from the inequation symmetry and inequation
disjointness of A and A0. Inequation disjointness is guaranteed by the second
stipulation. Inequation consistency follows from the closure of (6�F [6�F

0)
under C. Typing consistency follows from the closure under C in �C .

The two conditions correspond to our intuitions about when uni�cation fails,
namely when typing information is inconsistent or when path inequations
are violated. The explicit pre�x-consistent closures are necessary to handle
cases like Figure 3.1,1 Neither abstract feature structure contains the path,
fh, but because of the re-entrancy between f and g on the left, and the fact
that gh is de�ned on the right, the result must have it to remain pre�x-
consistent and pre�x-closed. These new paths are the ones that contribute
? | no information | to the type of their equivalence class in the last
clause of �t. I must be explicitly closed under C to handle cases such as
Figure 3.2, in which the violation is not directly inferred from the union of
their inequations. The typing function must be closed under C for the same
reasons.

We also get the same duality as before without using quotient sets.
1Since Abs is a surjection, we are justi�ed in depicting the elements of A by concrete

feature structure representatives.

78 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

2
4af 1

g 1

3
5 t

2
664
a
f b

g

�
b
h c

�
3
775 =

2
664
a

f

�
1 b
h c

�
g 1

3
775

Figure 3.1: An example of the necessity of pre�x-consistent closure in A-
uni�cation.

2
666666664

a
f 1

g 2

h 3

i 4

1 = 2

3 = 4

3
777777775

t

2
66664
a
f 1

g 2

h 2

i 1

3
77775 "

Figure 3.2: An example of the necessity of explicitly closing path inequations
under path equality in A-uni�cation.

Proposition 3.5. hA;vi is a type hierarchy.

Proof. By Proposition 3.3, vA is a partial order because v�
F is. The fact

that it is bounded complete follows from the de�nition of A-uni�cation plus
the fact that set union is the least extension of consistent sets.

The notion of total well-typing also naturally extends to abstract feature
structures:

De�nition 3.5. A = h�;�;�F ; 6�F i is totally well-typed i�:

� for every �f 2 �, then Approp(f;�(�))# and Approp(f;�(�)) v
�(�f), and

� for every � 2 �, if Approp(f;�(�))# then �f 2 �.

T T A is the set of totally well-typed abstract feature structures.

Well-typing consists of satisfying only the �rst criterion, which gives us T A,
the set of well-typed abstract feature structures. The extension is natural
because Abs respects the total well-typing of concrete feature structures.

3.2. ORDER-EMBEDDINGS AND JOIN-PRESERVING ENCODINGS79

Proposition 3.6. If F 2 T T F, then Abs(F) 2 T T A.

Proposition 3.7. If there is an F 2 T T F such that Abs(F) = A, then for
all F 0 2 F for which Abs(F 0) = A, F 0 2 T T F .

Proof. Given F 0 2 F for which Abs(F 0) = A, then Abs(F 0) = Abs(F). By
Proposition 3.3, F 0 � F . So F 0 v F , and therefore has a totally well-typed
extension. By Propositions 2.9 and 2.11, TWT (F 0)# and F 0 v TWT (F 0) v
F . Also, F v F 0, so TWT (F 0) � F � F 0. By Corollary 2.3, F 0 is totally
well-typed.

Often, operations like TWT, Fill, etc. will be thought of as applying to
abstract feature structures rather than concrete feature structures, which
makes sense because of this respect.

Theorem 3.1. If A;A0; A00 2 T T A, then A v A00 and A0 v A00 i�
Abs(TWT (A t A0)) v A00.

Proof. On analogy to Theorem 2.5.

Corollary 3.1. hT T A;vT T Ai is a type hierarchy.

Proof. On analogy to Corollary 2.4.

3.2 Order-Embeddings and Join-Preserving

Encodings

We can begin to consider signature equivalence by �rst asking how, in general,
two partially ordered sets may be said to be equivalent.

De�nition 3.6. Given two partial orders hP;vP i and hR;vRi, a function
f : P �! R is an order-embedding i�, for every x; y 2 P , x vP y i�
f(x) vR f(y).

De�nition 3.7. f : P �! R is an order-isomorphism i� it is an order-
embedding and onto.

Order-isomorphisms preserve the structure of partially ordered sets ex-
actly, and, in so doing, preserve operations such as least upper bounds, great-
est lower bounds etc., that are derived from that structure. Clearly, if f is

80 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

f

Figure 3.3: An example order-embedding that cannot translate least upper
bounds.

an order-isomorphism, so is f�1, so this correspondence can be used in either
direction from a problem solving perspective.

Order-embeddings appear to establish that correspondence in only one
direction, and they do to the extent that one can ask questions such as \does
x subsume y?". As shown in Figure 3.3, however, this weaker correspondence
cannot be used in general to reason about operations such as least upper
bounds on bounded complete partial orders. The reason is that the image
of f may not be closed under those operations in the codomain. In fact, the
codomain could provide answers where none were supposed to exist, or, as in
Figure 3.3, no answers where one was supposed to exist. Mellish [1991, 1992]
was the �rst to formulate the \one-way" join-preserving encoding problem
in a correct fashion, by explicitly requiring the correct behavior:

De�nition 3.8. Given two BCPOs, P and R, f : P �! R is a classical
join-preserving encoding of P into R i�:

� injectivity f is an injection,

� zero preservation f(p tP q)" i� f(p) tR f(q)", and

� join homomorphism f(p tP q) = f(p) tR f(q), where they exist.

Join-preserving encodings are also order-embeddings because p t q = q i�
p v q.

There is actually a more general de�nition:

De�nition 3.9. Given two BCPOs, P and R, f : P �! Pow(R) is a join-
preserving encoding of P into R i�:

� totality for all p 2 P , f(p) 6= ;,

� disjointness f(p) \ f(q) 6= ; i� p = q,

3.2. JOIN-PRESERVING ENCODINGS 81

� zero preservation for all �p 2 f(p), and �q 2 f(q), p tP q" i� �ptR �q",
and

� join homomorphism for all �p 2 f(p), for all �q 2 f(q), �p tR �q 2
f(p tP q), where they exist.

When f maps elements of P to singleton sets in R, then f is a classical join-
preserving encoding; but there is no reason in general to require that only
one element of R can represent P , provided that it does not matter which
one we choose. The utility of this generalization can seen in the following
theorem, which shows that choosing total well-typing or well-typing is really
a matter of expressive convenience or taste:

Theorem 3.2. For any signature, S = hTS;vS;FeatS;AppropSi, there is:

1. a signature, R = hTR;vR;FeatR;AppropRi with a function f : T FS �!
Pow(T T FR), that induces a join-preserving encoding, �f of T AS into
T T AR, and

2. a signature, P = hTP ;vP ;FeatP ;AppropP i with a function g : T T FS

�! Pow(T FP), that induces a join-preserving encoding, �g of T T AS

into T AP .

Proof. (1) For each type in TS, t with k appropriate features, F = ff1; : : : ; fkg,
let TR have 2k types, ftEjE � Fg. Also:

� FeatR = FeatS,

� AppropR(f; tE)# i� AppropS(f; t)# and f 2 E, in which case
AppropR(f; tE) = (AppropS(f; t));, and

� tE vR t
0
E0 i� t vS t

0 and E � E 0.

Clearly, vR is a partial order and bounded complete, where tE tR t0E0 =
(t tS t0)(E[E0).

Now for F 2 T FS, let f(F) = fGg, where G = hQF ; �G; ÆF ;=F i, and
�G(q) = (�F (q))fhjÆF (h;q)#g. Since all that is di�erent between F and G is the
node-typing function, G is obviously well-formed in FR. F is well-typed,
so wherever ÆF (j; q)#, AppropS(j; �F (q)) vS �F (ÆF (j; q)). To show G 2
T FR, it must be shown that AppropR(j; �G(q))# and AppropR(j; �G(q)) vR

�G(ÆF (j; q)). The �rst is proven by noting that j 2 fhjÆF (h; q)#g. To
prove the second, note that AppropR(j; �G(q)) = (AppropS(j; �F (q))); vR

(�F (ÆF (j; q))); vR (�F (ÆF (j; q)))fhjÆF (h;ÆF (j;q))#g = �G(ÆF (j; q)).

82 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

a
f:b
g:b

b

?

S

aff;gg
affg

f:b;
afgg

g:b;

a; b;

?

R

Figure 3.4: An example of S and R in the proof of Theorem 3.2.

To show G 2 T T FR, it must also be shown that for all j and q, for which
AppropR(j; �G(q))#, ÆF (j; q)#. �G(q) = (�F (q))fhjÆF (h;q)#g and
AppropR(j; (�F (q))fhjÆF (h;q)#g)# implies, by de�nition, that j 2 fhjÆF (h; q)#g.
So ÆF (j; q)#.

Now let �f be the abstraction of f over the alphabetically variant equiva-
lence classes of T FS, such that �f(AbsS(F)) = fAbsR(f(F))g. The fact that
�f is well-de�ned and a join-preserving encoding follows directly from the
fact that G 2 f(F) only di�ers from F in its node typing function, and that
�G(q) only di�ers from �F (q) in its type's subscript annotation with exactly
the features that q bears.
(2) Let P = S, and for F 2 T T FS, let g(F) = fF 0 2 T FSjFill(F 0) = Fg,
and let �g be the abstraction of g over the alphabetically variant equivalence
classes of T T FS, such that �g(Abs(F)) = fAbs(F 0)jF 0 2 T FS&Fill(F

0) =
Fg. �g is disjoint because Fill is a function. Also, for all Abs(�F) 2 g(Abs(F)),
and Abs(�G) 2 g(Abs(G)), F tT T F G = (Fill Æ TypInf)(F t G)# means
(Fill Æ TypInf)(Fill(�F) t Fill(�G))#. Since Fill is total, by Proposition 2.11
and Corollary 2.3, (Fill ÆTypInf)(Fill(�F)tFill(�G)) = (Fill ÆTypInf)(�F t �G)
and thus, TypInf (�F t �G) = �F tT F �G# and Abs(�F tT F �G) 2 �g(Abs(F tT T F
G)). The reverse of this reasoning also holds. Thus �g is a join-preserving
encoding.

As an example of �f , one might consider the S and R shown in Figure 3.4.
T FS corresponds to T T FR in a way that should be clear. As an example
of �g, one can consider the encoding of T T FS into Pow(T FS) given in Fig-
ure 3.5, where S is again as shown in Figure 3.4. Notice that the sets are
closed under uni�cation, which is a property guaranteed by the generalized
de�nition of join-preserving encodings.

�f is a classical join-preserving encoding, but �g is not. �g designates every
well-typed approximation of a totally well-typed abstract feature structure

3.2. JOIN-PRESERVING ENCODINGS 83

? 7�!
�
?
	

b 7�!
�
b
	2

4af b
g b

3
5 7�!

8<
:a,

�
a
f b

�
,

�
a
g b

�
,

2
4af b
g b

3
5
9=
;

Figure 3.5: An example of �g in the proof of Theorem 3.2.

as a representative of that structure in the BCPO of well-typed abstract
feature structures. In fact,

S
Im(�g) = T AS, i.e., every well-typed abstract

feature structure represents something; but �g is not a bijection, because its
codomain is Pow(T AS). One could, for example, think of T FS as modeling
the extent to which a particular totally well-typed abstract feature structure
has been �lled in an application that uses a lazy �lling algorithm to reduce
the size of the data structures that it must copy or unify. Lazy �lling could
potentially change which well-typed abstract feature structure is being used
as a representative in between uni�cations in such a system. It does not
matter which representative we use because Fill is a total function, and can
be \postponed" until all of the uni�cations are �nished. Generalized join-
preserving encoding formally delineates a set of alternatives among which
lazy �lling or other algebraic operations can navigate without disturbing
join-preservation. Generalized join-preserving encoding will be used in the
same capacity in Chapter 6.

In the case of the proof above, it is possible to extract a classical encoding
from �g, namely the trivial inclusion encoding that chooses the single totally
well-typed abstract feature structure, which maps to itself under Fill, from
the set of well-typed abstract feature structures delineated by a set in the im-
age of �g. In general, that will not be possible. Figure 3.6 shows a generalized
join-preserving encoding from which no classical encoding can be extracted.
In fact, there is no classical encoding at all of S into the R shown, because no
three elements can be found in R that pairwise unify to yield a unique join.
A generalized encoding exists because we can choose three potential repre-
sentatives for d, one (h) for unifying the representatives of a and b, one (i)
for unifying the representatives of b and c, and one (j) for unifying the rep-
resentatives of a and c. Notice again that the representatives of d must also
be closed under uni�cation. So generalized join-preserving encoding really is
a generalization, even in the absence of other non-join algebraic operations

84 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

j

d h i

a b c e f g

? ?

S R

f

Figure 3.6: A non-classical join-preserving encoding between BCPOs for
which no classical join-preserving encoding exists.

to support.

A stronger version of this idea would also require homomorphisms and
zero preservation to hold for least upper bounds of in�nite sets, although
that will not be pursued here.

3.2.1 Symmetric Join Preserving Encodings

An important question to ask is whether the existence of a join-preserving
encoding in both directions is enough to establish an order-isomorphism,
i.e., equivalence in the strongest sense. Clearly if the dual join-preserving
encodings are both classical and inverses of one another, then they constitute
an order-isomorphism. There may, however, be cases where we only know
of two join-preserving encodings, even classical ones, which only map one
BCPO into a proper subset of the other. In the category of sets, the Schr�oder-
Bernstein Theorem guarantees the existence of a bijection in this case; but
that says nothing about whether that bijection preserves the structure of
subsumption in the desired way.

Proposition 3.8. If f is a classical join-preserving encoding of P into R,
then f is an order-isomorphism between P and Im(f) � R.

Proof. p vP q i� p tP q = q i� f(p tP q) = f(p) tR f(q) = f(q) i� f(p) vR

f(q).

3.2. JOIN-PRESERVING ENCODINGS 85

Theorem 3.3. If P (or R) is �nite, and there exist a classical join-preserving
encoding, f , of P into R and a classical join-preserving encoding, g, of R
into P , then then there exists an order-isomorphism between P and R.

Proof. By Proposition 3.8, f is an order-isomorphism between P and Im(f) �
R. This means that Im(f) is a BCPO, and since f is a join-preserving en-
coding, p tIm(f) q# i� p tR q#. So the restriction of g to Im(f), gjIm(f),
is a join-preserving encoding. By Proposition 3.8, gjIm(f) is an order-
isomorphism between Im(f) and Im(gjIm(f)) � P . Since composition of
order-isomorphisms is an order-isomorphism, we have the order-isomorphism
(gjIm(f)) Æ f between P and Im(gjIm(f)) � P . Since P is �nite and order-
isomorphisms are bijective, Im(gjIm(f)) = P . But Im(gjIm(f)) � Im(g) �
P , so Im(g) = P also. By Proposition 3.8, g is an order-isomorphism be-
tween R and Im(g) = P .

With the following lemma, we have the same result for generalized term
encodings as a corollary:

Lemma 3.1. If P (or R) is �nite, and there exist a join-preserving encoding,
f , of P into R and a join-preserving encoding, g, of R into P , then f and
g map elements of P and R, respectively, to singleton sets, i.e., they induce
respective classical join-preserving encodings.

Proof. Because P is �nite, jP j � j
S
Im(g)j, and because g is disjoint and

total, j
S
Im(g)j � jRj, so R is �nite. By the same reasoning with R and f ,

jRj � jP j. Thus jP j = jRj, and j
S
Im(g)j = jP j, so g must map elements of

R to singleton sets in P , and likewise for f .

Corollary 3.2. If P (or R) is �nite, and there exist a join-preserving en-
coding, f , of P into R and a join-preserving encoding, g, of R into P , then
there exists an order-isomorphism between P and R.

In the in�nite case, we are not always so lucky. Figure 3.7 shows part of
a classical join-preserving encoding from an in�nite ascending binary tree to
an in�nite ascending ternary tree, and Figure 3.8 shows part of a classical
join-preserving encoding in the reverse direction. These are trivially join-
preserving because they are subsumption preserving and there are no join-
reducible elements. There can be no order-isomorphism, however, because
b? in one must map to t? in the other, since they are the only elements that
subsume everything, and thus b1 and b2 must map to two of ft1; t2; t3g in

86 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

b

b1

b11 b12

b2

b21 b22

t

t1

t11 t12 t13

t2

t21 t22 t23

t3

t31 t32 t33

Figure 3.7: A classical join-preserving encoding from an in�nite ascending
binary tree to an in�nite ascending ternary tree.

t

t1 t2 t3

t31 t32 t33

b

b1

b11 b12

b2

b21

b211

b2111 b2112

b212

b2121 b2122

b22

Figure 3.8: A classical join-preserving encoding from an in�nite ascending
ternary tree to an in�nite ascending binary tree.

3.3. SIGNATURE EQUIVALENCE AND SUBSUMPTION 87

the in�nite ternary tree, because they are the only elements subsumed only
by t? and themselves. But then the third of ft1; t2; t3g cannot correspond to
anything in the in�nite binary tree without being subsumed by the correlates
of the other two.

3.3 Signature Equivalence and Subsumption

In the last chapter, it was noted that totally well-typed feature structures
give us the \best" interpretation of appropriateness in a sense; and in the
last section, we saw that total well-typing can, in another respect, be used
as a substitute for the weaker well-typing interpretation. We also saw that
abstract feature structures naturally represent the \information states" pro-
vided by feature structures, and that they respect total well-typing. Putting
all of this together, we �nally can obtain a formal de�nition of signature
equivalence and signature subsumption:

De�nition 3.10. Signature S is equivalent to signature R, written S �S R,
i� there exists an order-isomorphism between T T AS and T T AR, the totally
well-typed abstract feature structures of S and R, respectively.

De�nition 3.11. Signature S subsumes signature R, written S vS R, i�
there exists a (generalized) join-preserving encoding of T T AS into T T AR.

Proposition 3.9. �S is an equivalence relation and vS is a pre-order.

Proof. Re
exivity of both relations follows from the fact that the identity
function is an order-isomorphism. Symmetry and transitivity of �S follows
from the fact that inversion and composition preserve order-isomorphisms.
De�ne the composition of two join-preserving encodings, f : P �! Pow(R)
and g : R �! Pow(S), f Æt g : P �! Pow(S), such that:

(f Æt g)(p) =
[

�p2g(p)

f(�p)

It can easily be veri�ed that f Æt g is also a join-preserving encoding.

We are justi�ed in calling the weaker notion \subsumption" because in
that case, T T AR must be at least as re�ned in the distinctions between in-
formation states that it makes as T T AS. We still need the stronger notion

88 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

?

index

index 1

index 1sg

index 2

...

index 3

...

index sg

index sm

index 1sgmasc

: : :

person

�rst second third

number

singular plural

gender

masc fem neut

Figure 3.9: Figure 1.4 augmented to be equivalent to Figure 1.5.

because, as shown in the last section, the weaker notion in both directions
does not always guarantee the stronger. The stronger, signature equivalence,
formally de�nes the equivalence that motivated this study. The weaker no-
tion is one that is almost always easier to establish, and that retains most
of the practical bene�t as well. If S vS R, then programs written relative
to S can be translated into programs written in R, and executed on a ma-
chine built for R, with the answers translated back into the vocabulary of S.
Because of the extra properties guaranteed by join-preservation, this transla-
tion works even in the face of computation of joins and other operations that
\respect" joins in the manner described above for generalized join-preserving
encodings.

To consider the example in the introduction again, the signatures in Fig-
ures 1.4 and 1.5 are actually not quite equivalent | Figure 1.4 requires
identical person, number and gender branches to those in Figure 1.5 in order
for feature structures of those types to have something to correspond to, as
shown in Figure 3.9. Given that modi�cation, some of the correspondence
between totally well-typed abstract feature structures of type index is shown
in Figure 3.10. As they stand, the signature in Figure 1.4 subsumes the
signature in Figure 1.5, with the latter distinguishing additional information
states for self-standing abstract feature structures of types person, number,
and gender.

The next chapter considers this correspondence between signatures in
more detail. In particular, one can create equivalent signatures directly by
adding more types and modifying appropriateness conditions.

3.3. SIGNATURE EQUIVALENCE AND SUBSUMPTION 89

index 7�!

2
664
index
person person
number number
gender gender

3
775

index sg 7�!

2
664
index
person person
number singular
gender gender

3
775

index 1sg 7�!

2
664
index
person �rst
number singular
gender gender

3
775

index 1sgmasc 7�!

2
664
index
person �rst
number singular
gender masc

3
775

Figure 3.10: Part of the correspondence between index values in Figures 1.4
and 1.5.

90 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

? ?

? ?

Figure 3.11: Two signatures with no least upper bounds along with two of
their minimal upper bounds.

?

vS

?

Figure 3.12: Subsumption between the two lower signatures of Figure 3.11
due to top-smashing.

3.4 A Signature of Signatures?

Since we have a pre-order on signatures, we may stop to ask whether there
is a signature of signatures, and if so, at what point in the signature of
signatures does it contain itself. We can construct a true partial order over
(classes of) signatures by considering the one induced on the quotient of
signatures modulo either �S or the symmetric closure of vS. We even have
a least element, namely the signature consisting only of ?.

The set of signatures is not a bounded complete partial order, however,
and therefore not a signature. Figure 3.11 shows two signatures with two
minimal upper bounds for which there is no least upper bound between
them. This may seem rather unfair, since if we top-smashed the signature
on the left, giving a representation to inconsistency within the signature,
it would be subsumed by the one on the right, as shown in Figure 3.12.
Even if we adopt the convention that we should top-smash signatures with

3.5. SUMMARY 91

? ? ?

? ?

Figure 3.13: Two signatures with greatest elements that have no least upper
bounds and three of their minimal upper bounds.

no greatest element, there are still counter-examples in which no least upper
bound exists, such as in Figure 3.13.

As a result, we cannot straightforwardly think of a domain of signatures,
following the development of feature structure domains by Carpenter [1992].

3.5 Summary

This chapter has presented some of the basic concepts that establish the
view of typed feature structures and signatures upon which this dissertation
is based. The most fundamental among those is the identi�cation of totally
well-typed abstract feature structures as the \information states" that are
worth preserving algebraically.

Join-preserving embeddings were also generalized in a way that more
essentially characterizes them. These two concepts, information and gen-
eralized join preservation, combine to give us a useful way of comparing
signatures through signature subsumption and signature equivalence. The

92 CHAPTER 3. ABSTRACT FEATURE STRUCTURES

relationship between these two relations as well as the underlying structure
of the set of all signatures has also been examined.

Chapter 4

Recursion, Finiteness, and

Appropriate Values

We saw in the last chapter (Corollary 3.1) that T T A has a very similar struc-
ture to the signature that induces it, namely, that of a countable, bounded
complete, partially ordered set, no matter what that signature is. We can
even designate each abstract feature structure as a type and call it a type
hierarchy, or a type signature with no features. We also saw how it is possible
to put signatures themselves into a subsumption relationship relative to the
totally well-typed abstract feature structures they induce.

These two facts about signatures are really opposite sides of the same
coin. Given a total well-typedness interpretation of appropriateness, which
will be assumed throughout the rest of this work, signatures with features can
be regarded as a compact way of describing the structure of the totally well-
typed abstract feature structures that they induce. Some are more compact
than others; and the fact that there is some variation in how compact they
can be is what leads to instances of signature equivalence between what, on
the surface, appear to be di�erent signatures. The signature in Figure 3.9,
for example, is not very compact at all. It has no features, and is therefore
isomorphic to its totally well-typed abstract feature structures, with each
type having one. Figure 1.5 is more compact, but also has a T T A that is
isomorphic to the type hierarchy in Figure 3.9.

In this view, signatures are merely a speci�cation of a particular partially
ordered set, T T A, and appropriate features are what make such a speci�-
cation more compact. They provide a kind of mapping of structure in one
part of a signature's T T A back onto itself, thus eliminating the need for its

93

94 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

repetition in the signature. The �rst section of this chapter investigates this
view further, and shows how it can be used to provide tractable encodings
of multi-dimensional inheritance and systemic networks, two other means of
knowledge representation that are popular in linguistics which were previ-
ously thought not to be reconcilable to attributed type signatures or simple
partial orders, more generally. The second section then reconsiders the dis-
cussion of �niteness from Chapter 2 in the light of signatures, i.e., how to
reason about the �niteness of most general satis�ers and the �niteness of
T T A directly in terms of signatures. In the course of this study, it will
become clear that �nite signatures with features do indeed possess more
expressive power than �nite signatures without them | the \compacting"
power of features can even render an in�nite T T A �nitely presentable.

The third section examines �nite signatures more closely according to
the analysis of �nite type hierarchies given in Chapter 2, namely, how ap-
propriateness and total well-typing allow us indirectly to restrict T T A to be
well-founded, �nite branching and/or Noetherian. The fourth section then
discusses the potential practical application of these results, by considering
the transformation of signatures as a device to improve the performance of
processing relative to them.

4.1 Product isomorphisms

In general, the features over which Approp is de�ned for a given type establish
an isomorphism between the totally well-typed abstract feature structures of
that type and the product of several �lters of totally well-typed abstract
feature structures, determined by the value of Approp on those features with
that type.

De�nition 4.1. A subset L � P of a partially ordered set, hP;vi is a �lter
i� it is:

� directed: if x; y 2 L then there exists a z 2 L such that z v x and
z v y, and

� upward closed: if x 2 L, y 2 P , and x v y, then y 2 L.

Filters are very closely related to the concept of most general satis�ers or
\least extension" operators, such as TWT etc., in general, because the set
of extensions of which they are least forms a �lter.

4.1. PRODUCT ISOMORPHISMS 95

?

a
f:?

�S

?

a ?

a a
f:?

�S

?

a ?

a a ?

a a a
f:?

�S : : :

Figure 4.1: An in�nite series of equivalent signatures.

De�nition 4.2. Given a signature, S, with type hierarchy hT;vi, let T :
T �! Pow(T T AS) be such that T (t) = fA 2 T T ASj�A(�) = tg, the set of
totally well-typed abstract feature structures of type t.

De�nition 4.3. Given a signature, S with type hierarchy hT;vi, let A :
T �! Pow(T T AS) be such that A(t) = fA 2 T T ASjt v �A(�)g.

Proposition 4.1. For any t 2 T , A(t) is the �lter of totally well-typed ab-
stract feature structures rooted at Abs(TWT (MGSat(t))).

Proof. Abs(MGSat(t)) is the least abstract feature structure of type t, and
Abs(TWT (MGSat(t))) is its least totally well-typed extension. A(t) is then
obviously directed, because one can always choose Abs(TWT (MGSat(t)))
as z, and upward closed because it contains all totally well-typed abstract
feature structures more speci�c than Abs(TWT (MGSat(t))).

If we again compare Figures 3.9 and 1.5, we can see that every type in
the signature of Figure 1.5 has a corresponding �lter in Figure 3.9. In the
case of types like person or �rst, there is just a type again. No features are
appropriate to those. In the case of index, there is a larger set of types, deter-
mined by every possible combination of person subtype, number subtype and
gender subtype, because these are the three appropriate features to index in
Figure 1.5. In this way, multiple appropriate features in the more compact
signature correspond to a product in the less compact signature.

Sometimes, the appropriate value restriction that a feature takes can
actually subsume the type to which the feature is appropriate. In this case,
we can end up with an in�nite series of equivalent signatures, as shown for a
very simple case in Figure 4.1. In this case, we say a signature is recursive, or

96 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

?

b a
f:? wS

?

b a ?

a a
f:?

wS

?

b a ?

a a ?

a a a
f:?

wS : : :

Figure 4.2: An in�nite descending chain of signature approximations.

?

a
f:a

Figure 4.3: A signature with a cyclic type.

that the type a in Figure 4.1 is a recursive type, and f is a recursive feature.
These will be de�ned formally later. All of the signatures in Figure 4.1 are
equivalent, because they all have isomorphic BCPOs of totally well-typed
abstract feature structures. If the unfolding of the product into types is not
complete, then we have an in�nite descending chain of approximations in the
case of recursive types, as shown in Figure 4.2. There are no types a b, a a b,
etc. to correspond to an a-typed feature structure with a substructure of type
b, so the unfolding is not complete. There is also the kind of recursion shown
in Figure 4.3. This kind of a and f are said to be a cyclic type, and a cyclic
feature, respectively. These are somewhat of a special case. They also have
in�nitely many equivalent signatures, but none of those signatures are �nite.
They still have in�nite chains of �nite approximations, however, as shown
in Figure 4.1. Types with cyclic appropriate features also do not have �nite
totally well-typed most general satis�ers, and Carpenter [1992] excludes them
by prohibiting appropriateness loops. All of these will be discussed further
in the next section.

Unfortunately, in the case of multiple features, we do not always obtain
a well-behaved product. We do in the case of Figure 1.5 because the value
restrictions of these features, person, number and gender, together with index
itself are pairwise join-incompatible. That means that feature structures of

4.1. PRODUCT ISOMORPHISMS 97

c

a f
:b

b
g
:a

?

w
S

a
F
c

c

a
F
b
g
f
:b

b
g
:a
F
b

?

w
S

a
F
c
F
F
c

a
F
c
F
F
b

a
F
b
F
F
c

c

a
F
b
F
F
b
g
f
:b

b
g
:a
F
b
F
F
b

?

w
S
::
:

F
ig
u
re
4.
4:
A
si
gn
at
u
re
w
it
h
cy
cl
ic
ty
p
es
,
an
d
it
s
in
�
n
it
e
d
es
ce
n
d
in
g
ch
ai
n
of
ap
p
ro
x
im
at
io
n
s.

98 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

type index can never have re-entrancies or cycles inside them. To handle the
general case, we need a special kind of product:

De�nition 4.4. Given a �nite family of �lters of abstract feature structures,
L = fL1; : : : ; Lng, the shared product of L with respect to t is the set of all
tuples ht; A1; : : : ; An;�; 6�i, such that t 2 T and, for all 1 � i; j; i1; i

0
1; i2; i

0
2 �

n:

� membership: Ai = hPi;�i;�i; 6�ii 2 Li,

� path equivalence: � is an equivalence relation over f�g]P1]� � �]Pn,

� inequation negativity: 6� is a symmetric, anti-re
exive relation over
f�g] P1] � � �] Pn,

� inequation disjointness: � \ 6� = ;,

� pre�x consistency: if �f 2 Pi and hi; �i � hj; �0i, then �0f 2 Pj and
hi; �fi � hj; �0fi,

� inequation consistency: if hi1; �1i6�hi2; �2i, hi1; �1i � hi01; �
0
1i, and

hi2; �2i � hi02; �
0
2i, then hi

0
1; �

0
1i6�hi

0
2; �

0
2i,

� typing consistency: if hi; �i � hj; �0i, then �i(�) = �j(�
0), where

�0(�) = t,

� path projection: � �i �
0 i� hi; �i � hi; �0i,

� inequation projection: � 6�i�
0 i� hi; �i6�hi; �0i,

De�nition 4.5. Subsumption on shared products, vL, is de�ned such that
ht; A1; : : : ; An;�; 6�i vL ht0; A0

1; : : : ; A
0
n;�

0; 6�0i i� t v t0, � � �0, 6� � 6�0,
and, for all 1 � i � n, Ai v A0

i.

Because of typing consistency, pairwise join-incompatible value restrictions,
such as those of index will only allow � to be the union of the �i from
individual dimensions, and likewise for 6�, which means we can throw them
away | subsumption will never depend on them. This is why we get a true
product in the case of index.

Theorem 4.1. Given a signature, hT;v;Feat;Appropi, and a type t 2 T ,
with n appropriate features, ff1; : : : ; fng = ffjApprop(f; t)#g, there exists
an order-isomorphism between T (t) and the smallest shared product of
fA(Approp(f1; t)); : : : ; A(Approp(fn; t))g with respect to t.

4.1. PRODUCT ISOMORPHISMS 99

Proof. Let A = hPA;�A;�A; 6�Ai 2 T (t) correspond to the member of the
shared product, ht; A1; : : : ; An;�; 6�i for which, for all 1 � i � n:

� PA is the smallest set such that PA = f�g [f1P1 [� � �fnPn, where
fiPi = ffi�j� 2 Pig,

� �A(�) = t, and �A(fi�) = �i(�),

� �A is the smallest relation on PA such that fi� �A fj�
0 i� hi; �i �

hj; �0i, � �A fi� i� h0; �i � hi; �i (and symmetrically) and � �A �, and

� 6�A is the smallest relation on PA such that fi� 6�Afj�
0 i� hi; �i6�hj; �0i,

and �6�Afi� i� h0; �i6�hi; �i (and symmetrically).

That this is an isomorphism follows from total well-typing and the trivial
isomorphism between �nite mappings and �nite products.

Shared products explicitly factor the information in a feature structure
into (1) a �nite product of information from its feature values, and (2) a set
of equations and inequations between them. In the case of signatures with
recursive types, the order isomorphisms given by shared products establish a
set of recursive equations that embed a shared product containing T (t) into
T (t) itself.

While the trivial isomorphism between �nite mappings and �nite products
may indeed seem trivial, it is probably worth stopping to look at a few of
its rami�cations, in light of how often it has been forgotten or neglected in
applications of typed feature logic to the encoding of related structures.

4.1.1 Multi-dimensional inheritance

ProFIT [Erbach, 1994, 1995, 1996], a logic programming language for typed
feature structures, introduced a restricted form of multiple inheritance in or-
der to guarantee the existence of Prolog term encodings of its feature struc-
tures. Speci�cally, it allowed for two kinds of type subsumption declarations
in its signatures:

Super > [Sub1; Sub2; : : : ; Subn]:

Super > [Sub1;1; : : : ; Sub1;n1] � : : : � [Subm;1; : : : ; Subm;nm]:

The �rst implicitly declares Sub1; : : : ; Subn to be mutually exclusive, i.e., no
multiple inheritance. The second declares multi-dimensional inheritance, es-
sentially restricting multiple inheritance to the full products of types from

100 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

di�erent dimensions. It is a restriction in general because all possible com-
binations of dimensions must be attainable. For example, we could declare
the subhierarchy rooted at index in Figure 1.4 with:

index > [pers] � [num] � [gend]:

pers > [1; 2; 3]:

num > [s; p]:

gend > [m; f; n]:

The maximally speci�c types, index 1sgmasc, index 1plmasc etc., are repre-
sented by the product of their pers, num and gend values.

Multi-dimensional inheritance uses �nite products, but as seen earlier,
multiple appropriate features implicitly use �nite products as well. Multi-
dimensional inheritance is not only a restriction of general multiple inheri-
tance, but it provides nothing that the use of extra features could not already
provide in the absence of all multiple inheritance. In particular, it is triv-
ially equivalent to the use of one feature for each dimension with no path
equations or inequations between them.

As will be seen in Chapter 5, parametric types e�ectively provide the same
sort of product, but with the additional ability to introduce or remove extra
dimensions at subtypes, and to link appropriateness conditions to dimensions
through the use of type variables.

4.1.2 Systemic networks

Systemic networks [Kress, 1976] are a means of stating constraints over the
allowable combinations of a �nite set of properties (usually called features,
but di�erent from the use of that term here). They are used rather often in
computational linguistics, whose connection to inheritance-based reasoning
with feature structures has been explored in a series of papers by Kasper
[1986, 1988, 1989]. The formulation presented here is adapted from Carpenter
and Pollard [1991], Carpenter [1992] and Henschel [1995].

De�nition 4.6. Given a set of properties, prop, the set of entry expres-
sions of prop, E(prop), is the smallest set such that:

� prop � E(prop),

� e1 ^ e2 2 E(prop), for all e1; e2 2 E(prop), and

4.1. PRODUCT ISOMORPHISMS 101

� e1 _ e2 2 E(prop), for all e1; e2 2 E(prop).

De�nition 4.7. Given a set of properties, prop, a system is a pair s =
he(s); out(s)i, where e(s) 2 E(prop) is the entry condition of s and is in
disjunctive normal form, and out(s) � prop is the set of output properties
of s.

De�nition 4.8. Given a set of systems, S and a set of properties, prop,
the immediate dependency relation of S, Dep � prop � prop, is de�ned
such that Dep(p; q) i� there is an s 2 S such that p appears in e(s) and
q 2 out(s).
The dependency relation of S, Dep�, is the re
exive and transitive closure
of Dep.

De�nition 4.9. A systemic network is a triple h�p; prop; Si, where prop is
a �nite set of properties, �p 2 prop is the distinguished start property, and
S is a �nite set of systems such that:

� the output sets of S are a partition of propnf�pg,

� the dependency relation of S, Dep�, is anti-symmetric, and

� for all p 2 prop, Dep�(�p; p).

Systemic networks are interpreted as sets of constraints on subsets of
prop. An allowable subset is called a selection expression:

De�nition 4.10. Given a systemic network SN = h�p; prop; Si, a selection
expression of SN is a subset � � prop such that:

� �p 2 �,

� if fp1; : : : ; png � �, with n � 1, then for every system s 2 S such
that p1 ^ : : : ^ pn is a disjunct of e(s), there is exactly one property,
p0 2 out(s) such that p0 2 �, and

� if p0 2 � and there exists an s for which p0 2 out(s), then there exists a
disjunct of e(s), p1 ^ : : : ^ pn, such that fp1; : : : ; png � �.

Systemic networks are conventionally drawn as shown in Figure 4.5, a
systemic network for describing unmarked SP(O) sentences with active voice
from the NIGEL grammar [Mann and Matthiessen, 1983] (and cited by

102 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

rank�

������������������������������������

clauses �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�

������
imperative

indicative

�

����������

material
mental
relational

3
5�

��������
e�ective

9=
;� agent-subject

middle

verbal

nominal-groups �

8>>>>>>>>>><
>>>>>>>>>>:

�

��������
individual

class�

������
lexical-thing�

���� eachevery
substitution

�

������
nominative
genitive
oblique

Figure 4.5: An example of a systemic network.

4.1. PRODUCT ISOMORPHISMS 103

Henschel [1995]). The drawing convention relies on the use of four con-
nectives: the choice connective (|), the conjunctive choice connective ({),
the conjunctive precondition connective, (}), and the disjunctive precondi-
tion connective, (]). The choice connective indicates a system with more
than one output property. Systems with a single output property, such as
agent-subject, are indicated by the property itself. The network shown in
Figure 4.5 has a total of nine systems, with root being the distinguished
start property and the entry condition to the system with output properties
clauses and nominal-groups. The conjunctive choice connective indicates
that a property is used in the entry condition to more than one system,
such as clauses in the example, which is the entry condition to both the
imperative/indicative system and the material etc. system. Conjunctive
and disjunctive precondition connectives are used to express the conjunctions
and disjunctions, respectively, of complex entry conditions. The entry con-
dition to the agent-subject system is imperative ^ indicative, and, to
the effective/middle system is material _ mental _ relational.

Carpenter [1992, pp. 30{32] presents a BCPO construction for repre-
senting valid partial information states in systemic networks, i.e., subsets of
properties that subsume at least one selection expression, without the dis-
junctive precondition connective, i.e., disjunctive entry conditions. Henschel
[1995] extends the construction to all systemic networks. She observes that
the construction requires 2n types for an n-property systemic network in the
worst case, and that the worst case is caused by the conjunctive choice con-
nective. Neither considers the use of features in their constructions, for some
reason | only BCPOs of types.

In fact, systemic networks do have polynomially bounded encodings in
the logic of typed feature structures, although, to the author's knowledge,
not in the fragment presented in this work. The meet semi-lattice completion
of Figure 4.6 is the encoding for Figure 4.5, for example.

De�nition 4.11. Given a feature structure F with node set Q on a signature
with types T , the types of F are �(F) = f� 2 T j9q 2 Q:� vT �(q)g.

The encoding reduces the question, \Is � � prop a subset of a selec-
tion expression?" to the question, \Is there a totally well-typed feature
structure F of type �p such that � � �(F)?" and, if yes, the question, \Is
that � a selection expression?" to \Is the F corresponding to � maximal
in hT T F ;vT T Fi?" It relies crucially on the use of non-maximally-speci�c
extensional types, indicated in Figure 4.6 with boxes around them. While a

104 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

c 2
s
2
:s
2

v
e
� 2
:s

e
� 2

v
in
d
2

:s
in
d
2

m
a
te
ri
a
l
m
e
n
ta
l
re
la
ti
o
n
a
l
v

e
� 2
:�s

e
� 2

v
e
rb
a
l
v

e
� 2
:�s

e
� 2

m
id
d
le
e
v

e
� 2
:s

e
� 2

�
e
ct
iv
e
in
v

in
d
2

:s
in
d
2

d
ic
a
ti
v
e
im
p
v

in
d
2

:�s
in
d
2

e
ra
ti
v
e
c s
3
:s
3

s
4
:s
4

la
u
se
s
n
o
m
in
a
l-
g
s
5
:s
5

s
6
:s
6

ro
u
p
s
�se

� 2

se
� 2

�si
n
d
2

si
n
d
2

s 4

s 1

s 3

ra
n
k

se
� 2
?

si
n
d
2

?

d
1
s
1
:s
1

s 2
? v
e
� 2
:s

e
� 2
?

v
in
d
2

:s
in
d
2

?

n
o
m

g
e
n

o
b
li
q
u
e

e
a
ch

e
v
e
ry

a
g
e
n
t-
su
b
j

c s
7
:s
7

la
ss

in
d
iv
id
u
a
l

le
s
8
:s
8

x
-t
h
in
g

su
b
st

s 6

s 8

s 2

s 5

s 7

?

F
ig
u
re
4.
6:
A
n
at
tr
ib
u
te
d
ty
p
e
si
gn
at
u
re
(a
ft
er
M
S
L
co
m
p
le
ti
on
)
th
at
en
co
d
es
th
e
sy
st
em
ic
n
et
w
or
k
in
F
ig
u
re
4.
5.

4.2. FINITENESS 105

formalization of extensional type inference and, thus, of this encoding is out
of the scope of the present discussion, it should at least be noted that conjunc-
tive choice connectives, i.e., the use of properties in more than one system's
entry condition, are encoded by introducing multiple features (corresponding
to systems) at the types that correspond to those multiply used properties.
The product implicitly encoded in multiple appropriate features combined
with the non-maximally-speci�c value restrictions that permit those feature
values to vary independently over system output sets allows for a polyno-
mially bounded presentation of any systemic network as an attributed type
signature.1 clauses and nominal-groups, for example, introduce two fea-
tures each because they are used in the entry conditions to two systems each.

4.2 Finiteness

So far, we have seen two kinds of �niteness: �niteness of type hierarchies
themselves, i.e., a �nite number of types, and �niteness of feature structures,
i.e., a �nite number of nodes. In this section, we shall also consider the �nite-
ness of T T A and the �niteness of �lters, A(t) � T T A, i.e., a �nite number
of totally well-typed abstract feature structures of an individual type. As it
happens, none of these notions of �niteness are the same. In particular, a
�nite signature (a signature with a �nite type hierarchy) can still admit �nite
descriptions with in�nite most general satis�ers and/or an in�nite number
of totally well-typed abstract feature structures in its T T A.

The purpose of this section is to characterize the other two kinds of

1The extensional types are necessary in order to handle another potential source of
combinatorial explosion that emerges once conjunctive choice connectives are dispensed
with, namely the use of complex disjuncts, i.e., conjunctions of three or more properties,
in entry conditions. Using a properties-as-types encoding, representing the conjunction of
three properties as the join of their types must be unfolded into a distributive sublattice,
or else any pair of properties is suÆcient to entail the join. That unfolding increases
the number of types exponentially as a function of the number of conjuncts. Extensional
types can be used essentially to synchronize the values at di�erent paths in the same
feature structure. Each one represents a vote cast by another property as to whether
a complex conjunction is satis�ed. If and only if all of the votes are \yes," e.g., se�

2

and sind
2

in Figure 4.6, then a maximal extension of s2? must be c2, which introduces
the output system for that conjunction. Extensional types thus perform an \end run"
around appropriateness, which cannot otherwise enforce path equations, path inequations
(among join-compatible types) or type constraints on paths more than one feature long
| restrictions that in this domain are admittedly rather arbitrary.

106 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

�niteness within �nite signatures, i.e., signatures with �nite type hierarchies.
Finiteness is of obvious computational interest. It also is related to our abil-
ity to transform �nite signatures into other equivalent �nite signatures. The
properties that allow us to \unfold" one or more features into a signature
with more but still �nitely many types are the same properties that ensure
the �niteness of T T A or at least of some �lter-shaped piece of it. In fact,
we can think of T T A itself as a signature with no appropriate features, as a
result of Corollary 3.1. The question is how to spot whether or not T T A is
�nite simply by looking at the signature.

4.2.1 Cyclic Types and Finite Most General Satis�ers

To begin where Carpenter [1992] left o�, in�nite most general satis�ers can
be characterized as follows:

De�nition 4.12. Given a signature, S = hT;v;Feat;Appropi, the appro-
priateness graph of S, A(S), is a labelled directed graph hT; fht1; t2; fij
Approp(f; t1)# and Approp(f; t1) = t2gi, whose vertices are the types of S
and whose edges map from types to value restrictions of their appropriate
features.

De�nition 4.13. Given a signature, S = hT;v;Feat;Appropi, and a type,
t, t is a cyclic type i� there exists a non-empty path from t to t in A(S).
The features on this path are cyclic features.

Carpenter [1992, pp. 97{99] referred to such paths as \appropriateness
loops," and to its edges minus the labels as the \substructure requirement"
relation.

De�nition 4.14. Given a signature, S = hT;v;Feat;Appropi, and a type,
t, t is �nitely satis�able i� there is no t0 2 T such that there is a path from
t to t0 in A(S) and t0 is cyclic.

Proposition 4.2. If t is not �nitely satis�able and t v t0, then t0 is not
�nitely satis�able.

Proof. This follows from the fact that Approp is upward closed.

Proposition 4.3. For any �nite description, � 2 NonDisjDesc, over a �nite
signature, S, such that M = TWT (MGSat(�))#, M is �nite i� for all t 2
�(M), t is �nitely satis�able.

4.2. FINITENESS 107

Note that �(M) is always �nite because the signature is �nite. Compu-
tation with in�nite most general satis�ers is actually not an impossibility,
because they always have �nite presentations | at the very least, the de-
scriptions themselves | although this direction will not be pursued further
in this study.

A direct consequence of this is that cyclic types themselves do not have
�nite most general satis�ers. What is much more interesting is that, al-
though their most general satis�ers are not �nite, they do have �nite satis-
�ers, namely cyclic feature structures with �nitely many nodes. For example,
the cyclic type a in Figure 4.3 has the following �nite satis�er:�

1 a
f 1

�

If we were studying in�nite signatures, this would not necessarily be the case.

4.2.2 Recursive Types and Finite Filters

We can easily generalize our de�nitions of appropriateness graph and cyclic
types in order to characterize �nite �lters of feature structures of a given
type. The intuition is that, if we assume a �nite number of types, the only
way in which a �nite feature structure, F , can subsume in�nitely many fea-
ture structures is if at least one type is assigned to in�nitely many nodes in
those structures. Speci�cally, it must be the case that for some substruc-
ture of F , G, of type t, the substructure corresponding to G in one of the
feature structures F subsumes has a proper substructure which is a subtype
of t again. Because feature structure subsumption is ultimately induced by
type subsumption, we must look at type subsumption and appropriateness
together to understand how this could happen.

De�nition 4.15. Given a signature, S = hT;v;Feat;Appropi, assuming
that there is no feature called s, the subtype-appropriateness graph of S,
SA(S), is a labelled directed graph hT; fht1; t2; fi j Approp(f; t1)# and
Approp(f; t1) = t2g [fht1; t2; sijt1 v t2gi, whose vertices are the types of S
and whose edges consist of the edges of A(S) plus edges with label s that map
from types to their subtypes.
Given t 2 T , let SA(t) be the subgraph of SA(S) consisting of all and only
those nodes, t0, for which there is a path from t to t0 in SA(S). Also, let ;
be the labelled path accessibility relation in SA(S).

108 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

De�nition 4.16. Given a signature, S = hT;v;Feat;Appropi, and a type,
t, t is a recursive type i� there is a path from t to t in SA(S).
Such paths contain at least one feature label, f, because v is, by de�nition,
anti-symmetric. Such features are called recursive features.

Proposition 4.4. If t is cyclic then t is recursive.

We can now characterize the conditions on a �nite �lter of feature struc-
tures of a given type in terms of properties of that type derived from solely
from its signature:

De�nition 4.17. Type, t, is �nite i� jA(t)j is �nite.

De�nition 4.18. Type, t, is provably �nite i�:

� every subtype of t is provably �nite,

� for every feature, f, such that Approp(f; t)#, Approp(f; t) is provably
�nite, and

� t is not recursive.

Theorem 4.2. If S is �nite and t is not provably �nite, then t is not �nite.

Proof. By induction on the length, �, of the shortest path in SA(S) from
t to a recursive type. t has such a path, because, if not, then there are
no recursive types in SA(t), thus SA(t) is acyclic, and by Lemma 4.2, t is
provably �nite after all.

If � = 0, then t itself is recursive, and by Lemma 4.1, t is not �nite. For
� > 0, t must not be recursive, so because it is not provably �nite, there
is some subtype or value restriction, i.e., a successor of t in SA(S), that is
not provably �nite. One of these is the successor, t0, on the shortest path
from t to a recursive type | otherwise, by Lemma 4.2, SA(t0) is acyclic,
and so there is no recursive type accessible from t0, which is a contradiction.
Furthermore, the shortest length from t0 to a recursive type must be �� 1,
so by induction, t0 is not �nite.

Either t0 is a subtype of t, or t0 is a value restriction of t. If t0 is a
subtype, then by de�nition, A(t0) � A(t), and therefore t is not �nite. If t0

is a value restriction, then by Theorem 4.1, T (t) � A(t) is order-isomorphic
to a smallest shared product with respect to t, one of whose dimensions is
A(t0), and thus t is not �nite.

4.2. FINITENESS 109

Theorem 4.3. If S is �nite and t is provably �nite, then t is �nite.

Proof. By induction on the length, �, of the longest path in SA(S) from t to
a maximally speci�c type with no appropriate features. There is such a path
because, by Lemma 4.2, SA(t) is acyclic and there are �nitely many types
in S.

If � = 0, then t itself is maximally speci�c and has no appropriate fea-
tures, and is thus trivially �nite. For � > 0, all of t's successors in SA(S)
are provably �nite and each has a longest path strictly less than that of t,
so by induction, all of them are �nite. A(t) = T (t) [

S
t0vtA(t

0). Each of
the A(t0) are �nite, and there are �nitely many t0 since S is �nite. T (t) is
�nite because by Theorem 4.1, it is order-isomorphic to a shared product of
fA(Approp(f1; t)); : : : ; A(Approp(fn; t))g with respect to t, each of which is
�nite. So t is �nite.

Lemma 4.1. If t is recursive, then t is not �nite.

Proof. Choose a cycle of length n from t to itself in SA(S): t
x1! t1

x2!

� � � tn�1
xn! t, where the xi are either the distinguished label, s, or features,

fi 2 Feat. Let j1 : : : jk be the indices for which xji is a feature. k � 1
because v is anti-symmetric. Let : Desc �! Desc be de�ned such that
 (�) = fj1 : fj2 : � � � : fjk : �. Now de�ne the in�nite sequence of totally well-
typed abstract feature structures, Ci = Abs(TWT (MGSat(t ^ x ^ i(x)))),
where x 2 Var , i � 1. For all i � 1, Ci 2 A(t), and all of them are
distinct.

Lemma 4.2. If S is �nite, then t is provably �nite i� SA(t) is acyclic.

Proof. To prove the forward direction, it suÆces to show that if t is provably
�nite, then SA(t) has no recursive types. This can be proven by induction on
the length, �, of the shortest path from t, which, by de�nition of SA(t), all
of its nodes have. The base case follows from the third condition of provable
�niteness. The reverse direction is proven by induction on the length of the
longest path to a maximally speci�c type with no appropriate features, which
each node has because SA(t) is acyclic and �nite.

Notice that recursive types prevent us from using a simple inductive ar-
gument and require us to introduce the third condition into the de�nition
(De�nition 4.18) of provable �niteness. Otherwise, even in a simple signature
like Figure 4.7, in which a is a recursive type, it would be consistent to say

110 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

a
f:?

?

Figure 4.7: A simple signature with a recursive type.

that both a and ? were provably �nite or that neither a nor ? were provably
�nite.

Corollary 4.1. If S is �nite, t is �nite and t v t0, then t0 is �nite.

Corollary 4.2. If S is �nite, t is �nite and there exists an f such that
Approp(f; t)# and Approp(f; t) = t0, then t0 is �nite.

Corollary 4.3. If S is �nite, then T T AS is �nite i� S has no recursive
types.

Proof. T T AS = A(?) and the previous two corollaries.

When T T AS is �nite, we can \unfold" every feature in the signature,
leaving only types | one for each totally well-typed abstract feature struc-
ture. The reader may note that potential re-entrancies among feature struc-
tures do not play a direct role in this characterization. Conventional wisdom,
among both logicians and grammar developers, has been that the ability of
features to share their values extensionally by means of re-entrancies is what
fundamentally de�nes their expressive power relative to typing with inclu-
sional polymorphism. This is not true. Features are only a more expressive
device when they are used to create recursive types, in the sense de�ned here.
Of course, recursive types always allow for cyclic re-entrancies, but it is the
quality of being recursive that characterizes the di�erence. Even in a logic
that prohibited cyclic feature structures, features that create recursive types
still could not be unfolded.

4.3 Properties of Finite Signatures

One can also say more precisely which di�erent kinds of �niteness hold of
T T AS. Recall from Chapter 2 that a �nite type hierarchy corresponds to
one that is well-founded, Noetherian and �nitely branching. Looking at
in�nite signatures, we can lose these properties independently, because the
type hierarchy itself can be in�nite and may discard any one or more of them

4.3. PROPERTIES OF FINITE SIGNATURES 111

independently. Finite signatures, however, are more predictable, again based
on the interaction of their appropriateness and subtyping relations. A few
more de�nitions will be convenient here.

De�nition 4.19. Given a signature, S = hT;v;Feat ;Appropi, and a type,
t, t is a properly recursive type i� there is a path from t to t in SA(S) whose
�rst edge is labelled with a feature, i.e., corresponds to appropriateness, not
subtyping.

Proposition 4.5. If t is recursive, then there is a t0 such that t v t0 and t0

is properly recursive.

Proof. The cycle that witnesses a recursive type, t, can be rotated along its
initial s-edges to the �rst feature-labelled edge emanating from some sub-
type, t0. Every cycle must have one feature-labelled edge because v is anti-
symmetric. If there are no initial s-edges, then t = t0 and t is properly
recursive.

De�nition 4.20. A path in SA(S) is an s-path if it consists only of edges
labelled with s.

De�nition 4.21. Given a path in SA(S), a
�
; b

s+
; c

f
! d

�0
; e, b

s+
; c is a

deletable s-path i� there is also a path, a
�
; b

f
! c0

s�
; d

�0
; e (where c0 = d

if c0
s�
; d is of length zero).

The intuition behind deletable s-paths is that they are the ones that
are unnecessary as a result of the upward closure and right monotonicity of
Approp: if Approp(f; b) = c0 and b v c, then d = Approp(f; c)# and c0 v d.

De�nition 4.22. Given a signature, S = hT;v;Feat ;Appropi, and a type,
t, t is acyclically recursive i� there is a cycle in SA(S) containing t in which
there is at least one s-path that is not deletable.

Deletable s-paths are a way of isolating feature-labelled edges that in-
troduce properly more restrictive value restrictions on a type relative to its
supertypes. This is necessary because appropriateness is upward closed.

Note that acyclically recursive is not the same as recursive and not cyclic.
A type can be simultaneously cyclic and acyclically recursive, although be-
cause of di�erent cycles. Figure 4.8 outlines the classi�cation of types given
in this section.

112 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

Cyclic: t
(feature-labelled edges)

t

Recursive: t
(s- and feature-labelled edges)

t

Acyclically t
s+
! t

Recursive: (non-deletable)

Properly
Recursive: t

f
! t

t1 (�nite)

Finite: (not recursive) t t2 (�nite)

(ti 6= t)
...

tn (�nite)

Figure 4.8: An outline of the classi�cation of types.

Theorem 4.4. T T AS is well-founded i� S has no recursive types.

Proof. Cyclic feature structures stand at the top of in�nite descending chains
of approximate cyclic feature structures. Acyclic feature structures are well-
founded, as proven by Wintner and Francez [1999].

Theorem 4.5. T T AS has only �nite feature structures i� S has no recur-
sive types.

Proof. Below the in�nite descending chain of cyclic approximations stands a
limit point which has in�nitely many nodes.

Theorem 4.6. T T AS is �nitely super-branching i� S has no recursive types.

Proof. Every cyclic feature structure has an in�nite supersumption branching
factor. As an example, consider the simple signature in Figure 4.7. Let
Ci = Abs(TWT (MGSat(a ^ x ^ (f:)ix))), for all i � 1. By the de�nition of
subsumption, Ci vT T AS

Cj i� i j j. Now consider the set P = fCpj p primeg.
None of the abstract feature structures in P are comparable, and all of them
immediately subsume C1. Because there are in�nitely many primes, C1 has
an in�nite supersumption branching factor.

4.3. PROPERTIES OF FINITE SIGNATURES 113

d g
h:c

c
f:g

b
g:b

f
h:a

a
f:e

e

?

Figure 4.9: An example �nite signature for demonstrating the failure of
properties given in Section 4.3.

Theorem 4.7. T T AS is Noetherian i� S has no acyclically recursive types.

Proof. If a recursive type is acyclically recursive, then beneath its cyclic
feature structures are in�nite ascending chains of acyclic approximations to
their limits.

Theorem 4.8. T T AS is �nitely branching i� for every cycle, �, in SA(S),
there is no properly recursive type, t, traversed by � such that t has an out-
degree greater than 1.

Proof. In�nite feature structures have in�nitely many nodes labelled with a
properly recursive type. To have an in�nite (subsumption) branching factor,
there must be an in�nite number of ways of adding only one piece of informa-
tion to a feature structure. This is attainable on in�nite feature structures
i� it is possible to re�ne the types of in�nitely many nodes (if a prohibited
extra emanating edge is labelled with s) or it is possible to add structural in-
formation, i.e., path equations or inequations, between in�nitely many pairs
of nodes (if a prohibited extra emanating edge is labelled with a feature).

Note that the de�nition of inequations used in this work, borrowed from
Carpenter [1992, p. 112], allows an inequation to be either added or not added
between two nodes that have no extension in which they can be identical |
for instance, if their types are incompatible. If instead the notion of fully
inequated feature structure [Carpenter, 1992, p. 120] were used, we would
also need to check for the existence of such an extension in case of a feature-
labelled edge.

An example of these properties is shown in Figure 4.11, relative to the
signature in Figure 4.9, whose subtype-appropriateness graph is shown in
Figure 4.10. In this signature, all of the types except ? are recursive. Of

114 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

b

a

e f g

?

c

d

f

s

f

s

h

s s

h

f
f

s

s

s

g

Figure 4.10: The subtype-appropriateness graph of Figure 4.9.

those, all but e are properly recursive. The types b, c and g are cyclic. b is

also acyclically recursive, because of the path b
f
! e

s
! f

h
! a

s
! b. There

is a path c
s
! d

f
! g

h
! c, but its s-path is deletable (because of the edge,

c
f
! g), so c is not acyclically recursive. a is acyclically recursive, because

the path a
s
! b

f
! e

s
! f

h
! a has one deletable s-path (a

s
! b) but also one

non-deletable s-path (e
s
! f). d, e, and f are also acyclically recursive.

The fact that b is cyclic means that every totally well-typed acyclic fea-
ture structure of type b has in�nitely many nodes. In Figure 4.11, the values
of g are not shown for this reason | they consist of in�nitely many copies of
the b-typed feature structures that contain them. The fact that b is recursive
means that A(b) contains an in�nite descending chain of cyclic feature struc-
tures shown at the top of the �gure. They also have in�nite supersumption
branching factors, as proven above. The fact that b is properly recursive and
has an out-degree of 2 in Figure 4.10 means that the limit of this chain, shown
in the middle of Figure 4.11, has an in�nite subsumption branching factor,
in which substructures terminating in two of in�nitely many g-terminated
paths are re-entrant (or inequated). Because b is also acyclically recursive,
it has an in�nite ascending chain rooted at its most general satis�er, shown

4.3. PROPERTIES OF FINITE SIGNATURES 115

2
664

1 b

f

�
f
h 1

�
g � � �

3
775

!

2
6666666664

1 b

f

2
66664
f

h

2
664
b

f

�
f
h 1

�
g � � �

3
775

3
77775

g � � �

3
7777777775

!

2
6666666666664

b

f

2
66666664

f

h

2
666664

b

f

2
64
f

h

"
b
. . .

#375
g � � �

3
777775

3
77777775

g � � �

3
7777777777775

2
6666664

b

f

2
664
f

h

2
4bf e
g � � �

3
5
3
775

g � � �

3
7777775

2
4bf e
g � � �

3
5

� � �

� � �

Figure 4.11: Part of T T A for the signature in Figure 4.9.

116 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

at the bottom of Figure 4.11, approaching the same limit.

4.4 Signature Unfolding

Armed with a knowledge of how features genuinely provide extra expressive
power over simple type hierarchies and, when they do not, of the �lters of
types that the totally well-typed abstract feature structures they induce are
equivalent to, one might suspect that it is possible to convert �nite signa-
tures into �nite signatures that are logically equivalent but that have better
computational properties.

The most important of these properties, of course, is the speed with
which one can unify two totally well-typed feature structures induced by the
signature in question. Whereas the uni�cation of two types, or of two fea-
ture structures with no features, can usually be performed by indexing those
types in a hash table, the uni�cation of feature structures that have features
typically involves an additional set of dereferencing operations which obtain
matching feature values for recursive uni�cation calls. In the case of Fig-
ure 1.5, for example, the uni�cation of two feature structures of type index
would probably involve three recursive uni�cation calls to unify their per-
son, number and gender values, respectively. This arises from the choice
of a data structure that closely mirrors the structure of the feature structure
itself, of course. In Prolog, for example, those dereferencing operations are
realized as pointer-chasing on the heap in order to locate the subterms that
represent feature values. It is conceivable that, by converting the signature
in Figure 1.5 to the one in Figure 3.9, those dereferencing operations could
be avoided at a very small cost to the eÆciency of the hash function that
must cope with the increased number of types.

In practice, when that transformation is possible, it does result in more
eÆcient uni�cation. Converting just the index values to a purely type-based
representation in an HPSG grammar, for example, typically results in an
improvement in parsing times of between 25% and 33%, increasing with the
size of the input, due to the large number of index -uni�cation calls as a
percentage of total uni�cation calls. The problem is that, in practice, such a
transformation is almost never possible.

The �rst factor that can block such a transformation is recursive types.
As shown in Lemma 4.1, recursive types are never �nite and therefore could
only be unfolded into a feature-free signature that had in�nitely many types.

4.4. SIGNATURE UNFOLDING 117

One can, of course, choose an arbitrary bound and only partially unfold,
using a feature everywhere else. In the case of lists, for example, one could
unfold so that zero-length, one-length and two-length lists have their own
feature-free types but lists of greater lengths still use features. This corre-
sponds to traveling a bounded number of times around the cycle in SA(S)
that witnesses that a type is recursive. This may still improve eÆciency if,
for example, most lists are of length two or less. In any case, the feature
cannot be completely eliminated without altering the logical properties of
the signature. In fact, provable �niteness (De�nition 4.18) tells us that the
presence of a recursive type can render a great many other types in�nite, i.e.,
with in�nite A(t) �lters, and therefore non-unfoldable.

The second factor that can block unfolding is the sharing of variables.
It was proven in Section 4.2.2 that re-entrancies by themselves do not re-
sult in extra expressive power. This is one realization of shared variables,
in which the sharing actually exists within the feature logic, and indeed,
re-entrancies pose no problem to unfolding. Most practical applications of
feature description languages, however, use variables to share information
in an extra-logical fashion as well. Logic programming languages based on
typed feature structures, for example, have relations with feature-structure
arguments that could be shared. The relation itself, and thus sharing be-
tween arguments (as opposed to within an argument, which corresponds to a
re-entrancy) exists outside the logic. Parsing rules also typically share struc-
ture between mother categories and their daughter categories. These are also
extra-logical (as opposed to sharing within the description of a single cate-
gory, which also corresponds to a re-entrancy). It is, of course, possible to
add extra types and features to a signature in order to bring relations, pars-
ing rules, etc. within the scope of the logic again, e.g., to regard instances of
relational goals as feature structures of the corresponding relational type in
which arguments are feature values. The cost in eÆciency of casting them
into the feature logic, however, is typically greater than the gain in eÆciency
of unfolding features. In the case of logic programming again, casting rela-
tions into the feature logic would force one to meta-interpret them in a Prolog
implementation, rather than compile them directly into Prolog predicates.

A third factor is the interaction between re-entrancies and recursive types.
The type, index, for example, has a �nite �lter, A(index), taken in isolation
and all of its features can be unfolded. If the same signature also has a
recursive type for lists of any element, however, as in Figure 4.4, then there
will be lists of multiple index -valued structures, any pair of which can share

118 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

?

in
d
ex
p
e
r
s
o
n
:p
er
so
n

n
u
m
b
e
r
:n
u
m
b
er

g
e
n
d
e
r
:g
en
d
er

p
er
so
n

�
rs
t

se
co
n
d

th
ir
d

n
u
m
b
er

si
n
gu
la
r

p
lu
ra
l

ge
n
d
er

m
as
c

fe
m

n
eu
t

em
p
ty
li
st

n
on
em
p
ty
li
st
h
e
a
d
:?

t
a
il
:l
is
t

li
st

F
ig
u
re
4.
12
:
T
h
e
si
gn
at
u
re
in
F
ig
u
re
1.
5
p
lu
s
a
re
cu
rs
iv
e
ty
p
e
fo
r
li
st
s.

4.4. SIGNATURE UNFOLDING 119

f:a g:b f:b g:a

a b a b

? ?

Figure 4.13: Two equivalent minimal signatures for which no apparent nor-
malization criterion is forthcoming.

f:a g:a
a

? ?

Figure 4.14: Two equivalent minimal signatures with �nite T T A.

only its person or number or gender values. This means that index can
only be unfolded if list is unfolded, but since list is recursive, it cannot be,
at least not entirely. Note that index itself is still �nite in this signature.
The presence of a recursive type that refers to index in a remote corner of
the same signature is enough to spoil the unfolding of index.

There are reasons other than eÆciency to unfold a signature. Perhaps the
most compelling is to use unfolding as a means of converting signatures to a
normal form | to simply a proof theory over signatures, for example. Type-
free signatures such as T T A itself are one possible normal form, although
they are not always �nite. They are also a strong normal form in the sense
that if two signatures are equivalent, then they will have the same unique
equivalent type-free signature. Strong normal forms in general can be used
to prove that two signatures are equivalent. Finding a strong normal form for
signatures that is guaranteed to be �nite is more diÆcult. The two signatures
in Figure 4.13 are equivalent and minimal (in the sense that no signature with
fewer types is equivalent), for example, but it is diÆcult to see a criterion
for preferring one over the other. Even when T T A is �nite, as with the two
equivalent and minimal signatures in Figure 4.14, no obvious alternative to
preferring signatures with no features presents itself.

In the absence of a clear eÆciency advantage for the unfolding transfor-
mation or a clear goal to which to transform, unfolding will not be pursued
further here. The discovery of a sensible �nite normal form for signatures is

120 CHAPTER 4. FINITENESS AND APPROPRIATE VALUES

a topic for future research.

4.5 Summary

This chapter used the notions developed in the last chapter to examine �nite
signatures more closely. In particular, the ability of features with appropri-
ateness to create recursive types is what makes �nite signatures with features
potentially more expressive than �nite signatures without them. Feature-
based encodings are also potentially more compact. Along the way, two other
approaches to knowledge representation were considered, multi-dimensional
inheritance and systemic networks, and they fall rather neatly within the
range of polynomially encodable sets of information states by this logic, which
is possible due to the compact products that feature-based encodings provide.

The presence of recursive features as well as the use of variables with
extra-logical scope, however, typically precludes the unfolding of the fea-
tures in a signature into a signature with more types as a practical device to
improve the eÆciency of deductive or parsing strategies over typed feature
logic. Another problem that arises is the discovery of a suitably strong nor-
mal form that is guaranteed to remain �nite yet restrictive enough to be of
assistance in proving the equivalence of a pair of signatures. This remains a
topic of future research.

Chapter 5

Parametric Types

As mentioned in Chapter 2, there have been a number of changes over time
in the way in which feature structures and their types have been used in
computational linguistics. Perhaps one of the more radical, but still very in-
tuitive changes was the introduction of parametric types to classify lists and
sets of linguistic objects. The reader may consider, for example, Figure 5.1,
a fragment of the type signature proposed in Head-driven Phrase Structure
Grammar (HPSG, Pollard and Sag, 1994), a feature-structure-based linguis-
tic theory. The idea of treating list as a parametric type in HPSG was �rst

�
��

A
A
�
�

aaa ��
list(X)sign

word phrase elist nelist(X)
HEAD:
TAIL:list(X)

X

. . .

Figure 5.1: A fragment of the HPSG type signature.

broached in a footnote by Pollard [1990], and later adopted by Pollard and
Sag [1994] with the restriction (again in a footnote) that parametricity could
only extend \one level deep," i.e., that a parameter itself must be a type other
than a list or set. That restriction has, of course, been violated many times
over and in a few di�erent ways by linguists working with parametrically
typed lists since that time.

There has been some use of parametric types in computational linguistics
independently of this, perhaps most proli�cally by Klein [1991] to represent
hierarchical structure in phonology. Certainly, the treatment of lists as para-

121

122 CHAPTER 5. PARAMETRIC TYPES

metric types is not new or unreasonable, even in the absence of the proposed
depth restriction. What makes this particular change radical is that no fea-
ture logic has ever been proposed that incorporates parametric types in a
general enough way to support their manner of use in HPSG, and, in con-
trast to the historical oscillation between feature-based and subtype-based
information encodings, parametric types in HPSG have been used without
exception only for lists and sets, as if either something might go terribly
wrong if their use were extended to other types, or else linguists should feel
ashamed for resorting to them where not absolutely necessary. At the same
time, there has been an almost universal consensus among HPSG linguists
that parametric types as they are currently employed are just \macro" de-
scriptions for lists and sets | a consensus that is re
ected in their liberal
application within the con�nes of lists and sets. What is it about lists and
sets that makes them absolutely necessary on the one hand, and still no
better than a macro?

This chapter uses the algebraic perspective developed for signatures so
far to present an incorporation of parametric types into the typed attribute-
value logic of Carpenter [1992], thus providing a natural extension to the
type system for programming languages based on that logic, such as the At-
tribute Logic Engine (ALE, Carpenter and Penn, 1996). This enquiry has
yielded a more
exible interpretation of parametric types with several speci�c
properties necessary to conform to their current usage by linguists and imple-
mentors who work with feature-based formalisms. Again, it will be assumed
that total well-typing is the interpretation of choice for the appropriateness
conditions found in parametrically typed signatures.

Parametric polymorphism has been combined with inclusional polymor-
phism before to provide natural type systems for Prolog [Dietrich and Hagl,
1988], HiLog [Yardeni et al., 1992], and constraint resolution languages
[Smolka, 1989]. Previous approaches, however, have required that every pa-
rameter of a subtype should be a parameter of all of its supertypes, and
vice versa; thus, it would not be possible to encode Figure 5.1 because
? v list(X), and if ? were parametric, then all other types would be. The
present one eliminates this restriction (Section 5.1) by requiring the exis-
tence of a non-parametric most general type (which Carpenter's [1992] logic
requires anyway), which is then used during type-checking and inferencing
to interpret new parameters.

The only previous attempt at an account of parametric types as they
are employed in HPSG has been in King and Goetz, 1993, which consisted

123

merely of the informal suggestion that parametric types stand for unordered
sets of non-parametric types, such that, in Figure 5.1 for example, list(word)
is not subsumed by list(sign), which clearly runs against intuition. All other
previous approaches to parametric polymorphism deal only with �xed-arity
terms; and none but one uses a feature logic, with the one, CUF [Dorna,
1992], being an implementation of a logic without parametric types that
permits parametric lists with HPSG's depth restriction as a special \hard-
wired" case. The present approach (Section 5.3) provides a generalization
of appropriateness that allows for a proper interpretation of subsumption,
unrestricted parametricity and incremental feature introduction.

The belief that parametric types are macros is erroneous, as is the belief
that their use naturally extends to parameters drawn from a general de-
scription language, e.g., list(local : cat : head : verb). This possibly arose
from a confusion between type descriptions, which are part of the description
language, and types, which are part of the type system. Even so, parametric
types have a very wide range of potential application to computational lin-
guistics and knowledge representation in general, just as normal types and
features do; and there is no reason why they cannot be used as proli�cally
once they are understood. To use an earlier example, person, number, and
gender could all be parameters of a parametric type, index, rather than val-
ues of features appropriate to index. In fact, parametrically typed encodings
yield more compact speci�cations than simply typed encodings because they
can encode products of information in their parameters, like features. Unlike
features, however, they can lend their parameters to appropriateness restric-
tions, thus re�ning the feature structures induced by the signature to a closer
approximation of what is actually required in the grammar itself.

It is possible, however, to regard parametric type signatures as a short-
hand for non-parametric signatures. The interpretation of parametric type
hierarchies is introduced in Section 5.2 by way of establishing equivalent,
in�nite non-parametric counterparts. Section 5.4 considers whether there
are any �nite counterparts, i.e., whether in actual practice �nite paramet-
ric signatures are only as expressive as �nite non-parametric ones, and gives
a quali�ed \yes." These questions are formalized and answered relative to
the de�nitions of signature equivalence and signature subsumption de�ned
in Chapter 3.

In spite of this quali�cation, there is an easy way to compute with para-
metric types directly in an implementation, as described in Section 5.5. The
two most common previous approaches have been to use the most general

124 CHAPTER 5. PARAMETRIC TYPES

instance of a parametric type, e.g., nelist(?), without its appropriateness, or
manually to \unfold" a parametric type into a non-parametric sub-hierarchy
that suÆces for a �xed grammar, e.g. Figure 5.2. The former does not suÆce

HH
HH
��

��
��
��

�
��

hhhh
hhhh

hhh

XXX
XXX

XX

((((
(((((

XXX
XXX

��
���

hhhh
hhhh

hhhelist

list synsem

nelist synsem nelist phonnelist quants

list
. . .

list quants nelistlist phon

Figure 5.2: A manually unfolded sub-hierarchy.

even for �xed grammars because it simply disables type checking on feature
values. The latter is error-prone, a nuisance, and subject to change with the
grammar. As it happens, there is an automatic way to perform this unfold-
ing, which turns out to be a very useful tool for the extraction of a minimal
subsignature for a small �xed grammar even when parametric types are not
used.

5.1 Parametric Type Hierarchies

Parametric types are not types. They are functions that provide access or
a means of reference to a set of types (their image) by means of argument
types, or \parameters" (their domain). Figure 5.1 has only unary functions;
but in general, parametric types can be n-ary functions that map n-tuples of
types to a type. Parametric type will be used in this chapter to refer to such
a function, written as the name of the function, followed by the appropriate
number of type variables, variables that range over some set of types, in
parentheses, e.g. list(X). Type will refer to both simple types, such as ?
or elist ; and ground instances of parametric types, i.e., types in the image
of a parametric type function, written as the name of the function followed
by the appropriate number of actual type parameters in parentheses, such
as list(?), set(word) or list(set(?)). The letters t, u, and v will be used to
indicate types; capital letters, to indicate type variables; capitalized words,
to indicate feature names; p, q, and r, as names of parametric types; and g,
to indicate ground instances of parametric types, where the arguments do
not need to be expressed.

This means that hierarchies that use parametric types are not \type"
hierarchies, since they express a relationship between functions that map

5.2. INDUCED TYPE HIERARCHIES 125

types to types (we can regard simple types as nullary parametric types). For
simplicity, it will be assumed here that parametric type hierarchies are �nite.

De�nition 5.1. A parametric (type) hierarchy is a �nite BCPO, hP;vP i,
plus an arity function, arity : P �! Nat [f0g, and a partial argument
assignment function, aP : P � P � Nat! Nat [f0g, in which:

� P consists of (simple and) parametric types, i.e., no ground instances
of parametric types, and includes the most general type, ?, which is
simple, i.e., arity(?) = 0,

� For p; q 2 P , aP (p; q; i), written aqp(i), is de�ned i� p vP q and 1 �
i � arity(p),

� 0 � aqp(i) � arity(q), when it exists, and

� if aqp(i) 6= 0 and aqp(i) = aqp(j), then i = j.

As with (simple) type hierarchies, bounded completeness allows us to
talk about uni�cation, because we have a unique most-general uni�er for ev-
ery uni�able pair of types. The argument assignment function encodes the
identi�cation of parameters between a parametric type and its parametric
subtype. The number, n, refers to the nth parameter of a parametric type,
with 0 referring to a parameter that has been dropped. In practice, this is
normally expressed by the names given to type variables. In the parametric
type hierarchy of Figure 5.1, list and nelist share the same variable, X, be-
cause anelistlist (1) = 1. If anelistlist (1) = 0, then nelist would use a di�erent variable
name. As a more complicated example, in Figure 5.3, adb(1) = 1, adb(2) = 3,

�� .HH

.......
.......
.......
.....

��

d(X,Y,Z)

b(X,Z) c(W,Y) e

Figure 5.3: A subtype that inherits type variables from more than one su-
pertype.

adc(2) = 2, adc(1) = 0, and a? and ae are unde�ned (") for any pair in P�Nat.

5.2 Induced Type Hierarchies

The relationship expressed between two functions by vP , informally, is one
between their image sets under their domains, while each image set inter-

126 CHAPTER 5. PARAMETRIC TYPES

nally preserves the subsumption ordering of its domain. One could explicitly
restrict these domains with parametric restrictions, with a function parallel
to Approp, which speci�es value restrictions on feature values. Here, it is
assumed that these domains are always the set of all types in the signature.
This is the most expressive case of parametric types, and the worst case to
deal with computationally.

It is, thus, possible to think of a parametric type hierarchy as \inducing"
a non-parametric type hierarchy, populated with the ground instances of its
parametric types, that obeys both of these relationships.

De�nition 5.2. Given parametric type hierarchy, hP;vP ; arity ; ai, the in-
duced (type) hierarchy, hI(P);vIi, is de�ned such that:

� I(P) =
S

n<! In, where the sequence fIngn<! is de�ned such that:

{ I0 = fp j p 2 P; arity(p) = 0g,

{ In+1 = In [fp(t1; : : : ; tarity(p)) j p 2 P; ti 2 In; 1 � i � arity(p)g,
and

� p(t1; : : : ; tarity(p)) vI q(u1; : : : ; uarity(q)) i� p vP q, and, for all
1�i�arity(p), either aqp(i) = 0 or ti vI uaqp(i).

Note that I(P) contains all of the simple types of P , including ?, which is
also the least type in I(P). In the case where g1 and g2 are simple, g1 vI g2
i� g1 vP g2.

Figure 5.4 shows a fragment of the type hierarchy induced by Figure 5.1.
If list and nelist had not shared the same type variable (anelistlist (1) = 0), then it

��hhh
.

��XX

��
!!!

"
""

``̀

hhhlist(sign)

nelist(phrase)
. . .

. . .

nelist(list(?))
list(nelist(?))

list(list(?))

list(?)

list(word)

nelist(word)

list(phrase)

nelist(sign)
nelist(?)

Figure 5.4: Fragment induced by Figure 5.1.

would have induced the type hierarchy in Figure 5.5. In the hierarchy induced
by Figure 5.3, for example, b(e; e) subsumes types d(e; Y; e), for any type Y,
for example d(e; c(e; e); e), or d(e; b(?; e); e), but not d(c(?; e); e; e), since
e6vIc(?; e). Also, for any types, W, X, and Z, c(W; e) subsumes d(X; e; Z).

5.2. INDUCED TYPE HIERARCHIES 127

..

.

..

.

HH ��

.......
......
.......
......

.

 XXX
X
��.....................

PP...........
..........

���
���

list(sign)
list(phrase)

nelist(sign)

list(?)

list(list(?))

nelist(list(?))
nelist(?)

nelist(word)

list(word)

nelist(phrase)

Figure 5.5: The would-be induced hierarchy of Figure 5.1 if anelistlist (1) were 0.

The present approach permits parametric types in the type signature,
but only ground instances in a grammar relative to that signature. If one
must refer to \some list" or \every list" within a grammar, for instance, one
may use list(?), while still retaining groundedness. An alternative to this
approach would be to attempt to cope with type variable parameters directly
within descriptions. From a processing perspective, this is problematic when
closing such descriptions under total well-typing, as observed by Carpenter
[1992]. The most general satis�er of the description, list(X)^(head : head :
Y ^ tail : head : Y), for example, is an in�nite feature structure of the
ground instance, nelist(nelist(: : :)) because X must be bound to nelist(X).

We can distinguish such types with the following useful classi�cation of
types in I(P):

De�nition 5.3. Given a parametric hierarchy, hP;vP ; arity ; ai, the para-
metric depth of a type, g = p(t1; : : : ; tn) 2 I(P), �(g), is de�ned such that:

�(g) =

�
0 if n = 0;
1 + max1�i�n �(ti) if n > 0:

So, for example, �(list(list(list(?)))) = 3.

The construction of I(P) thus excludes ground instances with in�nite
parametric depths. That exclusion, from the perspective of algebraic hygiene,
is a rather arbitrary one; but its motivation is the present author's inability
to make denotational sense of such types. The e�ect of this prejudice, in any
case, is that I(P) is not necessarily bounded complete, even when intuition
tells us that it provides a proper algebraic interpretation of P . The hierarchy
in Figure 5.6, for example, has the in�nite set f?; a(?); a(a(?)); : : :g with up-
per bounds fb; a(b); a(a(b)); : : :g, whose limit, and thus putative least upper

128 CHAPTER 5. PARAMETRIC TYPES

b

a(X)

?

Figure 5.6: A parametric type hierarchy for which I(P) is not a BCPO.

r(X)

s(X) q

p(X) a b

?

Figure 5.7: A parametric type hierarchy for which I(P) is not a partial order.

bound must be the excluded limit type, a(a(: : :)). This arises in Figure 5.1
where a = list and b = elist .1

There are, in fact, some parametric type hierarchies, P , as de�ned above,
for which hI(P);vIi is not even a partial order. Figure 5.7 is one such
example. We should take the use of the variable X in this case to mean that
asp(1) = 1, ars(1) = 1, and arp(1) = 1. aqp(1) = 0, however, and thus p(a) vI q
and q vI(P) r(b), but p(a)6vI(P)r(b). The problem is that di�erent paths from
p to r disagree on what to do with the parameter.

We can generalize the usual notion of coherence from programming lan-
guages, so that a subtype can add, and in certain cases drop, parameters
with respect to a supertype without this disagreement:

De�nition 5.4. hP;vP ; arity ; aP i is semi-coherent i�, for all p; q 2 P such
that p vP q, all 1 � i � arity(p), 1 � j � arity(q):

� app(i) = i,

� either aqp(i) = 0 or for every chain, p = p1 vP p2 vP : : : vP pn = q,
aqp(i) = apnpn�1

(apn�1
pn�2

(: : : ap2p1(i) : : :)), and

� If p tP q#, then for all i and j for which there is a k � 1 such that
aptP qp (i) = aptP qq (j) = k, the set, frjp tP q vP r and (arp(i) = 0 or

1The reader may also note that same problem would have arisen with abstract feature
structures if, as in most of the presentation of Carpenter [1992], in�nite feature structures
had been excluded. Without those limit points, T T AS would often not be bounded
complete either.

5.2. INDUCED TYPE HIERARCHIES 129

arq(j) = 0)g is empty or has a least element (with respect to vP).

Proposition 5.1. If hP;vP ; arity ; aP i is semi-coherent, then hI(P);vIi is
a partial order.

Proof. Transitivity can be proven by induction on the greatest parametric
depth, k, of three types, g1 = p(t1; : : : ; tn), g2 = q(u1; : : : ; um), and g3 =
r(v1; : : : ; vl) in I(P) such that g1 vI g2 and g2 vI g3. It must then be that
p vP q and q vP r. If k = 0, then p,q, and r are simple, and transitivity
follows from the transitivity of vP . If k > 0, then we also know that, for
all 1 � i � n, either aqp(i) = 0 or ti vI uaqp(i). In the former case, if
arp(i) 6= 0, then the chain p vP q vP r would violate semi-coherence, so
arp(i) = 0. In the latter case, if arq(a

q
p(i)) = 0, then by the same reasoning,

arp(i) = 0. Otherwise, we have that ti vI uaqp(i) vI varq(aqp(i)) = varp(i), and thus,
by induction, ti vI varp(i). This applies to all 1 � i � n, so g1 v g3.

Re
exivity and anti-symmetry follow from a similar inductive proof.

For the sake of generality, we can relax the requirement of bounded com-
pleteness to meet-semi-latticehood for now. Section 5.4 will present a fur-
ther re�nement of parametric type hierarchies for independent reasons that
restores bounded completeness. Section 5.5 will consider the use of �nite sub-
sets of I(P) for practical purposes, and bounded completeness is equivalent
to meet-semi-latticehood on all �nite partially ordered sets. As it happens,
semi-coherence is also enough to ensure that I(P) is a meet semi-lattice.

Proposition 5.2. If hP;vP ; arity ; aP i is semi-coherent, then hI(P);vIi is a
meet semi-lattice. In particular, given g1 = p(t1; : : : ; tn); g2 = q(u1; : : : ; um) 2
I(P), g1 tI g2# i�:

� p tP q#, and

� there exists an s wP p tP q such that for all i; j and all k > 0, if
aptqp (i) = aptqq (j) = k, then ti tI uj# or a

s
p(i) = 0 or asq(j) = 0.

and when it exists, g1 tI g2 = r(v1; : : : ; vl), where r is the least such s as
described above, and for all 1 � h � l:

vh =

8>>>><
>>>>:

ti tI uj if there exist i and j such that
arp(i) = h and arq(j) = h

ti if such an i, but no such j
uj if such a j, but no such i
? if no such i or j:

130 CHAPTER 5. PARAMETRIC TYPES

Proof. ()): By contraposition using induction on the greater parametric
depth, k, of types g1 = p(t1; : : : ; tn) and g2 = q(u1; : : : ; um) in I(P).

If k = 0 and ptP q", then by the bounded completeness of P , fg1; g2gu =
fp; qgu = ;. Otherwise, if k = 0, then g1 tI g2 = (ptP q)(?1; : : : ;?arity(ptq)),
which is the least instance of p tP q.

Suppose k > 0. If p tP q", then again, fg1; g2g
u = ;. Otherwise, suppose

that for all s wP p tP q, there exist i; j and a k > 0 such that aptqp (i) =
aptqq (j) = k and ti tI uj" and asp(i) 6= 0 and asq(j) 6= 0. Now consider some
g3 = s(v1; : : : ; vl) such that g1 vI g3. So p vP s. Either q vP s or not. If
not, then g2 6vIg3 and g3 62 fg1; g2gu. If so, then p tP q vP s. Consider the
i; j and k of s as speci�ed above. ti tI uj", so by induction, fti; ujgu = ;.
Since g1 vI g3 and a

s
p(i) 6= 0, ti vI vasp(i), so uj 6vIvasp(i). p vP ptP q vP s and

q vP p tP q vP s are chains, so by semi-coherence, asp(i) = asptq(a
ptq
p (i)) =

asptq(a
ptq
q (j)) = asq(j). So uj 6vIvasq(j) and since asq(j) 6= 0, g2 6vIg3. Thus, in

either case, fg1; g2gu = ;.
((): It is suÆcient to show that when such an s exists, there is a least

such s, r. Given that claim, the choice of v1; : : : ; vl above is clearly the unique
least choice of parameters.

Given some not necessarily least s, consider all triples hi; j; ki for which
aptqp (i) = aptqq (j) = k > 0, ti tI uj", and either asp(i) = 0 or asq(j) = 0. If
there are no such hi; j; ki, then ti t uj# whenever a

ptq
p (i) = aptqq (j) = k > 0

and so r = p tP q. Otherwise, for each such triple, let:

Rhi;j;ki = fr j p tP q vP r; (a
r
p(i) = 0 or arq(j) = 0)g:

Clearly, for all such triples, s 2 Rhi;j;ki, so by semi-coherence, all Rhi;j;ki have
least elements, rhi;j;ki. Furthermore, s 2 frhi;j;kiguhi;j;ki, so by the bounded

completeness of P , there exists an r =
F
hi;j;ki rhi;j;ki. There are chains, p vP

p tP q vP rhi;j;ki vP r and q vP p tP q vP rhi;j;ki vP r, so if a
rhi;j;ki
p (i) = 0,

then by semi-coherence, arp(i) = 0; and likewise for q. Thus r satis�es the
same conditions as s, and by its construction, is clearly least.

In the induced hierarchy of Figure 5.3, for example, b(e;?) tI b(?; e) =
b(e; e); b(e; e)tI c(?) = d(e;?; e); and b(e; e) and b(c(?); e) are not uni�able,
as e and c(?) are not uni�able. The �rst two conditions of semi-coherence
ensure that aP , taken as a relation between pairs of pairs of types and nat-
ural numbers, is an order induced by the order, vP , where it is not, taken
as a function, zero. The third ensures that joins are preserved even when

5.3. APPROPRIATENESS 131

a parameter is dropped (aP = 0). Note that joins in an induced hierarchy
do not always correspond to joins in a parametric hierarchy. In those places
where aP = 0, types can unify without a corresponding uni�cation in their
parameters. Such is the case in Figure 5.5, where every instance of list(X) ul-
timately subsumes nelist(?). One may also note that semi-coherent induced
hierarchies can have not only deep in�nity, i.e., non-Noetherianity, where
there exist in�nitely long subsumption chains, but broad in�nity, where cer-
tain types can have in�nite supertype (but never subtype) branching factors,
as in the case of nelist(?) or, in Figure 5.1, elist.

5.3 Appropriateness

So far, we have formally considered only parametric type hierarchies, with no
appropriateness. Appropriateness constitutes an integral part of a parametric
type signature's expressive power, because the scope of its type variables can
extend to include it.

De�nition 5.5. The restriction of I(P) to p 2 P , Ip(P), is de�ned such
that Ip(P) = fp(t1; : : : ; tarity(p)) 2 I(P) j ti 2 I(P); 1 � i � arity(p)g.

De�nition 5.6. Given a parametric type, p, for all i > 0, the ith parametric
projection is a partial function, �i : I(P) �! I(P) such that for any g =
p(t1; : : : ; tarity(p)), with arity(p) � i, �i(g) = ti.

De�nition 5.7. A function f : I(P) �! I(P) is parametrically determined
i� it is:

� a constant function,

� a parametric projection function, or

� a function for which there exist a p 2 P and functions f1; : : : ; farity(p),
such that for all g 2 I(P), f(g) = p(f1(g); : : : ; farity(p)(g)), and
f1; : : : ; farity(p) are parametrically determined.

De�nition 5.8. A parametric (type) signature is a semi-coherent parametric
type hierarchy, hP;vP ; arity ; aP i, along with a �nite set of features, FeatP ,
and a partial (parametric) appropriateness speci�cation, AppropP : FeatP �
P �! (I(P) �! I(P)), such that:

132 CHAPTER 5. PARAMETRIC TYPES

1. (Parametric Determination) If AppropP (f; p)#, then AppropP (f; p) is
a parametrically determined total function from Ip(P) to I(P),

2. (Feature Introduction) For every feature f 2 FeatP , there is a most
general parametric type Intro(f) 2 P such that AppropP (f; Intro(f))#,
and

3. (Parametric Upward Closure / Parametric Right Monotonicity) For
any p; q 2 P , any f 2 FeatP , any g1 2 Ip(P), and any g2 2 Iq(P), if
AppropP (f; p)# and p vP q, then:

� AppropP (f; q)#, and

� if g1 vI g2, then AppropP (f; p)(g1) vI AppropP (f; q)(g2).

AppropP maps a feature and the parametric type for which it is ap-
propriate to a function that de�nes value restrictions on the image of that
parametric type. The last two conditions are extensions of Carpenter's [1992]
conditions on appropriateness (De�nition 2.21, this dissertation). The �rst
says that appropriateness conditions on one parametric type are binding on
all of the types in its image, and on none of the types in the image of any
other parametric type. All three kinds of parametrically determined func-
tions are realized in practice for AppropP (f; p). In HPSG, for example, one
�nds:

� a constant function, at the feature, subcat, which is introduced by a
simple type, cat, whose value restriction is list(synsem) (not shown in
Figure 5.1).

� a projection function, in Figure 5.1, at the type, nelist(X), for which
the feature hd's value restriction is simply the parameter, X.

� a parametrically decomposable function, again at the type nelist(X),
for which the feature, tl, has the value restriction, list(X).

The ability to re
ect parameters in value restrictions is what conveys the
impression that ground instances of lists or other parametric types are more
deeply related to their parameter types than just in name.

The use of parameters in appropriateness restrictions is also what prevents
us from treating instances of parametric types in descriptions as instantia-
tions of macro descriptions. These putative \macros" would be, in many
cases, equivalent only to in�nite descriptions without such macros, and thus

5.4. SUBSUMPTION WITH PARAMETRIC SIGNATURES 133

would extend the power of the description language beyond the limits of
HPSG's own logic and model theory. Lists in HPSG would be one such case,
moreover, as they place typing requirements on every element of lists of un-
bounded length. Ground instances of parametric types are also routinely
used in appropriate value restrictions, whose extension to arbitrary descrip-
tions would substantially extend the power of appropriateness as well. This
alternative will not be pursued further here.

A parametric signature induces a type hierarchy as de�ned above, along
with the appropriateness conditions on its ground instances.

De�nition 5.9. The induced appropriateness function, AppropI(P) : FeatP�
I(P) �! I(P), is a partial function de�ned such that, for every feature, f 2
FeatP , every ground instance, g = p(t1; : : : ; tarity(p)) 2 I(P), AppropI(P)(f; g)#
i� AppropP (f; p)#, and when de�ned, AppropI(P)(f; g) = AppropP (f; p)(g).

Proposition 5.3. If hP;vP ; arity ; aP i is a parametric type signature, then
AppropI(P) is an appropriateness speci�cation.

5.4 Subsumption with Parametric Signatures

Now that parametric type signatures have been formalized, one can ask
whether parametric types really add something to the expressive power of
typed attribute-value logic. As seen in Chapter 3, there are at least two ways
in which to present that question:

Question 5.1. For every (semi-coherent) parametric signature, P , is there
a non-parametric signature, N , such that P �S N?

If, for every parametric signature P , there is an order-isomorphism be-
tween the totally well-typed abstract feature structures induced by P (by
way of I(P)) and those of some non-parametric signature N , then para-
metric signatures add no expressive power at all | their feature structures
are just those of some non-parametric signatures painted a di�erent color.
This is still an open question. There is, however, a weaker but still relevant
question:

Question 5.2. For every parametric type signature, P , is there a non-para-
metric type signature, N , such that P vS N?

134 CHAPTER 5. PARAMETRIC TYPES

If for every parametric P , there is a join-preserving encoding that embeds
the totally well-typed abstract feature structures of P into those of N , then
it is possible to embed problems (speci�cally, uni�cations) that we wish to
solve from P intoN , solve them, and then map the answers back to P . In this
reading, programmers or linguists who want to think about their programs
with P must accept no non-parametric imitations because N may not have
exactly the same structure of information states; but an implementor of a
interpreter for a language based on feature logic, for example, could secretly
perform all of the work for those programs in N , and no one would ever
notice.

Under this reading, many parametrically typed encodings add no extra
expressive power. This class of signatures also has the very fortunate property
of ensuring the bounded completeness of their induced signatures.

De�nition 5.10. A parametric type hierarchy, hP;vP ; arity ; aP i is persis-
tent i� aP never attains zero.

Proposition 5.4. If hP;vP ; arity; aP i is persistent, then hI(P);vIi is a
BCPO.

Proof. In light of Proposition 5.2, it suÆces to show that if any set S 2 I(P)
is bounded, then S is �nite. Given S, with bound b, since P is persistent, the
parametric depth of every type in S is bounded by �(b). Since P is �nite,
there are �nitely many types of any bounded parametric depth in I(P), so
S is �nite.

Along with Proposition 5.3, this means that hI(P);vI; AppropI(P)i is a sig-
nature.

Theorem 5.1. For any persistent parametric signature, P , there is a �nite
non-parametric signature, N , such that P vS N .

The proof is given in the appendix to this chapter. As a �rst approximation,
one might guess that such an N could be found by using extra features to
encode parameters. That guess is essentially correct.

If elist in Figure 5.1 retained the parameter of list(X), then HPSG's type
hierarchy (without sets) would be persistent. This is not an unreasonable
change to make. The encoding, however, requires the use of junk slots [A��t-
Ka�ci, 1984, Carpenter, 1992], attributes with no empirical signi�cance whose
values serve as workspace to store intermediate results.

5.5. FINITENESS 135

There are at least some non-persistent P , including the portion of HPSG's
type hierarchy explicitly introduced by Pollard and Sag [1994] (without sets),
that subsume a �nite non-parametric N ; but the embeddings are far more
complicated. It can be proven, for example, that for any such P , some of
its acyclic feature structures must be encoded by cyclic feature structures in
N ; and the encoding cannot be injective on the equivalence classes induced
by the types of P , i.e., the feature structures of some type in N must en-
code the feature structures of more than one type from P . While parametric
types may not be formally necessary for the grammar presented by Pollard
and Sag [1994] in the absolute sense, their use in that grammar does roughly
correspond to cases for which the alternative would be quite unappealing. Of
course, parametric types are not the only extension that would ameliorate
the formulation of an adequate signature. The addition of relational expres-
sions, functional uncertainty, or more powerful appropriateness restrictions
can completely change the picture.

5.5 Finiteness

It would be ideal if, for the purposes of feature-based natural language pro-
cessing, one could simply forget the encodings, unfold any parametric type
signature into its induced signature at compile-time and then proceed as
usual. This is not possible for systems that precompute all of their type op-
erations, as the induced signature of any parametric signature with at least
one non-simple parametric type contains in�nitely many types.2 On the
other hand, at least some precompilation of type information has proven to
be an empirical necessity for eÆcient processing. Even with respect to earlier
untyped versions of feature logic, sensible implementations will use de facto
feature cooccurrence constraints to achieve much of the same e�ect. Given
that one will only see �nitely many ground instances of parametric types
in any �xed theory, however, it is suÆcient to perform some precompila-
tion speci�c to those instances, which will involve some amount of unfolding.
What is needed is a way of determining, given a signature and a grammar,
what part of the induced hierarchy could be needed at run-time, so that type
operations can be compiled only on that part.

One way to identify this part is to consider only those types whose para-
metric depth is bounded by some constant. The problem with this method

2With parametric restrictions (p. 126), this is not necessarily the case.

136 CHAPTER 5. PARAMETRIC TYPES

is that a depth-bounded set of types may not be closed under uni�cation in
I(P), tI(P).

Another way to identify this part is to identify some set of ground in-
stances (a generator set) that are important for computation, and explicitly
close that set under tI(P):

De�nition 5.11. The sub-algebra generated by G, I(G) � I(P), is the
smallest subset of I(P) such that:

� G � I(G), and

� if g1 2 I(G), g2 2 I(G), and g1 tI(P) g2#, then g1 tI(P) g2 2 I(G).

To prove that I(G) is �nite, we need the following variation on parametric
depth:

De�nition 5.12. Given a parametric hierarchy, hP;vP ; arity ; ai, the fringed
parametric depth of g = p(t1; : : : ; tn) 2 I(P), �(g), is de�ned such that:

�(g) =

8<
:
�1 if g = ?;
0 if g 6= ?; n = 0;
1 + max1�i�n �(ti) if n > 0

For any k < !, a set, G � I(P), is k-fringed i� for all g 2 G, �(g) � k.

Proposition 5.5. If G is �nite, then there is a �nite k � 0 such that G is
k-fringed.

Proposition 5.6. If G is k-fringed, then I(G) is k-fringed.

Proof. By induction on k. The crucial case is the base case, in which the join
of two simple types is either simple or an instance of a non-simple parametric
type with every parameter equal to ?, which therefore does not change the
fringed depth.

Proposition 5.7. If G is k-fringed, then G is �nite.

Theorem 5.2. If G, is �nite, then I(G) is �nite.

Proof. By Proposition 5.5, there is a k � 0 such that G is k-fringed. By
Proposition 5.6, I(G) is k-fringed. By Proposition 5.7, I(G) is �nite.

5.6. APPENDIX: PROOF OF THEOREM 5.1 137

jI(G)j is exponential in jGj in the worst case; but if the maximum paramet-
ric depth of G can be bounded (thus bounding jGj), then it is polynomial in
jP j, although still exponential in the maximum arity of P : In practice, the
maximum parametric depth should be quite low,3 as should the maximum
arity. A standard closure algorithm, such as the meet semi-lattice completion
algorithm given in Section 2.1.2, can be used. One could also perform the
closure lazily during processing to avoid a potentially exponential delay at
compile-time. All of the work, however, can be performed at compile-time.
One can easily construct a generator set: simply collect all ground instances
of types attested in the grammar, or collect them and add all of the simple
types, or add the simple types along with some extra set of types distin-
guished by the user at compile-time. The partial unfoldings like Figure 5.2
are essentially manual computations of I(G).

The bene�t of this approach is that, by de�nition, I(G) is always closed
under uni�cation of consistent types in I(P). In fact, I(G) is the least set of
types that is adequate for uni�cation-based processing with a grammar based
on G. So far, features have not been considered, however. In practice, one
needs to close not only under uni�cation but also under AppropI(P) so that a
type will always appear in a sub-algebra along with the types that the feature
values of its most general satis�er must take. The easiest way to ensure this is
to require, for all p 2 P , f 2 Feat , and g 2 Ip(P), that �(AppropP (f; p)(g)) �
�(g) whenever AppropP (f; p)#. Then closure under appropriateness is also
guaranteed not to increase the fringed depth of the original set, and thus
remain �nite. Other restrictions could be found. Clearly, this method of sub-
signature extraction can be used even in the absence of parametric types, and
is a useful, general tool for large-scale grammar design and signature re-use.

5.6 Appendix: Proof of Theorem 5.1

A very straightforward proof exists for a class of parametric signatures that
are very well-behaved in their parameters:

De�nition 5.13. A parametric signature, P , is parametrically join-preserving,
i� for all p; q 2 P such that r = p t q is de�ned, for all f 2 Feat such that

3With lists, so far as the present author is aware, the potential demand has only reached
� = 3 [Manning and Sag, 1998] in the HPSG literature to date, and � = 6 overall [Manning,
1996].

138 CHAPTER 5. PARAMETRIC TYPES

pq(p1q1; p2q2) pr(p1r2; p2r1) qr(q1r1; q2r2)

p(p1; p2) q(q1; q2) r(r1; r2)

?

Figure 5.8: A parametric type hierarchy for which a straightforward mapping
of parameters to features fails.

Approp(f; r)#, for all g1 2 Ip(P) and g2 2 Iq(P) such that g3 = g1 tI g2#,
and for all 1 � k � arity(r):

�k(Approp(f; r)(g3))

=

8>>>><
>>>>:

�i(Approp(f; p)(g1)) if there exist i; j such that arp(i) = arq(j) = k;
t �j(Approp(f; q)(g2))
�i(Approp(f; p)(g1)) if there exists such an i but no such j;
�j(Approp(f; q)(g2)) if there exists such a j but no such i;
? if there exist no such i or j

Note that in the �rst case, an upper bound must exist by the de�nition
of appropriateness speci�cations, so the least upper bound must exist by
Proposition 5.2.

In the case of signatures induced by parametrically join-preserving para-
metric signatures, parameters can be replaced in an equivalent non-parametric
signature by extra features. Even then, how these features are allocated is
not entirely trivial. Figure 5.8 shows an example of a parametric type hierar-
chy for which we cannot simply assign one feature to every parameter. In this
hierarchy, apqp (1) = 1, and apqq (1) = 1, so p1 and q1 would need to map to the
same feature, and likewise for q1 and r1 because of qr; thus, p1 and r1 must
map to the same feature. On the other hand, aprp (1) = 1, but aprr (1) = 2 and
instead aprr (2) = 1, so p1 and r1 should not map to the same feature. This can
be solved for persistent parametric signatures by allocating one feature for
every parameter position of every maximally speci�c type. By persistence,
all parameters of a type must eventually be re
ected in one parameter of each
of that type's maximal extensions. That means, however, that parameters
must potentially be mapped to multiple features in the encoding.

Lemma 5.1. If P is persistent and parametrically join-preserving, then there
is a �nite non-parametric signature, N , such that P vS N .

5.6. APPENDIX: PROOF OF THEOREM 5.1 139

Proof. De�ne FeatN = FeatP [fXm
k j m 2 P; maximally speci�c, 1 � k �

arity(m)g, �N = P , and v �N = vP . For all f 2 FeatP and p 2 �N , let
Approp �N(f; p)# i� AppropP (f; p)#, and when it exists:

Approp �N(f; p) =
uPfq j there exists g 2 Ip(P) such that AppropP (f; p)(g) 2 Iq(P)g

For all Xm
k 2 FeatNnFeatP and p 2 �N , let Approp �N(X

m
k ; p) = ? if p vP m,

and there exists an 1 � i � arity(p) such that amp (i) = k, and be unde-
�ned elsewhere. Let N be the meet-semi-lattice completion of the signature
completion of �N .

We can de�ne an order-embedding, f : T T AI(P) �! T T AN such that
F = h�F ;�F ;�F ; 6�F i is mapped to f(F) = h�f(F);�f(F);�f(F); 6�f(F)i
where �f(F) is de�ned inductively on parametric depth such that:

�f(F)(�) =

8>>>><
>>>>:

p if � 2 �F ;�F (�) 2 Ip(P)
�G(�G) if � = �0Xm

k �G; �
0 2 �F ;�F (�

0) = p(t1; : : : ; tarity(p));
p vN m; amp (i) = k; f(Abs(TWT (MGSat(ti)))) =
h�G;�G;�G; 6�Gi; and �G 2 �G

unde�ned otherwise

�f(F) = f� j �f(F)#g and �f(F) and 6�f(F) are the smallest relations such
that �F � �f(F), 6�F � 6�f(F), and f(F) is an abstract feature structure.

The only di�erence between P and N is the placement of parameters.
We must unify f(F1)@�1X

m1

k1
with f(F2)@�2X

m2

k2
i� m1 = m2, k1 = k2, and

we must unify F1@�1 with F2@�2 and for p and q such that �F1(�1) 2 Ip(P)
and �F2(�2) 2 Iq(P), p vP m, and q vP m. By persistence, for all
1 � k � arity(m), there are i and j such that amp (i) = amq (j) = k. Also,
m 2 fp; qgu, so p tP q#, and p tP q vP m, and thus by semi-coherence,
there is an h > 0 such that aptP qp (i) = aptP qq (j) = h and amptP q(h) = k. So
for all 1 � k � arity(m), �f(F1)(�1X

m
k) tN �f(F2)(�2X

m
k)# i� �F1(�1) tI(P)

�F2(�2)# and since the substructures of any �Xm
k are most general satis�ers,

TWT (f(F1)tT T AI(N)
f(F2))# i� TWT (F1tT T AI(P)

F2)#. Since P is paramet-
rically join-preserving, TWT (f(F1) tT T AI(N)

f(F2)) = TWT (f(F1 tT T AI(P)

F2)), when it exists.

Not all parametric signatures are parametrically join-preserving. Fig-
ure 5.9 shows a simple counter-example. If P is not parametrically join-
preserving, then I(P) is not join preserving, but not vice versa, since it is

140 CHAPTER 5. PARAMETRIC TYPES

f
f:b(t)

e d c(X) t

a
f:b(s)

b(X) s

?

Figure 5.9: An example of a parametric signature that is not parametrically
join-preserving.

possible to violate join preservation with only simply-typed value restric-
tions, for example, or even with non-simple value restrictions provided that
the parameters themselves are assigned in a parametrically join-preserving
way. If the value restriction at f had been c(s), for example, the parametric
signature would be parametrically join-preserving but its induced signature
would not be join preserving. Parametric join preservation only constrains
the parameters themselves.

It remains to be shown that all persistent parametric signatures are
signature-equivalent to a persistent, parametrically join-preserving signature.
The notions of equivalence and subsumption among signatures de�ned here
are extensional in that they pay no attention to syntactic properties of a sig-
nature de�nition itself (such as parametric join preservation), but only to the
partial order of totally well-typed abstract feature structures that it induces.
Even though a parametric signature is not parametrically join-preserving, it
is thus still possible to prove such an equivalence by showing that a para-
metrically join-preserving one could have induced the same thing.

The proof of Theorem 5.1 relies on a method for transforming paramet-
ric signatures into equivalent ones that have potentially di�erent syntactic
properties.

De�nition 5.14. Given a persistent parametric signature, P , and i � 0, the
ith extension of P , Ei, is de�ned such that:

� E0 = P ,

� Ei+1 = fehp1;:::;parity(e)i j e 2 Ei; pj 2 Ei; all 1 � j � arity(e)g,

� arity(ehp1;:::;parity(e)i) =
Parity(e)

j=1 arity(pj),

5.6. APPENDIX: PROOF OF THEOREM 5.1 141

� ehp1;:::;parity(e)i vEi+1
�eh�p1;:::;�parity(�e)i i� e vEi

�e and for all 1 � i � arity(e),
pi vEi

�pa�ee(i), and

� for all 1 � i � arity(ehp1;:::;parity(e)i), a�e
h�p1;:::;�parity(�e)i

e
hp1;:::;parity(e)i

(i) = a
�pa�ee(b(i))
pb(i) (c(i)) +Pa�ee(b(i))�1

j=1 arity(�pj), where

{ b(i) is that k for which
Pk�1

j=1 arity(pj) < i �
Pk

j=1 arity(pj), and

{ c(i) = i�
Pb(i)�1

j=1 arity(pj).

Notice that all of the Ei contain the simple types of P .

De�nition 5.15. Given a persistent parametric signature, P , and its �rst
extension, E1, the canonical type embedding of P into E1 is the function,
�̂ : P �! E1, de�ned such that:

\e(t1; : : : ; tarity(e))

=

8<
:

e if arity(e) = 0;
ehp1;:::;parity(e)i(ĝh1;1i; : : : ; ĝh1;arity(p1)i; where for all 1 � i � arity(e);
ĝh2;1i; : : : ; ĝharity(e);arity(parity(e))i) ti = pi(ghi;1i; : : : ; ghi;arity(pi))

Proposition 5.8. �̂ is an order-isomorphism.

De�nition 5.16. The ith extended signature of P is de�ned over the ith

extension of P , with appropriateness de�ned such that:

� AppropE0
= AppropP ,

� AppropEi+1
(f; ehp1;:::;parity(e)i)# i� AppropEi

(f; e)#, and

� when it exists, AppropEi+1
(f; ehp1;:::;parity(e)i) = �̂ Æ AppropEi

(f; e) Æ �̂�1.

Henceforth, Ei will be used to refer to the extended signature over Ei.
Extended parametric signatures are technically not parametric signatures,
because their appropriateness speci�cations may not be parametrically deter-
mined, but they clearly induce valid appropriateness speci�cations in I(P).
Since the proof of Lemma 5.1 constructs the appropriateness speci�cation
for N directly from the appropriateness speci�cation of I(P), and the con-
struction of further extensions from this de�nition does the same, this is an
acceptable departure. The property of parametric determination is only used
below in Lemma 5.3.

142 CHAPTER 5. PARAMETRIC TYPES

cf

ce bf cd cc(X) ct

f
f:bt

be ca bd bc(X) cb(X) bt cs

e d ba bb(X) bs t

a
f:bs

b? s

?

Figure 5.10: The �rst extended signature of Figure 5.9.

Proposition 5.9. For all i < !, Ei �S P .

In order to see an extension at work, Figure 5.10 shows the �rst extended
signature of Figure 5.9. It is parametrically join-preserving, but not join-
preserving. This extended signature is also a valid parametric signature,
but in general that may not be so, as explained above. Note that this same
method cannot be used to convert non-statically-typable signatures into stat-
ically typable ones.

This technique will now be applied to parametric signatures in a way that
depends on whether or not they satisfy another syntactic property:

De�nition 5.17. A persistent parametric signature, P , is parametrically
separated i�:

� for every simple type, s 2 P , and every non-simple type, p 2 P , s vP p,
and

� its non-simple parametric types are totally ordered.

Parametrically separated signatures all look like the schematic hierarchy
shown in Figure 5.11, where S is the set of all simple types of P , and k1 �
: : : � kn. It is easy to see that if there are any join-reducible types, they
must reduce to simple types, and thus, if parametric join preservation is
not satis�ed, it is not satis�ed by values of AppropP (f; s) that are constant
functions.

5.6. APPENDIX: PROOF OF THEOREM 5.1 143

pn(X1; : : : ; Xkn)

...

p1(X1; : : : ; Xk1)

S

?

: : :

: : :

Figure 5.11: A schematic illustration of a parametrically separated paramet-
ric type hierarchy.

Lemma 5.2. If P is parametrically separated, then there exists an i < !
such that Ei is parametrically join-preserving.

Proof. Consider:

i = max
s 2 P; simple;

f 2 Feat

�(AppropP (f; s)):

The ith extension4 of P converts the value restrictions of potentially non-
compliant simple types to simple types, and thus Ei is trivially parametrically
join-preserving.

Another syntactic class can be distinguished as being trivially paramet-
rically join-preserving:

De�nition 5.18. A persistent parametric (or extended) signature, P , is
parametrically transparent i� for all p; q 2 P such that p vP q, all g1 2
Ip(P), g2 2 Iq(P) and all f 2 Feat such that AppropP (f; p)#, if for all 1 � i �
arity(p), �i(g1) = �aqp(i)(g2), then for all 1 � i � arity(�p), ti = ua�q�p(i), where

AppropI(f; g1) = �p(t1; : : : ; tarity(�p)), and AppropI(f; g2) = �q(u1; : : : ; uarity(�q)).

4Actually, dlog(i)e is a suÆcient number of extensions since every extension reduces
the parametric depth of an instance in I(P) by half.

144 CHAPTER 5. PARAMETRIC TYPES

Parametrically transparent signatures do not change the parameters of
value restrictions at all over subsumption chains and therefore:

Proposition 5.10. Every parametrically transparent signature is paramet-
rically join-preserving.

The following lemma then proves the theorem, since the k it provides can
also be used to extend P to a parametrically transparent signature.

Lemma 5.3. If P is persistent but not parametrically separated, then for all
p; q 2 P such that p vP q, and for all f 2 Feat such that AppropP (f; p)#, if
there exist i0; : : : ; ik, k � 0, such that �ik Æ � � � Æ �i1 Æ AppropP (f; p) = �i0,
then �ik Æ � � � Æ �i1 Æ AppropP (f; q) = �i0.

Proof. If P is not parametrically separated, then there are non-simple para-
metric types, but either there is no greatest type that is non-simple (and, by
persistence, no greatest simple type), or there is, called r, but there is also
a non-simple type p1 t p2 that is join-reducible to non-simple types, p1 and
p2, i.e., the non-simple parametric types of P are not totally ordered.

In the former case, suppose there are maximal non-simple types r1 and r2
and that the consequent of the lemma is false. Now consider �ik Æ � � � Æ �i1 Æ
AppropP (f; q) with that choice. It is not �i0 , by assumption, but it must be
parametrically determined, by de�nition, so its entire range belongs to I�q(P)
for some �q. If �q is not r1 or r2 then since �ik Æ � � �Æ�i1 ÆAppropP (f; p) = �i0 , a
choice of an instance in either Ir1(P) or Ir2(P) as the i

th
0 parameter presents

a contradiction, since right monotonicity would be violated. Similarly, if
�q = r1, then a choice of an instance in Ir2(P), or vice versa, presents the
same contradiction.

In the latter case, the only way the same contradiction can be avoided
is if �q = r, as every type subsumes r. By persistence, however, �ik Æ � � � Æ
�i1 Æ AppropP (f; q) must be a function that depends on the ith0 parameter.
The choice of an instance in Ip1(P) whose subparameter that subsumption-
wise corresponds to the occurrence of the ith0 parameter in �ik Æ � � � Æ �i1 Æ
AppropP (f; q) is an instance of Ip2(P) thus provides the same contradiction,
since neither p1 nor p2 subsumes the other.

Figures 5.12 and 5.13 show simple examples of each of these cases. How
a parameter is re
ected locally through value restrictions in subsumption
chains is tightly constrained by the global shape of the type hierarchy as a
result of the fact that every ground instance of every type can occur as any
parameter.

5.6. APPENDIX: PROOF OF THEOREM 5.1 145

r1(X) r2(X)

q(X)
f: r1(X)

p(X)
f: X

?

Figure 5.12: A would-be parametric signature with no greatest type that does
not satisfy right monotonicity: p(r2(?)) v q(r2(?)), but r2(?)6vr1(r2(?)).

r(X)

(p1 t p2)(X)

p1(X) p2(X)

q(X)
f: r(X)

p(X)
f:X

?

Figure 5.13: A would-be parametric signature whose parametric types are
not totally ordered that does not satisfy right monotonicity: p(p1(p2(?))) v
q(p1(p2(?))), but p1(p2(?))6vr(p1(p2(?))) because p2(?)6vp1(p2(?)).

146 CHAPTER 5. PARAMETRIC TYPES

5.7 Summary

This chapter presented an account of parametric types that is general enough
to capture their use in current linguistic theory. That account is made pos-
sible by essentially algebraic means, through formalizing the intuitive cor-
respondence that must exist between parametric type signatures and the
non-parametric signature of ground instances of parametric types. The struc-
tural conditions under which parametric types do in fact induce a well-formed
BCPO were also given, which is another novel contribution. Linguists and
implementors previously had no formal guidance as to how the sharing of
parameters between a type and its subtypes or value restrictions should be
regulated.

It was also proven that, in contrast to features, parametric type signatures
do not provide any extra expressive power from a formal standpoint than
non-parametric signatures. That question could be posed formally using
signature subsumption as de�ned in Chapter 3. Parametric signatures are
nevertheless a very natural and convenient means of expression. In spite of
the fact that their induced equivalents are usually in�nite, it was also shown
that �nite induced subsignatures can be induced in order to compute with
them directly.

Chapter 6

Arity and Prolog Terms

We have already seen how join-preserving encodings, realized as signature
subsumption and equivalence, can be used to relate di�erent attributed type
signatures to each other, to encode other kinds of signatures such as systemic
networks, and to understand the relative expressive potential of attributed
type signatures extended with parametric types. In this chapter, they will
be used to show that the �nite, inequation-free, totally well-typed feature
structures of any �nite signature with no cyclic types and a join-preserving
appropriateness speci�cation can be embedded into the semi-lattice of Pro-
log terms. When the target domain is �rst-order terms or Prolog terms, this
embedding problem is called term encoding. As usual, we need to be con-
cerned with join-preserving term encodings | those that preserve uni�cation
and uni�cation failure. Prolog term encoding a particularly useful embed-
ding, given the interest in logic programming among those who work with
typed feature structures in the context of natural language processing. The
practical application of this will be discussed at greater length in Chapter 8.

Ignoring for the moment the di�erence between named and positional ref-
erence to subterms, typed feature structures can be regarded as a re�nement
of Prolog terms in two ways. The �rst is that type signatures possess sub-
sumption chains of any length. In Figure 6.1, for example, the chain from ?
to noun is three types long (not counting ? itself). Once a Prolog variable,
which corresponds to a feature structure of type ?, is bound to a particular
term, the principal functor of that term cannot be changed, and two terms
of di�erent principal functors cannot be uni�ed.

The second is that, when the type of a feature structure promotes to
a subtype, it may acquire more features. In Figure 6.1, this is the case

147

148 CHAPTER 6. ARITY AND PROLOG TERMS

subst

adj

minusplus

bool

nom

case

acc

head

noun
CASE: case

PRD: bool
MOD: bool

Figure 6.1: A sample tree-encodable type signature.

?

a=0 b=0 : : : a=1
arg1a=1 : ?

b=1
arg1b=1 : ?

: : :

Figure 6.2: A \type signature" for Prolog terms.

when a feature structure of type subst promotes to type noun, since noun
introduces the new feature case. Of course, with total well-typing, the
arity of every feature structure of a particular type is �xed to a constant,
namely the number of features appropriate to that type, but the arity can still
change when the type promotes. In contrast, a Prolog term of a particular
arity cannot later acquire a di�erent arity, or unify with a Prolog term of a
di�erent arity. In this view, Prolog terms can be thought of as being de�ned
over a very
at signature with in�nitely many maximally speci�c types, as
shown in Figure 6.2.

Subtyping and arity incrementation are the two main di�erences between
totally well-typed feature structures and Prolog terms. In addition, Prolog is
only a weakly typed language, so there is no way to check \well-typedness"
after a uni�cation is performed. As a result, only those signatures that
do not require run-time coercion to a well-typed structure can have join-
preserving Prolog-term encodings. These are the statically typable signa-
tures, which were shown in Proposition 2.13 to correspond to signatures with
join-preserving appropriateness speci�cations, as de�ned in De�nition 2.38.
It will be assumed here that appropriateness is join-preserving, feature struc-
tures are �nite, and that there are no cyclic types, which guarantees that
most general satis�ers will not fall outside the �niteness restriction. It may
be possible to �nd join-preserving term encodings of certain cyclic types or of

6.1. SUBTYPING 149

certain in�nite feature structures over arbitrary signatures, e.g., those that
depart from the most general satis�er of their type on �nitely many nodes, by
using some \lazy" encoding that explicitly expresses only a �nite part of an
in�nite feature structure. It is also quite easy to extend the results presented
here to feature structures with inequations in enhanced implementations of
Prolog that support inequations, such as SICStus Prolog, so inequations will
be ignored here as well.

The problem of encoding a typed feature structure is most easily ap-
proached by splitting it into two problems: a join-preserving encoding of
type information that allows for subtypes, and a join-preserving encoding
of feature values that allows for arity incrementation. The next two sec-
tions consider those problems, respectively. The key insight is proven in
Lemma 6.1, in which it is shown that the de�nition of statically typable sig-
natures given by Carpenter [1992] actually entails the existence of an essential
extra property that makes the encoding possible.

The third section then adapts this encoding to be robust in the face of
extra-logical variable bindings | these are what obstructed our potential
use of signature transformations in Chapter 4 as well. No such robustness
is possible given the classical view of join-preserving embeddings, but the
generalized de�nition presented in Chapter 3 is the key to realizing that they
actually exist. The fourth section then considers subsumption preservation
as a special case of join preservation.

6.1 Subtyping

In this section, we consider �nite type signatures without features | just �-
nite type hierarchies. \Prolog encoding" is taken here to mean one in which
the only operation necessary for feature structure uni�cation after creating
the encoding is Prolog uni�cation of the corresponding terms. That excludes
other \Prolog representations," such as the representation of feature struc-
tures in ALE, a logic programming language based on the logic of typed
feature structures, which requires a dereferencing operation and table look-
up at run-time [Carpenter and Penn, 1996], as well as the representation
given by Gerdemann [1995b], which because of its slightly di�erent inter-
pretation of appropriateness conditions, requires the maintenance of extra
constraints on the side in the worst case. The actual construction of any
Prolog encoding can be performed at compile-time.

150 CHAPTER 6. ARITY AND PROLOG TERMS

index

m sn p

npnsfsms

f

fpmp

numgend

Figure 6.3: A type hierarchy with full-product multiple inheritance.

6.1.1 Tree Encodings

The �rst work to consider Prolog encodings of arbitrary meet semi-lattices
was presented by Mellish [1991], although no general encoding algorithm
was presented. Mellish [1991] was also the �rst to characterize the general
encoding problem formally, as was presented in Chapter 3 as the \classical"
de�nition (De�nition 3.8 of join-preserving encoding. Previous work, dating
back to that of Dahl [1977, 1982], concerned a restricted subset of semi-
lattices that admit a Prolog tree encoding, i.e., an encoding by terms in which
no variable is used more than once. These and other logical-term-encoding
approaches are systematically presented in Fall, 1996.

Tree encodings represent a type with a term that, using subterms, rep-
resents the path(s) taken to reach that type from ?. In Figure 6.1, the
representation of head would be head(); that of subst, head(subst());
and that of noun, head(subst(noun)). The noun subterm does not require
a variable argument because noun is maximally speci�c.

Because the logic of typed feature structures is intensional, an extra vari-
able argument is necessary to distinguish feature values that are variants
from feature values that are extensionally identical when representing fea-
ture structures rather than just types. So, for feature structures with no
features, the representation of one of type head would be head(,); that
of one of type subst, head(subst(),); and that of one of type noun,
head(subst(noun),). We can, for the rest of this section, ignore these
extra arguments and focus on representing types.

To represent multiple inheritance, the tree-based encoding uses multiple
argument positions to represent the di�erent paths that lead to a single type.
In Figure 6.3, any pair of gend and num subtypes can intersect. So index's
term contains two argument positions, one for gend and one for num. The

6.1. SUBTYPING 151

lax¢ral lax¢ering central¢ering

centeringcentrallax

Figure 6.4: A type hierarchy with no tree encoding.

f(0,0)

f(_,1)f(X,X)

f(0,1) f(1,1)

f(0,_)

Figure 6.5: A
at-term encoding of Figure 6.4.

representations of gend, s and ms are index(gend(),), index(,num(s))

and index(gend(m),num(s)), respectively.

Tree-based encoding does not work for arbitrary �nite meet semi-lattices,
as proven by Mellish [1991, 1992]. Figure 6.4, for example, represents a sim-
ple classi�cation of vowels, taken from Hudson [1981] (and cited by Mellish
[1991]). There are vowels that have any pair of the three properties, lax,
central and centering; but there are no vowels that have all three at once.
This has no tree encoding because separate argument positions for lax, cen-
tral and centering would entail the consistency of lax with central¢ering,
for example.

6.1.2 Flat-Term Encodings

Mellish [1991, 1992] proved (non-constructively) that while not all �nite meet
semi-lattices admit tree encodings, they do all admit
at-term encodings,
encodings that use terms whose substructures are all reachable from the
root by a path of length at most 1. While this encoding can instantiate
arguments only to constants, it can also use individual variables in more
than one argument position. A
at-term encoding of Figure 6.4 is given in
Figure 6.5.

Mellish [1988] showed that what is now known as Colmerauer's method
can be used to encode systemic networks using
at terms of arity n + 1,
where n is the number of possible property assignments allowed for by the

152 CHAPTER 6. ARITY AND PROLOG TERMS

f(0,0,0,0,1,1,1) f(0,0,0,0,0,1,1) f(0,0,0,0,0,0,1)

f(0,X,X,X, ,1,1) f(0,0,X,X,Y,Y,1) f(0,0,0,X,X, ,1)

?

Figure 6.6: A Colmerauer-method encoding of Figure 6.4.

network. The �rst argument is always 0, the last argument is always 1, and
every assignment is represented by a pair of arguments in between. Every
description that excludes an assignment numbered i is represented by a term
whose ith and i+1st arguments are bound to a common term. If there are 5
possible assignments, then we use a term of arity 6 as follows [Mellish, 1988]:

1 2 3 4 5
j j j j j

f(0, , , X, X, 1) (excludes assignment 4)
f(0, 0, , X, X, 1) (excludes 1 and 4)
f(0, X, X, X, 1, 1) (excludes 2, 3, and 5)

Fall [1996, p. 94] observed that Colmerauer's method applied to subsump-
tion rather than assignments provides a uni�cation-preserving encoding of
arbitrary �nite ordered sets, thus establishing a constructive method for
at-
term encodings. A pair of arguments in an encoding is bound i� the type
corresponding to the pair is not a subtype of the type being encoded. Fig-
ure 6.6 shows a Colmerauer-method encoding of the signature in Figure 6.4
with the following assignment of types to pairs of positions:

lax ctrl ctrg lax& lax& ctrl&
ctrl ctrg ctrg

j j j j j j
f(0, , , , , , 1)

6.2 Arity Incrementation

As a �rst approximation to the encoding of typed feature structures over a
�nite signature, we can assume that we are given Colmerauer-style encodings
of all of the types in the signature. We can then use this in an extra argument
position of a term that also has one argument position for every feature in
the signature, to be �lled with the term encoding of its value. Cyclic feature
structures correspond to circular Prolog terms.

6.2. ARITY INCREMENTATION 153

c
f:a

a b

?

Figure 6.7: A signature that introduces a feature at a join-reducible type.

c(0; 0; 0; 1)

c(0; X;X; 1) c(0; 0; ; 1)

?

Figure 6.8: A Colmerauer encoding of the signature in Figure 6.7.

The problem with this approximation is that it does not always lead to a
join-preserving encoding because features can be introduced at join-reducible
types. Figure 6.7 depicts a signature for which this is the case. A Colmerauer
encoding of it is shown in Figure 6.8. We can add one argument position to
the term encoding of c for the value of the feature f; but then we need to
make the encodings of a and b the same arity so that they unify. The detail
that the approximation does not provide is what value to use in that extra
position with types for which f is not appropriate. If we use a singleton
variable, i.e., a variable that occurs exactly once in its term, as shown in
Figure 6.9, then the encoding of a feature structure of type a uni�ed with
the encoding of a feature structure of type b yields an encoding whose f

argument position does not contain a term encoding of the value restriction
of f at c. On the other hand, we could use a term encoding of the most
general satis�er of Approp(f; Intro(f)), with the understanding that the type
information in the encoding will tell us when to interpret it as a real value
or just to ignore it. But in Figure 6.7, that value restriction is a, one of the
supertypes of c, and thus the term encoding of the most general satis�er of a

f(c(0; 0; 0; 1);)

f(c(0; X;X; 1);) f(c(0; 0; ; 1);)

?

Figure 6.9: An approximate encoding of Figure 6.7 using a singleton variable
for inappropriate feature positions.

154 CHAPTER 6. ARITY AND PROLOG TERMS

would be an in�nite non-circular term, since its third argument would be the
term encoding of a distinct alphabetic variant of the same feature structure.

To handle recursive signatures such as these, we must adopt a conven-
tion that allows an additional argument position for a feature to contain a
variable, but only in certain cases. The type information in the encoding
will tell us whether that variable should be interpreted as a non-existent or
introduced value. One admissible convention is given below:

De�nition 6.1. Given a (statically typable etc.) signature, S = hT;v;Feat;
Appropi, and a Colmerauer encoding of T of arity jT j + 1, the classical
term encoding of the totally well-typed feature structures of S is an injective
function, �� : S �! �S, where �S is a partially ordered set of Prolog terms of
arity jFeat j + 2. Given F = hQ; �q; �; Æ; ;i 2 T T FS with type �(�q) = t 2 T ,
and Q �nite, its encoding is �F = f(c(C1; : : : ; CjT j+1); �F1; : : : ; �FjFeat j;) 2 �S,
where c(C1; : : : ; CjT j+1) is the Colmerauer encoding of t, and:

�Fi =

8>>>>>><
>>>>>>:

a singleton variable if Approp(fi; t)"
a singleton variable if F@fi = hQi; �qi; �i; Æi;=ii �

MGSat(Approp(fi; Intro(fi)))
and 8q 2 Q:8g 2 Feat :(Æ(g; q) =
�qi)) (g = fi)&(q = �q),

F@fi otherwise

This says that we can use a variable as a place-holder for some feature value,
provided that it is the most general feature structure that can be a value
of that feature, and it does not participate in a re-entrancy. This exploits
the fact that appropriateness cannot require re-entrancies to exist1 | an
introduced feature value is never re-entrant.

In practice, of course, one can remove the extra c wrapper on Colmerauer's
encoding to leave the structure of the term as
at as possible, and simply
use a variable by itself to represent feature structures of type ?.

Proposition 6.1. �� is a classical join-preserving encoding of T T FS.

Proof. By de�nition, �� is injective, which is possible because the last argu-
ment is always a singleton variable, posited to ensure the intensionality of
the terms in the encoding, as described above. Because Colmerauer's en-
coding is zero-preserving and join-preserving, substructures are encoded in

1in the absence of extensional types.

6.2. ARITY INCREMENTATION 155

subterm positions, re-entrancies are encoded as shared subterms in Prolog
terms (thinking of them, too, as graphs), and the uni�cation of singleton
variables in unused term positions always succeeds, the only special cases
that need to be considered for zero-preservation and join-preservation are
arity incrementation, i.e., when a feature is introduced at a join, and the
uni�cation of the distinguished singleton variables with other values.

To consider the latter case �rst, the most general satis�er of a feature's
value restriction at its introducer must subsume any other value that that
feature can take in a well-typed feature structure, by upward closure and
right monotonicity. So we should always get a non-variable term encoding
back when we unify it with a singleton variable encoding in that position,
which is exactly what happens.

Feature introduction also never fails | this is a result of the fact that
Fill (De�nition 2.36) is a total function. It also never fails in the encoding
| singleton variables unify with anything. The only question is whether the
right value is introduced when the type of a term changes so as to change
the interpretation of the introduced feature's position. From the original
de�nition of join preservation (De�nition 2.38), it is not quite clear that
this would be the case, because of the \unrestricted" clause. Lemma 6.1
establishes that this actually is true.

Lemma 6.1. If Approp is join-preserving, s t t#, and for some f 2 Feat,
Approp(f; s)" and Approp(f; t)", then either Approp(f; stt)" or Approp(f; st
t) = Approp(f; Intro(f)).

Proof. Suppose Approp(f; st t)#. Then Intro(f) v s t t. Approp(f; s)" and
Approp(f; t)", so Intro(f) 6v s and Intro(f) 6v t. So there are three cases to
consider:

Intro(f) = s t t: then the result trivially holds.

s v Intro(f) but t 6v Intro(f) (or by symmetry, the opposite): then we
have the situation in Figure 6.10. It must be that Intro(f) t t = s t t, so by
join preservation, the lemma holds.

s 6v Intro(f) and t 6v Intro(f): s v s t t and Intro(f) v s t t, so s and
Intro(f) are consistent. By bounded completeness, s t Intro(f)# and s t
Intro(f) v s t t. By upward closure, Approp(f; Intro(f) t s)# and by join
preservation, Approp(f; Intro(f) t s) = Approp(f; Intro(f)). Furthermore,
(Intro(f) t s) t t = s t t; thus by join preservation, the lemma holds.

156 CHAPTER 6. ARITY AND PROLOG TERMS

s t t

Intro(f)

s t

Figure 6.10: The second case in the proof of Lemma 6.1.

This lemma is a very signi�cant result | it says that we can always pre-
dict what an introduced feature's value restriction will be in a join-preserving
signature. This means that join preservation not only characterizes static ty-
pability, but also �xed-arity-term encodability in the logic of typed feature
structures. We can, thus, restate join preservation as follows:

De�nition 6.2. An appropriateness speci�cation is said to preserve joins
i�, for all features f 2 Feat, for all types s; t such that s t t#:

Approp(f; s t t) =

8>>>>>><
>>>>>>:

Approp(f; s) t Approp(f; t) if Approp(f; s)# and
Approp(f; t)#

Approp(f; s) if only Approp(f; s)#
Approp(f; t) if only Approp(f; t)#�

unde�ned; or
Approp(f; Intro(f))

otherwise

No matter which case pertains, appropriateness is never completely unre-
stricted if it is join-preserving.

The encoding and lemma make critical use of bounded completeness and
unique feature introduction. Actually, the encoding also works if we gen-
eralize our de�nition of signatures to allow for multiple introducing types,
provided that all of them agree on what the value restriction for a multiply
introduced feature should be. Would-be signatures that multiply introduce
a feature at join-reducible elements (thus requiring some kind of variable en-
coding), disagree on the value restriction, and still remain statically typable
are rather diÆcult to come by, but they do exist, and for them, this encoding
does not work. Figure 6.11 shows one such example. In this signature, the
uni�cation:

�
s
f d

�
t

�
t
f b

�
"

6.3. GENERALIZED TERM ENCODING 157

s t t
f:c

s
f:a

t
f:b

d c

a b

?

Figure 6.11: A statically typable would-be signature that multiply introduces
f at join-reducible elements with di�erent value restrictions.

does not exist, but the uni�cation of their term encodings must succeed
because the t-typed structure's f value must be encoded as a variable. To
the best of the author's knowledge, there is no term encoding that can handle
this generalization.

6.3 Generalized Term Encoding

A classical term encoding of typed feature structures exists, subject to the
restrictions outlined at the beginning of this chapter, but in practice, it is
not good for much. Programming languages that make reference to a feature
structure, F , typically need to bind variables to various substructures of F ,
and then pass those variables outside the scope of F where they can be used
to instantiate the value of another feature structure's feature, or as arguments
to some function call or procedural goal. This extra-logical view of relational
extensions of constraint languages has been rather commonplace in logic
programming ever since it was proposed by H�ohfeld and Smolka [1988]. If a
subterm in an encoding is a singleton variable, we can properly understand
what that variable encodes by looking at its context, i.e., the term's type
etc., but outside the scope of that term, we have no way of knowing which
type's most general satis�er it is supposed to encode.

A generalized term encoding provides an elegant solution to this problem
without a loss of encoding ability in the form of additional, more verbose
term encodings for certain feature structures. When a variable is bound to
a substructure that is potentially a \lazy" singleton variable, it can be in-
stantiated to the most general satis�er that it represents and passed out of
context. The encoding of the original feature structure still remains legit-

158 CHAPTER 6. ARITY AND PROLOG TERMS

imate, because the encoding sets are closed under the binding of singleton
variables.

De�nition 6.3. Given a signature, S = hT;v;Feat ;Appropi, and a Colmer-
auer encoding of T of arity jT j + 1, the term encoding of the totally well-
typed feature structures of S is a function, �̂ : S �! Pow(Ŝ), where Ŝ
is a partially ordered set of Prolog terms of arity jFeat j + 2. Given F =
hQ; �q; �; Æ; ;i 2 T T FS with type �(�q) = t 2 T , and Q �nite, its encoding is a
set of terms, each of the form F̂ = f(c(C1; : : : ; CjT j+1); F̂1; : : : ; F̂jFeat j;) 2 Ŝ,
where c(C1; : : : ; CjT j+1) is the Colmerauer encoding of t, and:

F̂i =

8>>>>>><
>>>>>>:

a singleton variable if Approp(fi; t)"
a singleton variable,
or Gi

if F@fi = hQi; �qi; �i; Æi;=ii �
MGSat(Approp(fi; Intro(fi)))
and 8q 2 Q:8g 2 Feat:(Æ(g; q) =
�qi)) (g = fi)&(q = �q),

Gi otherwise

where, for each �qi, Gi is a unique term selected from[F@fi.

Proposition 6.2. �̂ is a join-preserving encoding of T T FS.

Proof. Totality and disjointness are obvious. For those positions where a
singleton variable is chosen, zero preservation and join preservation follow by
the same reasoning as in the classical case. The classical encoding, in fact,
is one member of the generalized encoding set for every feature structure.
For those positions where an instantiated encoding of the most general sat-
is�er is chosen, zero preservation and join preservation again follow from the
straightforward correspondence between Prolog term structure and feature
structure graph structure and the fact that Colmerauer's encoding (which,
by itself, is still classical) is zero-preserving and join-preserving.

6.4 Subsumption Preservation

Whenever an encoding is join preserving, it is subsumption, or order preserv-
ing because F t G = G i� F v G. But we might also expect to be able to
test for subsumption in an encoding domain using a primitive subsumption
test for that domain without having to perform a more expensive test uni�-
cation. This does not hold in general, and, in particular, it does not hold for

6.4. SUBSUMPTION PRESERVATION 159

either the classical or generalized Prolog encodings of typed feature struc-
tures presented in the last two sections. The reason is that singleton variable
placeholders in G might actually represent substructures that are more spe-
ci�c than an instantiated term that encodes a corresponding substructure in
F , which is consistent with F v G, but inconsistent with �F v �G.

In the case of the classical encoding, we have no recourse to repair this
problem | only one term corresponds to a given feature structure, and
primitive subsumption testing using that term does not work. In the case
of the generalized encoding, we can coerce a naughty term to another one
that encodes the same feature structure but has �lled in its value-encoding
singleton variables.2

De�nition 6.4. Given a signature, S, let Exp : Ŝ �! Ŝ be the function
that, for every F 2 T T FS, maps every encoding in F̂ to the unique term in
F̂ that has no value-encoding singleton variables.

Proposition 6.3. Suppose the primitive for subsumption testing among Pro-
log terms is called subsumes. Then for every F;G 2 T T FS, f̂ 2 F̂ , and
ĝ 2 Ĝ, F v G i� f̂ subsumes Exp(ĝ).

A schematic overview of the generalized term encoding can be seen in
Figure 6.12. Every set of terms that encode a particular feature structure
has a least element, in which singleton variables are always opted for as
introduced feature values. This is the same element as the classical encoding.
It also has a greatest element, namely the result of Exp, which eliminates the
variable encodings of introduced feature values. Whenever we bind a variable
to a substructure, we push its encoding up within the same set to some other
encoding. As a result, at any given point in time during a computation, we
do not exactly know which encoding we are using to represent a given feature
structure. Furthermore, when two feature structures are uni�ed successfully,
we do not know exactly what the result will be either, but we do know that it
falls inside the set corresponding to the correct answer because there is always
a term there with variable encodings for the values of any newly introduced
features.

2The extra singleton variable for preserving intensionality, of course, remains a singleton
variable.

160 CHAPTER 6. ARITY AND PROLOG TERMS

Exp(F tG)

\F tG

Introduced feature has
variable encoding

F tG

Exp(F) Exp(G)

F̂
variable
binding

Ĝ

�F �G

Figure 6.12: A pictorial overview of the generalized encoding.

6.5. SUMMARY 161

6.5 Summary

This chapter showed that two kinds of join-preserving embeddings, one clas-
sical and one generalized, exist from any statically typable signature into
the lattice of Prolog terms. The generalized embedding has the ability to
withstand the necessary extra inferencing in order to use variables with an
extra-logical binding scope for the purposes of logic programming, for exam-
ple. The crucial step in proving their existence is Lemma 6.1, which shows
that the assumption of unique feature introduction allows us to strengthen
the characterization of static typability given by Carpenter [1992]. As shown
in Chapter 2, this assumption can easily be restored when it is not assumed
by the designer. It was also shown that subsumption preservation can be
reduced to subsumption at the Prolog level using an extra closure operator,
Exp, that can apply directly to encoding terms.

162 CHAPTER 6. ARITY AND PROLOG TERMS

Chapter 7

The Semi-Ring Structure of

Signature Speci�cations

Before proceeding further, it will be useful to take a di�erent look at at-
tributed type signatures, this time focussing on how the relations and func-
tions that constitute signatures can be viewed as the closure of speci�ca-
tions of signatures. This knowledge has already been implicitly used in the
way that signatures have been depicted | as graphs whose links correspond
to instances of immediate subsumption, annotated with feature introduc-
tion and value restriction information only where it cannot be inferred from
upward closure and/or right monotonicity. Fundamentally, what separates
these speci�cations from the signatures themselves is a collection of transitive
closure operations, plus various safeguards to ensure that the speci�cations
are well-formed. Subsumption, appropriateness, transitive closure, and these
safeguards can all be thought of in terms of matrices and matrix arithmetic.

The reduction of such closures to eÆcient operations over matrices has
a wider application as well. For any programming language that aspires to
support eÆcient object inheritance or an inclusionally polymorphic type sys-
tem, two very common and important operations are type inference and the
computation of least upper bounds. These can occur both during compila-
tion to ensure the static typability of a program, or at run-time in the form of
uni�cation. Very broadly speaking, given a partially ordered set of elements,
three ways have been proposed to compute encodings of those elements in
order to conduct uni�cation eÆciently: table lookup, term encodings, and
bit-vector encodings. Term encodings attempt to reduce uni�cation in the
object domain into uni�cation in some other domain, such as uni�cation of

163

164 CHAPTER 7. SIGNATURE SPECIFICATIONS

Prolog terms [Mellish, 1988, 1992], or of sparse encodings of �rst-order terms
[Fall, 1996]. Bit-vector encodings typically attempt to reduce uni�cation to
one or more bit-wise operations, such as AND or OR.

Inheritance among feature structures/terms is derived both from their
structural properties, particularly the consistency of their shared substruc-
tures with type information, and from explicit declarations of subsumption
relationships that exist among types in the type system. In practice, both
of these are only indirectly de�ned. In the case of structural properties, this
is achieved through appropriateness conditions, which locally enforce struc-
tural well-formedness conditions between subterms of di�erent types. In
particular, they specify which types of subterms can bear certain attributes,
and what types the values of those attributes can be. The closure of those
local constraints over the type system constitutes overall structural well-
formedness.

In the case of types, the explicit declarations are made by way of declaring
only an immediate subsumption relation over the set of types, whose tran-
sitive closure constitutes the type subsumption relation. All three methods
of eÆcient uni�cation thus involve computing closures at compile-time over
both named and structural relations to �nd the implied algebraic structure
underlying typed feature structures/terms. This chapter provides a uniform
way of looking at these closures, particularly as they apply to programming
over the logic of typed feature structures. In particular, all of the compilation
required for signatures relative to structural and named well-formedness con-
straints in the logic of Carpenter [1992] can be reduced to matrix arithmetic.

The next section reviews the reduction of compiling uni�cation to the
transitive closure of Boolean matrices. Section 7.2 discusses the mathemat-
ical structure that must exist among the elements of these matrices for the
proposed method to work, argues that the closed Boolean semi-ring is the
proper one, and discusses some of the practical consequences of this choice.
Section 7.3 shows how to construct a closed semi-ring that supports matrix
multiplication from any �nite meet semi-lattice (De�nition 7.6). Section 7.4
then reduces all of the compilation steps necessary for eÆcient processing
relative to an attributed type signature to matrix operations based on this
construction.

In this chapter, only �nite signatures will be considered.

7.1. SUBSUMPTION MATRICES AND TRANSITIVE CLOSURE 165

da

cb

e

Figure 7.1: An example type hierarchy.

7.1 Subsumption Matrices and Transitive

Closure

The use of Boolean matrix multiplication to compute transitive closures of
graphs extends as far back as Prosser, 1959; and was improved on by War-
shall's famous transitive closure algorithm [Warshall, 1962].

The application of re
exive-transitive closure to lattice representation
theory extends back to the seminal paper by A��t-Ka�ci et al. [1989], who
proposed the baseline bit-vector encoding of partially ordered types by which
all others are now measured, namely one that uses n bits per code, where n
is the number of types in the partial order.

De�nition 7.1. Given a �nite partially ordered set, hP;vi, and a total or-
dering of P 's elements, p1; p2; : : : ; pjP j, the subsumption matrix, S, of P is
a jP j � jP j Boolean matrix, where Si;j = 1 i� pi v pj.

The crucial observation of A��t-Ka�ci et al. [1989] was that we can use the
ith row of S to encode the type pi, with uni�cation corresponding to bit-wise
AND. An example partial order of types is given in Figure 7.1. Here, ? is
the most general type, and more speci�c subtypes are situated above their
more general supertypes. Its subsumption matrix is given in Figure 7.2. The
AND of the rows for a and d yields the row for e, for example.

We can build a base subsumption matrix, H, in the same way, by using
the base, or immediate, subsumption relation rather than true subsumption.
In practice, this is what is speci�ed in type hierarchy declarations, with
re
exive and transitive closure being implicit. The question then becomes
how to obtain S from H. The base subsumption matrix for Figure 7.1 is
given in Figure 7.3.

Two re�nements are given in the same paper to produce more compact
encodings. One allocates bits only for maximal types and unary branch-

166 CHAPTER 7. SIGNATURE SPECIFICATIONS

? a b c d e
? 1 1 1 1 1 1
a 0 1 1 1 0 1
b 0 0 1 0 0 0
c 0 0 0 1 0 1
d 0 0 0 0 1 1
e 0 0 0 0 0 1

Figure 7.2: The subsumption matrix of Figure 7.1.

? a b c d e
? 0 1 0 0 1 0
a 0 0 1 1 0 0
b 0 0 0 0 0 0
c 0 0 0 0 0 1
d 0 0 0 0 0 1
e 0 0 0 0 0 0

Figure 7.3: The base subsumption matrix of Figure 7.1.

ing types. The other allocates separate group codes for subsets that are
\modular" in the way that base subsumption connects them to the rest of
the network, which reduces the overall size of codes, although it makes the
actual uni�cation operation more complicated than bit-wise AND. Ganguly
et al. [1994] provide another good encoding that places the burden of extra
bits on types that inherit from multiple supertypes, to achieve a compara-
ble improvement without the modularity restriction. These and others are
summarized by Fall [1996]. In every case, however, these re�nements are
simply allocating bits more sparingly along the way to deriving a re
exively-
transitively closed matrix like S from H.

For the naive encoding, one way to achieve that derivation is a re
exive-
transitive closure, by directly �lling in the diagonal of H with 1's (re
ex-
ive) and multiplying the result by itself until it reaches the �xed point, S
(transitive). This �xed point is obviously reached after no more than jP j
iterations. By re-using the results of previous multiplications, one can attain
it in dlog jP je iterations. The �rst re�nement presented by A��t-Ka�ci et al.
[1989] also uses matrix multiplication at one step to compute the re
exive-
transitive closure of the symmetric closure of H. A��t-Ka�ci et al. [1989] claim

7.2. RINGS, QUASI-RINGS AND SEMI-RINGS 167

that those matrix multiplication steps should be conducted in the Boolean
ring of jP j � jP j bit-matrices, and that they can be performed using an eÆ-
cient sub-cubic algorithm such as Strassen's algorithm [Strassen, 1969]. The
correctness of this claim is considered below.

7.2 Rings, Quasi-Rings and Semi-Rings

There are actually two closely related Boolean algebras with two opera-
tions each (roughly speaking, candidates for ring-hood). They are BXOR

= hf0; 1g; XOR;AND; 0; 1i, where � corresponds to XOR, and BOR =
hf0; 1g; OR;AND; 0; 1i, where � corresponds to OR. In order to see how
these di�er in practice, we need to de�ne some basic structures:

De�nition 7.2. A monoid is a structure hP; �; ei such that:

� P is a set closed under �,

� � is an associative binary operator on P , and

� e 2 P is an identity for �.

De�nition 7.3. A quasi-ring is a structure hP;�;
; �0; �1i, such that:

� hP;�; �0i is a monoid,

� hP;
; �1i is a monoid,

� �0 is an annihilator of
: a
 �0 = �0 for all a 2 P ,

� � is commutative, and

�
 distributes over �: a
 (b� c) = (a
 b)� (a
 c) and (b� c)
 a =
(b
 a)� (c
 a), for all a; b; c 2 P .

De�nition 7.4. A ring is a quasi-ring with an additive inverse, i.e., for all
a 2 P , there exists b 2 P such that a� b = b� a = �0.

If P is a quasi-ring, then multiplication of matrices is well-de�ned and has
certain nice properties, such as associativity and the existence of an identity
(in fact, it is also a quasi-ring).

168 CHAPTER 7. SIGNATURE SPECIFICATIONS

De�nition 7.5. Given a quasi-ring, Q =hP;�;
; �0; �1i, an m�n matrix, A,
over Q, and an n� p matrix, B, over Q, then A �B (matrix multiplication)
is the m� p matrix, C, over Q such that:

ci;j =
nM

k=1

ai;k
 bk;j:

BXOR and BOR are both Boolean quasi-rings.
BXOR is also a Boolean ring; but BOR is not. BOR is a closed Boolean

semi-ring, however, which, among other properties, means that OR is idem-
potent, i.e., that 1� 1 = 1. This is vital for ensuring that matrix multiplica-
tion can compute a transitive closure, since transitively closed subsumption
should not be \turned o�" by immediate subsumption chains on more than
one subtyping branch. As a result, we need idempotence in the underlying
Boolean quasi-ring. XOR is not idempotent; so the Boolean ring is not the
correct structure to use.

In addition, Strassen's algorithm can only compute matrix multiplication
over true rings | not over all quasi-rings or closed semi-rings | because it
requires the existence of an additive inverse; so Strassen's algorithm will not
work with BOR.

We could embed matrices over the Boolean quasi-ring, BOR, into a proper
ring, and �nd some way of restoring the result in the original structure.
Such an embedding can be found in the integers, for example, as shown in
Figure 7.4. This would allow us to use Strassen's algorithm. Presumably,

Z �! Z
� " #

n
0 7! 0;
x 7! 1 o:w:

BOR BOR

Figure 7.4: An embedding of BOR into Z for ring multiplication.

this is what systems that purport to use either the naive encoding or its �rst
re�nement in A��t-Ka�ci et al., 1989 have actually been doing.

Even then, Strassen's algorithm belongs to a class of sub-cubic matrix
multiplication algorithms that are only well-suited to multiplying very large,
very dense matrices. While subsumption matrices can be very large, they
are never very dense. Because they encode a partial order (or some approx-
imation of its transitive closure), for every non-diagonal 1, corresponding to

7.2. RINGS, QUASI-RINGS AND SEMI-RINGS 169

p v q, for p 6= q, there is a non-diagonal 0, corresponding to q 6v p. As a
result, no more than (jP j2 + jP j)=2 positions are non-zero. So even if we use
the above embedding to rescue Boolean ring-hood, Strassen's algorithm is
still the wrong algorithm for the job. Either Warshall's classical algorithm
should be used,1 or specialized sparse matrix multiplication algorithms could
be applied, most of which only require an underlying quasi-ring.

Warshall's algorithm and Floyd's extension of it to the all-pairs-shortest-
path problem are both instances of a general dynamic programming algo-
rithm on closed semi-rings [Aho et al., 1974]. A��t-Ka�ci et al. [1989] also
present a non-standard algorithm for transitive closure by way of introduc-
ing their �rst re�nement that (apparently unwittingly) uses BOR rather than
the Boolean ring. To the present author's knowledge, the fastest known
general multiplication algorithm for matrices over quasi-rings is still O(n3).

By contrast, nearly every algorithm in the class of sub-cubic algorithms to
which Strassen's algorithm belongs requires an underlying ring. The only ex-
ception of which the present author is aware is Shamir's randomized Boolean
matrix multiplication algorithm [Cormen et al., 1990], which can conduct
multiplications for matrices over BOR using matrices over BXOR with a prob-
ability of at least 1 � 1=nk for any constant k > 0 in O(nlg7lgn) time. The
price, of course, is the small chance of error. The fastest known \sure-�re"
multiplication algorithm for matrices over proper rings is O(n2:376) [Copper-
smith and Winograd, 1990].

On the other hand, the rows and columns of H and S can be sorted so
that they are upper-triangular sparse matrices. In particular, it can be shown
[Aho et al., 1974] that within any closed semi-ring, the transitive closure of
an upper-triangular matrix is:

�
A B
0 C

��

=

�
A� A�BC�

0 C�

�

for any square sub-matrix, A. Using the right-hand side to compute the
transitive closure cuts the number of required arithmetic operations as a
function of the dimension of A, although it has the same asymptotic com-
plexity. First-order calculus shows that this cut attains a maximum of 75%,
i.e., the computation takes 25% of the time required by the left-hand side,

1Warshall [1962] claims his algorithm increases \slightly faster" than quadratically; but
it is known to be tightly bounded at cubic. Although there is no discussion of the choice
of algebra, it also uses BOR.

170 CHAPTER 7. SIGNATURE SPECIFICATIONS

when the dimension of A is half of that of the overall matrix. A compatible
sparse matrix representation may further reduce that number.

A preliminary evaluation, shown in Table 7.1, suggests that these ob-
servations can improve compilation times on large signatures by a factor of
800 or more over naive transitive closure algorithms and by up to a fac-
tor of 5000 over closure by optimized matrix multiplication algorithms such
as Strassen's algorithm. The table shows results on two type hierarchies,
one with 162 types from the \naive HPSG" grammar distributed with the
ALE system, and one with 2763 from the LinGO project at Stanford Uni-
versity [LinGO, 1999]. All measurements are in seconds, and were made on

HPSG(162) LinGO(2763)
Strassen 41.45 sec. huge
Strassen-32 1.21 10370.50
Strassen-64 1.07 7856.65
Naive-Z 0.35 5099.38
Naive-BOR 0.15 4368.01

Warshall 0.12 1667.37

Naive-Z* 0.08 1126.75
Naive-BOR* 0.03 707.68

Sparse-Z <0.01 9.70
Sparse-BOR <0.01 8.31
Sparse-BOR* ??? ???

Table 7.1: Preliminary comparison of transitive closure algorithms on two
type hierarchies.

a dual-450-MHz Pentium II with 1 GB of RAM running Redhat Linux 2.2.
Strassen-32 (Strassen-64) is the version of Strassen's algorithm that switches
to the naive multiplication algorithm on matrices of dimension 32 (64) or
less, which is how Strassen's algorithm is used in practice. All variations of
Strassen's algorithm are from GEMMW, the level 3 BLAS library routine
that implements the Winograd variant of Strassen's algorithm in Fortran
[Douglas et al., 1994]. Warshall is a standard Prolog library routine for
Warshall's algorithm. All other programs were written in C by the present
author. The algorithms marked with asterisks use the upper-triangular de-
composition for closed semi-rings mentioned above, and as can be seen, the
only non-sparse algorithms that surpass the Prolog routine are those that use

7.3. AN EXTENSIBLE QUASI-RING CONSTRUCTION 171

the decomposition. The algorithm in the last entry has yet to be devised.
While its details are an open research problem, judging from the other im-
provements using the upper-triangular decomposition, it should be possible
to stay fairly close to the 75% reduction to achieve a performance of around
two seconds on the LinGO type hierarchy.

The �rst re�nement for computing \compact" bit-vector codes in A��t-
Ka�ci et al., 1989 is e�ectively a sparse, or at least sparser, matrix encoding
of S suitable for the component-wise multiplication (AND) of its rows. In
particular, The observation of A��t-Ka�ci et al. [1989] in their �rst re�nement
can be restated as: every column corresponding to a meet-reducible type,
t = u u v, where u 6= t and v 6= t, can be reconstructed by component-
wise multiplying the columns corresponding to u and v. Given rows i and
j, si;t
 sj;t is thus (si;u
 si;v)
 (sj;u
 sj;v). If the underlying quasi-ring is
commutative, as is the case for BOR, this equals (si;u
 sj;u)
 (si;v
 sj;v),
the product of the columns for u and v in the result. So an encoding that
must preserve only component-wise multiplication of rows of S can dispense
with the columns corresponding to meet-reducible types altogether. What
remain are the meet-irreducible types, which are exactly the maximal types
and unary-branching types in the partial orders that A��t-Ka�ci et al. [1989]
consider.

7.3 An Extensible Quasi-Ring Construction

Now that we know that we need a quasi-ring with idempotence, we can
consider which kinds of quasi-rings would be most convenient. The Boolean
quasi-ring, BOR, suÆces for processing with simple type hierarchies, but since
we are interested in totally well-typed feature structures, appropriateness
conditions should also be taken into account. Only the correlates of the
naive encoding of A��t-Ka�ci et al. [1989] will be explicitly considered here |
similar improvements for compactness and speed can be made on these as
well.

Our type hierarchies are (for now, �nite) meet semi-lattices. Requir-
ing type hierarchies to be �nite meet semi-lattices e�ectively eliminates a
potential source of disjunction inherent to uni�cation in general partial or-
ders. Bit-vector encodings capture disjunctions of types for free (as the OR
of the disjuncts), but in more restricted feature logics such as ours, those
disjunctions may make it diÆcult to articulate appropriateness conditions,

172 CHAPTER 7. SIGNATURE SPECIFICATIONS

and practically speaking, delay their enforcement, which exists to prune ill-
formed structures. The reason for this is that individual disjuncts may have
di�erent types and therefore di�erent appropriateness conditions | di�erent
appropriate features, for example. Instead of simply disjoining the types, the
appropriateness conditions common to all of the disjuncts should be factored
out, e�ectively creating a new meet in the type hierarchy, in a manner similar
to that discussed in Chapter 2, section 2.1.8.

We can think of 0 and 1 inBOR as constituting a very small type hierarchy,
as shown in Figure 7.5. If > corresponds to 1, and ?, to 0, then uni�cation

Figure 7.5: The Boolean type hierarchy.

in this hierarchy corresponds to Boolean OR. We can also write this as in
Figure 7.6, in which the trivial type hierarchy, consisting of just ?, has been

Figure 7.6: The trivial type hierarchy lifted to produce the Boolean hierarchy.

bottom-lifted to add a new bottom, ?. In fact, we can do this to any type
hierarchy. Because bottom-lifting preserves meet-semi-latticehood, we can
trivially extend t to any P [f?g where P is a �nite meet semi-lattice. Now,
we need something to correspond to AND:

a t b =

�
? if a = ? or b = ?
a t b otherwise

De�nition 7.6. Let hP;vi be a �nite type hierarchy. Then Q(P) = hP [
f?g;t;t;?;?i, is the quasi-ring induced by P .

Notice that we can de�ne this for all P , not just the trivial type hier-
archy, because in all type hierarchies in Carpenter, 1992, t, and therefore
its extension to P [f?g and to t, are total functions, and there is a least
element. As can easily be veri�ed:

7.3. TYPE AND APPROPRIATENESS RESTRICTIONS 173

da

cb

e

Figure 7.7: The quasi-ring constructed from Figure 7.1.

Proposition 7.1. For all �nite type hierarchies P with a greatest element,
Q(P) is a quasi-ring.

The existence of a greatest element ensures that t and t are closed in
P[f?g. Without loss of generality, we can assume that the greatest element,
>, does not explicitly appear in P , and that it does not occur anywhere else
in the signature, e.g., in appropriateness conditions. > can be smashed onto
any such P , and is typically implemented as type uni�cation failure in the
original signature. Figure 7.7 shows the type hierarchy in Figure 7.1 ?-lifted
and >-smashed to form its quasi-ring.

The bene�t of using Q(P) is that it allows us to generalize to other
computations on signatures that require matrices with types in them rather
than just 0s and 1s. The subsumption matrix of P can still be constructed
using ? and ? in place of 0 and 1, respectively. The next section presents a
way of looking at all of the other closure operations and sanity checks that
must hold of valid subsumption and appropriateness speci�cations in terms
of matrices and vectors over this quasi-ring construction.

7.4 Compiling Type and Appropriateness

Restrictions

7.4.1 Subtyping Cycles

The �rst two checks we need to make still use only ? and ?, i.e., the former
0 and 1. Uni�cation (t) over all of Q(P) is not necessarily well-de�ned until

174 CHAPTER 7. SIGNATURE SPECIFICATIONS

we can guarantee that P is a meet semi-lattice.
We �rst need a way of checking that a subsumption speci�cation we are

given is legitimate. We can assume that we are given a candidate type hier-
archy in the form of its base subsumption matrix, H. We then re
exively and
transitively close H as described above, to obtain its subsumption matrix,
S. The �rst check we need to make is that P is a partial order, by checking
for anti-symmetry.

Proposition 7.2. P is not a partial order i� there exist 1 � i; j � jP j, i 6= j
such that Si;j = Sj;i = ? (the 1 element).

An easier way to check this is to carry out the construction of S by
embedding H as a matrix �H in Z, as in Figure 7.4, and building its transitive
closure, �S. The embedding method described above can still be used because
H and S still contain only ? and ?.

Proposition 7.3. P is not a partial order i� for any 1 � i � jP j, �Si;i > 1.

Proof. A diagonal entry of greater than 1 indicates that that entry could
have been set to 1 without an explicit re
exive closure by transitively closing
over a pre-order with a symmetry.

Once we have S, it is easy to express which types are consistent:

De�nition 7.7. The join matrix of P is J = S � ST , where ST is the trans-
pose of S.

Proposition 7.4. ti and tj are consistent i� Ji;j = ?.

Note that J is always symmetric, i.e., Ji;j = Jj;i for all i,j.

7.4.2 Meet Semi-latticehood

We can check for meet-semi-latticehood by exploiting the alternative de�ni-
tion of meet semi-lattices in the �nite case and using the rows of S as codes
of types in P , in the manner of A��t-Ka�ci et al. [1989]:

Proposition 7.5. Let ~t be the component-wise application of t to two vec-
tors of elements from Q(P). A partial order P is a �nite meet semi-lattice i�
for all 1 � i; j � jP j, if Ji;j = ? then there exists a (unique) 1 � join(i; j) �
jP j such that Si~tSj = Sjoin(i;j).

7.4. TYPE AND APPROPRIATENESS RESTRICTIONS 175

If two types are consistent, then their codes intersect to produce the code
of another type. If P is not a �nite meet semi-lattice, then the uni�cation
of some codes will be the disjunction of two or more other codes, which will
not be found as a single row in S.

Along the way to verifying this, we can build the uni�cation table for P :

De�nition 7.8. The uni�cation table of P , U , is the join matrix of P , with
each ? replaced by >, and each ? replaced by tjoin(i;j).

Proposition 7.6. For all 1 � i; j � jP j, Ui;j = ti t tj.

That Sk in Proposition 7.5 corresponds to the uni�cation of Si and Sj
follows from the correctness of the method of A��t-Ka�ci et al. [1989], proven
in their paper.

7.4.3 Feature Introduction

The de�nition of appropriateness is repeated here for convenience:

De�nition 7.9. Given a type hierarchy, hT;vi, and a �nite set of features,
Feat, an appropriateness speci�cation is a partial function, Approp : Feat �
T �! T such that, for every f 2 Feat:

� (Feature Introduction) there is a type Intro(f) 2 T such that:

{ Approp(f; Intro(f))#, and

{ for every t 2 T , if Approp(f; t)#, then Intro(f) v t, and

� (Upward Closure / Right Monotonicity) if Approp(f; s)# and
s v t, then Approp(f; t)# and Approp(f; s) v Approp(f; t).

As mentioned above, we only expect signature speci�cations to specify ap-
propriateness only by declaring (1) where a feature is introduced, along with
its value restriction and (2) where a feature's value restriction cannot be
inferred to be the least type that satis�es Upward Closure and/or Right
Monotonicity given its value restriction on supertypes. Figure 7.8, for exam-
ple, is Figure 7.1 with appropriateness declarations added. f is appropriate
to a, for example, with value restriction, ?. Because f is appropriate to a,
it is also appropriate to b, c and e, although b re�nes the value restriction
to c. b has two appropriate features because it also introduces g. e has two
appropriate features by Upward Closure because h was introduced at d.

176 CHAPTER 7. SIGNATURE SPECIFICATIONS

d

c

e

a F: H: b

b

G:
F: c

Figure 7.8: An example type signature.

F G H
? ? ? ?
a ? ? ?
b c ? ?
c ? ? ?
d ? ? b
e ? ? ?

Figure 7.9: The value declaration matrix of Figure 7.8.

In order to enforce this view of appropriateness conditions on P , we can
build a matrix over Q(P) for these declarations:

De�nition 7.10. Given a �nite set of types, P , a set of features, F , and
a set of appropriateness declarations D � F � P � P , where D is a partial
function, the value declaration matrix for D over F and P is a jP j � jF j
matrix, V , over Q(P), in which Vi;j = u, if there exists a u 2 P such that
(fj; ti; u) 2 D, and Vi;j = ? if there is no such u.

The uniqueness of u, when it exists, is guaranteed by the fact that D
is a partial function. The value declaration matrix for Figure 7.8 is shown
in Figure 7.9. The entry for type d, feature h is b because h is declared as
appropriate to d with its value restricted to b.

Notice that ? is being used here as a place-holder for pairs of type, t and
feature, f, for which f is not appropriate to t. We use ? rather than > so
that feature introduction (with a value restriction of ? or greater) still re-
spects Right Monotonicity. This trick has applications outside type signature
compilation to any task that requires a uniform view of type-feature pairs
or accessible feature paths while still respecting appropriateness conditions
with respect to uni�cation, since all features are e�ectively appropriate to all
types, albeit sometimes with ? as the value.

7.4. TYPE AND APPROPRIATENESS RESTRICTIONS 177

F G H
? ? ? ?
a ? ? ?
b c ? ?
c ? ? ?
d ? ? b
e ? ? b

Figure 7.10: The value restriction matrix of Figure 7.8.

De�nition 7.11. The value restriction matrix of P is R = ST � V .

Pre-multiplying V by the transpose of S closes the appropriateness dec-
larations under subsumption. Vi;j is thus something other than ? i� feature
j is appropriate to type i. The value restriction matrix of Figure 7.8 is shown
in Figure 7.10. Notice that the entry for type e, feature h is also b because
e inherits h from d. Using the value restriction matrix, we can then express
the condition on unique feature introduction:

De�nition 7.12. Æ : P [f?g ! f?;?g is the characteristic function for
P , such that:

Æ(t) =

�
? if t 2 P ,
? if t = ?

Proposition 7.7. R satis�es the feature introduction restriction i� for all
i, there exists an intro(i), such that ~Æ(RT

i) = Sintro(i).

Æ projects the elements of Q(P) back onto the trivial quasi-ring, accord-
ing to whether they belong to P . Feature introduction is satis�ed i�, after
component-wise projection, every column of R is the same as some row of S.
Rows of S encode types as the upward closed sets that they subsume. The
columns of R have non-? values for the types to which a feature, f, is ap-
propriate; and we know that that set is upward-closed, having left-multiplied
by ST . If that set is one of the rows of S, then that row corresponds to a
minimal type, which is Intro(f).

Along the way, we can also �nd those introducing types:

De�nition 7.13. The introduction matrix, I, of P is a jP j � jF j matrix in
which:

Ij;i =

�
Vj;i if j = intro(i),
? elsewhere

178 CHAPTER 7. SIGNATURE SPECIFICATIONS

F G H
? ? ? ?
a ? ? ?
b ? ? ?
c ? ? ?
d ? ? b
e ? ? ?

Figure 7.11: The introduction matrix of Figure 7.8.

b

a

c

d

F: h

f gF:

F: f g

Figure 7.12: A type signature with consistent value restrictions.

The introduction matrix for Figure 7.8 is given in Figure 7.11. The entry
for type b, feature f is ? because, although b places a non-inferrable value
restriction on f, it does not introduce f.

7.4.4 Value Restriction Consistency

Because of Right Monotonicity, join-reducible types can not only multiply
inherit features, but also inherit value restrictions on the same feature from
two or more di�erent branches; and these must be consistent. Figure 7.12
shows an example of this. Right Monotonicity from b and c requires f to
be appropriate to d with a value of both f and g. In Figure 7.12, this is
consistent | the value of f at d must be of type h. Without h, it would
not be consistent. We can use value restriction matrices to express this
consistency check as well.

Proposition 7.8. The value restrictions of P are consistent i� there is no
i,j for which Ri;j = >.

> corresponds to inconsistency in the original signature.
The value declaration matrix for Figure 7.12 is given in Figure 7.13. The

value restriction matrix of Figure 7.12 is given in Figure 7.14. Without h,
the entry for d would have been >.

7.4. TYPE AND APPROPRIATENESS RESTRICTIONS 179

F
? ?
a ?
b f
c g
d ?
f ?
g ?
h ?

Figure 7.13: The value declaration matrix of Figure 7.12.

F
? ?
a ?
b f
c g
d h
f ?
g ?
h ?

Figure 7.14: The value restriction matrix of Figure 7.12.

180 CHAPTER 7. SIGNATURE SPECIFICATIONS

? a b c d f g h
? 0 0 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0
b 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0
d 0 0 0 0 0 0 0 1
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0

Figure 7.15: The convolution of Figure 7.14.

7.4.5 Appropriateness Cycles

As seen in Chapter 4, it is also often useful to require that all types have
a �nite most general satis�er, a �nite least informative feature structure of
that type that respects appropriateness conditions. This means that appro-
priateness conditions may not conspire so as to require a feature structure of
type t to have a proper substructure of type either t or a subtype of t.This
kind of appropriateness cycle can very naturally be articulated using R.

De�nition 7.14. The convolution matrix, C, of R is a jP j � jP j matrix
over Q(P) such that Ci;j = ? if there exists a k such that Ri;k = tj, and
Ci;j = ? otherwise.

Proposition 7.9. P has an appropriateness cycle i� there exists an i such
that C�

i;i = ?, where C� is the (non-re
exive) transitive closure of C.

Ci;j = ? means that type tj is accessible as a substructure by some
feature from structures of type ti. By transitively closing C, we extend
that accessibility to �nite paths of features, and so can detect whether ti
is accessible from ti. Because we convoluted C from R, which was upward
closed by left-multiplication with ST , we detect accessibility to subtypes of
ti as well. The convolution of Figure 7.14 is given in Figure 7.15 (0 and 1
are used for readability). The entry for row b, column f is ?, because f is
accessible from b along the feature f. In this case, the transitive closure of
C is the same as C itself, because all types that occur as value restrictions
of features are atomic, i.e., they have no features of their own.

In practice, this transitive closure can also be computed directly from R,
without explicitly constructing C.

7.5. SUMMARY 181

7.4.6 Join Preservation Condition

It can also be useful to check whether the join preservation condition is
observed. This guarantees that a signature is statically typable, and, as seen
in Chapter 6, can guarantee the existence of certain term encodings.

The (revised) de�nition of join preservation is repeated here.

De�nition 7.15. An appropriateness speci�cation is said to preserve joins
i�, for all features f 2 Feat, for all types s; t such that s t t#:

Approp(f; s t t) =

8>>>>>><
>>>>>>:

Approp(f; s) t Approp(f; t) if Approp(f; s)# and
Approp(f; t)#

Approp(f; s) if only Approp(f; s)#
Approp(f; t) if only Approp(f; t)#�

unde�ned; or
Approp(f; Intro(f))

otherwise

Proposition 7.10. hP;v; F; Ai satis�es the join preservation condition i�
for all i; j for which Ji;j = ?, and Ui;j = tk, Ri~tRj~t(ST I)k = Rk.

Viewed in terms of R, join preservation is a linear dependence condition
among consistent types | recall that in Q(P), t corresponds to the additive
operator. In a join-preserving signature, joins cannot add new information to
the system, apart from introducing new features with the value restrictions
of their introducer.

7.5 Summary

This chapter presented a new closed-semi-ring construction over which all
type and feature restrictions inherent to signature speci�cations can be com-
puted and enforced. Along the way, the mathematical foundations of closure
computations based on matrix multiplication have been clari�ed, as have the
consequences of those foundations on the choice of algorithms for eÆciently
computing those closures. The induced closed-semi-ring construction also
has applicability for handling computations in feature logics for which it is
not the case that all features necessarily occur on all types, as it provides
a uniform set of feature paths up to any �nitely bounded length, that can
be used for transparent classi�cation or for indexing feature structures with
appropriateness, for example.

182 CHAPTER 7. SIGNATURE SPECIFICATIONS

The new construction can also serve as the basis for eÆciently precom-
piling type signature information. What is needed now is the development
of eÆcient sparse matrix multiplication methods that are particularly well-
suited to speci�cations of partial orders or upward closed relations on partial
orders, particularly one that allows for the eÆcient upper-triangular decom-
position of matrices given in Section 7.2 for the case of computing subsump-
tion matrices.

Chapter 8

Practical Prolog Term

Encoding of Typed Feature

Structures

In Chapter 6, it was observed that total well-typing plus unique feature in-
troduction allows us to encode typed feature structures as Prolog terms. The
encoding given there was just a proof of existence, and certainly could not
be construed as a practical way of computing with typed feature structures
because of the potentially large term sizes, i.e., arities, involved. Both the
classical and generalized term encodings called for arities on the order of the
number of types plus the number of features.

Appropriateness also allows us to encode typed feature structures as Pro-
log terms more eÆciently. As described in Chapter 6, arity incrementation
and subtyping are the two major di�erences between typed feature structures
and Prolog terms. They are also the two major sources of complexity when
encoding typed feature structures as Prolog terms. This chapter presents
a collection of methods to address both sources by reducing the former to
a graph coloring problem, and by presenting for the latter what is, to the
author's knowledge, the �rst method for �nding an optimal
at �rst-order-
term encoding of any �nite meet semi-lattice of types, and an approximate
solution that can be derived in cubic time in the number of types from a
transitively closed adjacency representation of the semi-lattice. These are
presented in Sections 8.2 and 8.1, respectively. An empirical comparison of
these to previous work as well as other encodings that are available using
the extra functionality provided by the library(atts) library of SICStus

183

184 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

Prolog is also presented.
On a practical level, the value of Prolog term encoding stems from the

value of using Prolog itself. Most systems based on typed feature structures
rely on a few standard means of search in order to solve problems in natural
language processing | some subset of Prolog-like SLD resolution, parsing
and content-driven generation. All of these have been extensively investi-
gated within Prolog; and, in the case of SLD resolution, current commercial
implementations of Prolog have bene�ted from a sixteen year history of op-
timizations to Warren Abstract Machine (WAM) compilers [A��t-Ka�ci, 1991],
the standard for Prolog compilation. There have been a few very WAM-like
abstract machines proposed directly for typed feature structures, e.g., by
Wintner [1997], Wintner and Francez [1994] and Carpenter and Qu [1995],
implemented as described by Makino et al. [1998]. These inevitably rely on a
recapitulation of that history for their own optimization. With the arguable
exception of the term uni�cation operation itself, any additional innovations
made in the course of their development are probably better applied to (Pro-
log) WAM optimization, given the nearly identical requirements of the two
communities and research programs. Adhering to an implementation based
on Prolog term encodings also provides immediate access to the extended
functionality that commercial Prologs provide, including constraint solving
and constraint logic programming. These are in great demand in all areas
of knowledge representation, including computational linguistics. If it could
be achieved and achieved eÆciently enough, clearly a Prolog-term-encoding-
based implementation would be preferable, simply from the perspective of
rapid development and eÆcient reuse of previous research.

The empirical results presented in this chapter suggest that the widely
presumed futility of this endeavor is not at all beyond question. Relative
to the small number of realistic, large-scale grammars currently available
to the author, a Prolog-term-encoding-based implementation of a logic pro-
gramming language over typed feature structures has performed remarkably
well in comparison not only to the previous generation of non-term-encoding-
based Prolog meta-interpreters but even to the fastest of the current imple-
mentations based on customized abstract machines for feature structures. It
stands to reason, of course, that customized abstract machines must be ca-
pable of better performance in the limit, given a suÆciently large supply of
political, �nancial and human resources. With such application-oriented re-
search, however, the question really is not how much better it is, but whether
it was already good enough, and whether what remains to be achieved con-

8.1. SUBTYPING 185

stitutes a relevant research problem. The admittedly contentious tenet of
the discussion in Section 8.3 is that the theoretically interesting problem of
�nding eÆcient heuristics for near-optimal
at term encodings and better
non-
at term encodings overall is more worthwhile at this stage.

The approach to arity incrementation presented here, however, would be
equally useful to custom-abstract-machine-based approaches; and the present
approach to subtyping essentially brings Prolog-based implementations in
line with the bit-vector encodings for type uni�cation used in many abstract
machines stemming from the in
uential paper [A��t-Ka�ci et al., 1989] on that
subject.

8.1 Subtyping

To date, only two other systems have attempted to use Prolog encodings
of typed feature structures. The algorithm used in both produces tree-
encodings, as discussed in Section 6.1.1, and was actually designed [Mellish,
1988] as a general encoding algorithm for systemic networks. All systemic
networks are tree-encodable because the \multiple inheritance" that they
e�ectively provide is always a full product of two or more sub-networks.
ProFIT [Erbach, 1994, 1995, 1996] �rst adapted this encoding to a very re-
stricted subset of �nite type hierarchies expressed in a more traditional ISA-
link form. The ALEP system [Simpkins and Groenendijk, 1994] essentially
carried over the same encoding for its typed-feature-structure-like records
from ProFIT.

Mellish's [1988] encoding exploits the restricted inheritance provided by
systemic networks to tree-encode them, and therefore cannot handle all �-
nite BCPOs. ProFIT dealt with this limitation simply by restricting its
multiple inheritance to exclude all of the counter-examples. The result is
multi-dimensional inheritance, which was introduced in Section 4.1.1. Mel-
lish's encoding works for all type hierarchies de�ned by multi-dimensional
inheritance.

The development of
at-term encodings pursued here attempts to im-
prove on tree encodings in terms of both coverage and speed. With regard
to coverage, it has already been observed that
at-term encodings can han-
dle arbitrary �nite BCPOs (Section 6.1.2). With regard to speed, there is
also some reason to suspect that
at-term encodings might be superior to
tree-term encodings. Flat-term encodings, of course, are
at, i.e., their sub-

186 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

structures are all reachable from the root by a path of length at most 1.
Because �rst-order terms are of �xed arities, uni�cation of a variable with
a
at term can be compiled into a primitive recursive loop that compilers
can statically unwind. Uni�cation of nested compound terms, however, typ-
ically involves some amount of pointer chasing on the heap before the actual
addresses can be passed to the uni�er.

Thus, with all other things being equal, \broader beats deeper," i.e., two

at terms with n arguments can be uni�ed more quickly than two terms of
arity one, with subterms nested n levels deep. All other things are not equal,
of course. In particular, tree encodings allow for smaller encodings of more
general types, i.e., types that are closer to the root of the \tree." A tree
encoding of a �nite type hierarchy has terms whose depths are bounded by
the maximum length of any subtype chain in the hierarchy, although with
(limited) multiple or multi-dimensional inheritance, more than one path of
that depth may be created; and in the case of true multiple inheritance
(in the cases where the encoding works), some duplication of structure may
be necessary at the ends of the paths. Flat-term encodings do not require
redundant structure, but, in the best case, have arities equal to the length
of the maximum subtype chain in the hierarchy | multiple inheritance can
force it to be wider. As a result, in cases where both are applicable, it is a
strictly empirical question as to whether the speed-up from
atness outweighs
the fact that very general types in a tree encoding have smaller term sizes.

Colmerauer's method, introduced in Section 6.1.2, is a
at-term encoding.
In the context of its original usage, namely systemic networks, the number
of possible assignments of properties is, in the worst case, exponential in the
number of properties in the systemic network, as is thus the arity. As a
result, this method is not practical for encoding systemic networks | it can
yield terms with exponentially large arities.

Fall [1996, p. 94] observed that Colmerauer's method could be used for
uni�cation-preserving encodings of arbitrary �nite ordered sets, but mistak-
enly assumed that the method yielded exponential-sized terms for that task
as well. It is exponential for systemic networks because systemic networks
can, in some cases, provide exponentially compact encodings of possible as-
signments. For the case of an enumerated set of assignments, the method
yields linear-sized terms. Colmerauer, in fact, had originally used his method
for computing arbitrary set intersections. ProFIT used this encoding in the
same spirit for �nite domains, essentially distinguished
at �nite type hier-
archies with no appropriate features, but not for its type hierarchies. We

8.1. SUBTYPING 187

subst

adj

minusplus

bool

nom

case

acc

head

noun
CASE: case

PRD: bool
MOD: bool

Figure 8.1: A sample tree-encodable type signature.

lax¢ral lax¢ering central¢ering

centeringcentrallax

Figure 8.2: A type hierarchy with no tree encoding.

now consider a method that makes optimal use of Colmerauer's method with
meet semi-lattices, a sub-case of ordered sets.

8.1.1 Modules

The �rst observation we can make is that meet semi-lattices can be decom-
posed into modules, pieces whose types can never unify:

De�nition 8.1. Given a �nite type hierarchy, hP;vi, the set of modules of
hP;vi is the �nest partition of Pnf?g, M1; : : :Mm, such that:

1. each Mi is upward-closed (w.r.t subsumption), and

2. if ti and tj are uni�able, then they belong to the same module

Figure 8.1, for example, has three modules, one each rooted at case, bool, and
head. In general, a module might not have a unique least type. Figure 8.2 has
one module, for example. Modularizing in this fashion can be performed as
the �rst step to any encoding strategy, because the modules can be encoded
separately. The de�nition of module above can be generalized in order to
develop hybrid tree-based /
at-term-based encodings as well, although this
will not be considered further here.

188 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

8.1.2 Method 1: Colmerauer's method for meet semi-
lattices

Without loss of generality, we can now consider only �nite type hierarchies
that have one module with no least type. As in a tree encoding, ? can be
represented by a Prolog variable; and if there is a least type in a module, then
it can be represented by a term with a unique variable in every argument,
i.e., the most general term of that functor and arity.

Proposition 8.1. The meet irreducible types of a �nite type hierarchy are
precisely the maximally speci�c types and the types with one immediate sub-
type.

Proposition 8.2. Every �nite type hierarchy has a
at-term encoding with
an arity equal to the number of meet irreducible types plus 1.

Proof. Use Colmerauer's method on the set of meet irreducible types.1 Every
type in the meet semi-lattice can be represented by the set of meet irreducible
types that it subsumes. Maximally speci�c types only unify with themselves.
All other types can then be characterized by the maximally speci�c types that
they subsume except the types with one immediate subtype, which would be
characterized by the same maximally speci�c subtypes as that immediate
subtype. Those types are meet irreducible as well, however, and so are
distinguished by their own occurrence in the representation.

One of the algorithms in A��t-Ka�ci et al., 1989 achieves essentially the
same encoding, but for bit vectors. Finding the set of meet irreducible types
takes at most cubic time | the time it takes to test all u and v for meets
given a transitively closed adjacency representation of subsumption.

This method yields an optimal encoding in the sense that no encoding
that uses Colmerauer's method can result in terms with a smaller arity than
the number of meet irreducible types plus 1 [Fall, 1996]. Arity is the relevant
measure since extra argument constants in the encoding come comparatively
cheaply, and multiple occurrences of individual variables do not make uni-
�cation slower. In general, however, this method does not yield an optimal

at-term encoding overall. Figure 8.3 shows a binary tree module, which has
no join reducible types. No binary trees have types with only one immediate

1The reader may also recall the discussion at the end of Section 7.2 in this context. An
appeal is made there to the same reasoning, but in the context of bit-vector encodings.

8.1. SUBTYPING 189

b

a

d g

c

a(c,g)a(b,d)

a(b,_) a(c,_)

a(_,_)

a(b,e) a(c,f)e f

Figure 8.3: A binary tree and its optimal
at-term encoding.

subtype, so the number of meet irreducible elements is the number of max-
imally speci�c types, or half the total number of types. It can be proven,
however, that the
at-term encoding of smallest arity for a binary tree, in
fact for any module without join reducible types, is equal to the length of
its longest subtype chain, which for binary trees, is equal to the logarithm of
the total number of types. That encoding is shown in Figure 8.3.

What is the smallest arity required for arbitrary meet semi-lattices?

8.1.3 Method 2: Parametrized Search for an Optimal

Encoding

A
at-term encoding is constructed from a choice of functor for the term
(which is irrelevant, provided every module has one unique functor), a choice
of arity of the term, and a choice of constants to instantiate some of the
arguments of the term.

The set of �rst-order terms can be characterized as a meet semi-lattice
in its own right, called the lattice of Generalized Atomic Formulae (GAF ,
Reynolds, 1970). We only need the sublattice of
at terms, GAF1; and for a
given module, only those
at terms of the same principal functor (which can
remain implicit) and arity, a, with argument constants, 0 through some k,
GAF a

1;k. This is �nite. Subsumption in this sublattice should be familiar to
anyone who has used Prolog | in GAF 2

1;1, for example f(;) is the most gen-
eral term, f(; 1) vGAF f(0; 1) and f(1; 1), f(1;) vGAF f(1; 0) and f(1; 1),
and the term with the same variable in both positions, f(X;X), subsumes
terms with the same constant in those positions, i.e., f(0; 0) and f(1; 1).2

The fact that every �nite meet semi-lattice has a Colmerauer-style encod-
ing means that our choice of arity in a
at-term encoding never needs to be
greater than the number of meet irreducible types of a module plus 1. There
are other constraints on arity that can be proven as well:

2We will not consider terms f(X;Y) with X 6= Y , although Prologs with inequations
would allow us to use these in encodings as well.

190 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

De�nition 8.2. Given �nite type hierarchy, hP;vi and type t 2 P , the
information level of t, ÆP (t), is the length of the longest subtype chain from
? to t.

This is exactly the same function de�ned as path length earlier (De�ni-
tion 2.8), where it was used to guide inductive proofs on well-founded type
hierarchies. Here, more attention will be paid to its actual value relative to
other types in the same hierarchy.

We can implicitly order our types into a sequence ti, such that if i < j
then ÆP (ti) � ÆP (tj), with ? as t1. This is equivalent to topologically sorting
the type hierarchy as a directed acyclic graph. We can also extend Æ to

at-term encodings, thinking of them as meet semi-lattices, GAF a

1;k.

Proposition 8.3. Let �P be a
at-term encoding of P and �t be the term
corresponding to t 2 P in �P . Then:

1. For any t, Æ �P (�t) � ÆP (t).

2. If �t1t�t2 = �t3, then Æ �P (�t3) = Æ �P (�t1)+Æ �P (�t2)�Æ �P (�t1u�t2) � Æ �P (�t1)+Æ �P (�t2).

3. For any t, its supertype branching factor �(t) � 2Æ �P (�t) � 1.

The arity of the terms in a module's encoding must be constant, so (1)
implies that that the arity of the term encoding must be at least as large
as the length of the longest subtype chain in P , since the type at the end
of that chain must be encoded by a term of at least that arity. This lower
bound can always be attained if there are no join reducible types simply by
using a tree encoding. (2) says that the Æ-value of the result of uni�cation
in a uni�cation-preserving encoding cannot exceed the sum of its operands'
Æ-values | since we are not requiring our encodings to be meet-preserving,
we might not know the value of Æ �P (�t1 u �t2). This means that a join reducible
type can, in general, force an encoding to have greater arity to allow for
higher Æ-values of its two supertypes so that there will be enough \room" for
their join. (3) essentially documents the same e�ect as a result of the bound
on the number of terms that can possibly subsume a Prolog term of a given
arity. Not every Prolog term can attain that bound, however | only those
that have the same constant in every position, e.g., f(1; 1; : : : ; 1).

The practical consequence of (1) is that in Figure 8.4, as the parameter
d increases, the size of the encoding must increase linearly. The practical
consequence of (3) is that in Figure 8.5, as the parameter x increases, the

8.1. SUBTYPING 191

td

...

t2

t1

?

Figure 8.4: A type hierarchy whose
at term encoding grows linearly with d.

t0

t1 t2 : : : tx

?

Figure 8.5: A type hierarchy whose
at term encoding grows logarithmically
with x.

size of the encoding must increase logarithmically.
The choice of constants for instantiation of arguments is also bounded as

a function of arity:

Proposition 8.4. In a �nite type hierarchy, P , if there is a
at-term en-
coding of arity a, there is a
at-term encoding of arity a that uses no more
than a �max(P) constants, where max (P) is the number of maximally speci�c
types in P .

Proof. Because
at-term encodings preserve uni�cation, they also preserve
subsumption, so a constant used in any term is re
ected in the same argument
position of the encoding of some maximally speci�c type. There are a �
max(P) such positions. Of course, a Colmerauer-style encoding only uses
two constants, 0 and 1.

The net result of these constraints is that there is a �nite space of pa-
rameters | arity and number of constants | through which we can search
for an optimal encoding, provided that we have a uniform representation of
encodings through which to search. That representation can be achieved by
looking at the subsumption matrices of the algebras we are trying to en-
code, as seen in Chapter 7, and relating it to the Prolog terms eligible to

192 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

lax& lax& cl&
? lax cl cng cl cng cng

? 1 1 1 1 1 1 1
lax 0 1 0 0 1 1 0
cl 0 0 1 0 1 0 1

cng 0 0 0 1 0 1 1
lax&cl 0 0 0 0 1 0 0

lax&cng 0 0 0 0 0 1 0
cl&cng 0 0 0 0 0 0 1

Figure 8.6: The subsumption matrix for Figure 8.2.

participate in our encodings. A subsumption matrix uniquely characterizes
a �nite meet semi-lattice's behavior with respect to uni�cation, since joins
are completely determined by subsumption. In fact, as observed by A��t-Ka�ci
et al. [1989], each ith row can be used as an encoding of the type ti, with
uni�cation corresponding to component-wise AND. The subsumption matrix
of Figure 8.2 is shown in Figure 8.6.

For a �xed a and k, GAF a
1;k has a �xed subsumption matrix. With this

view of �nite meet semi-lattices, �nding a
at-term encoding of one with
a subsumption matrix S amounts to �nding the right rows and columns
of a GAF lattice that will behave like S. In the following, it is assumed
that both are top-smashed, to give a logical point of reference to failure,
as in Chapter 7, and that the rows and columns of subsumption matrices
are topologically sorted (as is standard, so that the matrices will appear in
upper-triangular form):

Proposition 8.5. Every
at-term encoding of a �nite type hierarchy with
subsumption matrix, S, uniquely corresponds to a selection matrix, X, such
that:

1. X � GAF a
1;k �X

T = S, for some arity, a, some maximum constant, k,
and

2. XjSj;jGAFa
1;kj

= 1.

An optimal
at-term encoding is one with the least arity a for which such an
X exists.

8.1. SUBTYPING 193

The fact that we are using selection matrices | matrices with exactly one
1 in any row and no more than one 1 in any column, means that we satisfy the
injectivity condition of Mellish [1991] (see Section 6.1.1, this dissertation).
The �rst condition given here means that it satis�es Mellish's homomorphism
condition | the terms corresponding to the rows and columns in GAF a

1;k

preserve uni�cation because they have the same subsumption matrix. The
second condition is necessary to ensure Mellish's zero-preservation condition
| since > is last in the topological ordering, it means that >, or failure, in
one domain corresponds to failure in the other. We want Prolog uni�cation
to fail when uni�cation in P fails.

We can thus reduce the search for an encoding to a search for a selec-
tion matrix over a �nite space of parameters: arity, ranging from 0 to the
number of meet irreducible types, and number of constants, ranging from 0
to a � max(P). S is no ordinary matrix, furthermore. If we break it into
submatrices Ai;j for rows of types with ÆP = i and columns of types with
ÆP = j, then for all i; j, Ai;i is an identity matrix, and Ai;j is a zero matrix
when i < j. Due to the constraints mentioned above, we can consider the
problem, to a great extent, independently by information level when solving
for X.

The complexity of the general problem is still open, but it is quite likely
to be NP-complete. Fall [1996, pp. 78{79] proved that �nding an optimal
join-incompatible partition3 of an ordered set of elements is NP-complete. He
observes that this can be used to construct a logical term encoding, in which
there are no shared variables and every term has a constant in exactly one
position. Such an encoding is not guaranteed to be zero-preserving, however,
and because it is the kind of term encoding that is being restricted (rather
than, for example, the kind of ordered set), it cannot straightforwardly be
extended to a complexity result for the general problem, even in the absence
of zero-preservation. The encoding problem without shared variables also
bears a resemblance to the problem of �nding a minimal intersection graph
basis (Garey and Johnson, 1979, p. 204; Kou et al., 1978), in which bit vectors
of a certain arity are allocated to the nodes of a graph rather than vectors
(terms) of constants and variables.

3In the terminology of Fall [1996], it is the optimal meet-incompatible partition prob-
lem.

194 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

8.2 Features

Once we add features, we need to accommodate their values in the encoding,
including possibly circular structures, which reduce straightforwardly to cir-
cular Prolog terms. As mentioned in Chapter 6, Prolog term uni�cation, by
de�nition, cannot handle non-statically typable signatures, so it only makes
sense to focus on signatures that satisfy the join preservation condition. It
is, however, possible to implement the non-statically typable ones using the
functionality of an enhanced Prolog such as SICStus Prolog's attributed vari-
ables library [Holzbaur, 1990, 1992], library(atts), which allows for hooks
to uni�cation. Attributed variables, in fact, look a great deal like untyped
feature structures with no appropriateness. A few encodings based on that
correspondence in the statically typable case are evaluated below.

Tree-based encodings can add extra arguments at subterms where features
are introduced. An example typed feature structure of type noun, from Fig-
ure 8.1, might be encoded as head(subst(noun(case(nom)),plus,plus)),
where the two plus values are for the prd and mod features introduced by
head, and case(nom), the encoding of the type nom, is for the value of case,
which is introduced by noun. The logic of Carpenter [1992] allows subtypes
to re�ne the value restrictions on features introduced by their supertypes,
and for feature introduction at joins. ProFIT's declaration language, multi-
dimensional inheritance, allows for neither of these; but a tree encoding is
compatible with them, in principle.

An alternative is to encode all of the feature values of a module as ex-
tra arguments at the top level of the subtype encoding. This again appeals
to the wisdom, \broader beats deeper," particularly since feature values are
themselves encoded typed feature structures. It has the additional advantage
that binding a variable to a feature value, another very common operation,
can in many cases be compiled out to a very eÆcient arg/3 call in Prolog
run-time code, where the tree-based encoding would require a more expen-
sive term traversal. It also has the same empirical caveat as with subtype
encoding: that empirical domains that make reference to a large number of
typed feature structures with types more general than types that introduce
features may still perform better with the tree encoding, because they avoid
the extra unused feature positions. Tree encodings of feature structures of
types subst or head in Figure 8.1 do not need to carry an argument position
for the value of case, for example.

How many extra argument positions do we need for features in a module's

8.3. EVALUATION 195

encoding? The naive answer is the number of features introduced in that
module. It is possible to do better:

De�nition 8.3. The feature graph, G(M) of module M , is an undirected
graph whose vertices correspond to the features introduced inM , and in which
there is an edge, (F;G), i� F and G are appropriate to a common type in
M .

Proposition 8.6. The least number of argument positions required for the
features ofM in a
at encoding is the least N for which G(M) is N-colorable.

The positions correspond to the colors. This is related to using graph coloring
for register allocation in compiler design. In Figure 8.1, the features prd,
mod, and case form a graph that is at best 3-colorable, because they are
all appropriate to the common type, noun.

8.3 Evaluation

The alternatives presented here have been evaluated on the task of tabulation-
based parsing with two English grammars over corpora that were automat-
ically generated with skeletal context-free grammars over the same lexicon.
Measurements were made on a dual-400-MHz SPARC Ultra 450 with 512
MB of RAM running the Solaris 2.6 operating system.

Except where noted, all of the encodings were implemented as modi�-
cations of the Attribute Logic Engine (ALE, Carpenter and Penn, 1996).
ALE is a logic programming language based on the logic of typed feature
structures. With the exception of using typed feature structure arguments
instead of �rst-order terms, its relational language is nearly identical to
Prolog. It also has a built-in bottom-up chart parser, driven by extended
feature-structure-based phrase-structure rules, which was used in the bench-
marks as well. Both the ALE compiler and run-time system themselves are
written in Prolog. The ALE compiler generates Prolog code which is then
compiled further by a Prolog compiler. The ALE compiler, including the
encoding algorithms, can thus be viewed as a preprocessing step much like
the one found in the standard Prolog term-expansion mechanism. The ver-
sion of Prolog used in these experiments was the SICStus Prolog 3.8.3 native
code compiler. ALE's relations are extra-logical (with negation treated as
negation-by-failure as in Prolog) so a generalized term encoding must be

196 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

used. The most thorough, although rather biased survey of other program-
ming languages and parsing systems based on typed feature structures can
be found in Bolc et al., 1996.

The �rst comparison, on which Figure 8.7 is based, is a Head-driven
Phrase Structure grammar (HPSG) distributed with the ALE system, some-
times called \naive HPSG." It is a very straightforward, unoptimized encod-
ing of the �rst �ve chapters of Pollard and Sag, 1994, and a common bench-
mark for logic programming with typed feature structures. It uses almost
every piece of functionality that ALE o�ers, and massively overgenerates
semantic representations because of Pollard's and Sag's [1994] treatment of
quanti�er scope, making it very easy to �nd computationally intensive parses
in a test corpus.

The naive HPSG grammar has 162 types and 37 features, which decom-
pose into a large number of small modules, each having at worst 5-colorable
feature graphs. All modules but two are free of join reducible types, which
means that they are optimally tree-encodable; but the two, lists and sets,
are heavily used within the grammar. The corpus on which it was tested
consists of 64,331 sentences, of which 63,914 are grammatical, i.e., parsing
succeeds. The size of the substring tables for each sentence (a rough mea-
sure of complexity) ranges from 18 to 9,619 edges. Sentence lengths range
from 2 to 25 words, and the sentences are presented in in ascending order
by parse time using the last (and thus fastest) encoding alternative shown.
For ease of presentation, all of the results have been smoothed by a moving
average with a window of 100 sentences. The top alternative depicted is the
performance of a naive encoding of typed feature structures based on the
SICStus Prolog attributed variables library, where the type is represented as
the value of an extra feature de�ned on every structure. The second uses
the same library but with one attribute for every \color" of feature as de-
scribed above, rather than for every feature. This takes advantage of the
high modularity of the grammar. The third uses undocumented SICStus in-
ternal predicates to manipulate those attributes directly in order to exploit
the existence of appropriateness conditions. The fourth is not a proper Pro-
log encoding | it uses a Prolog data structure that must be dereferenced
before uni�cation. This data structure is the one found in ALE 3.2, the most
recent public release of the ALE system. Both the third and the fourth use
the exact feature arity of every type for its representation, so no coloring is
needed. For non-statically typable modules, these two are the best alterna-
tives available. The advantage of the third is that it can be used together

8.3. EVALUATION 197

with Prolog-term-encoded static modules because of the availability of the
verify attributes/3 uni�cation hook for attributed variables.

The last three are proper Prolog term encodings as elaborated upon here.
The �fth was obtained from ProFIT 1.54 with its tree encoding method |
the list and set modules are tree encodable. ProFIT comes with a port of
the naive HPSG grammar that strips out polymorphic lists so that Prolog
lists can be used at the abstract-machine level. As a result, it operates at a
signi�cant advantage. The last two alternatives use an optimal tree encoding
on modules with no join reducible types. These are so easy to detect and
the encoding is so quickly derived that no other choice makes sense. The
sixth was obtained using the approximate method presented in Section 8.1.2
on the two other modules, but without feature graph coloring. The seventh
uses the optimal method presented in Section 8.1.3 with feature coloring. The
sixth and seventh bound the performance of the four possible permutations
of encoding method with feature coloring; and, as can be seen, it makes
very little di�erence. For this grammar, a simple, completely polynomial
approximation with Colmerauer's method is worthwhile, and both are even
slightly faster than pure tree encoding with no polymorphic lists.

Memory consumption ranged from 86 MB, by the optimal term encoding
method plus feature coloring, to 161 MB, by the alternative that makes direct
use of SICStus attributes. SICStus Prolog occupies 4.9 MB itself, between
6.9 MB and 8.5 MB once the respective versions of the feature structure
compilation and run-time parsing code have been compiled, between 8.5 MB
and 10 MB after the HPSG grammar has been compiled, and approximately
24 MB after the corpus has been loaded.

The second grammar (Figure 8.8) is a categorial grammar from Bell Lab-
oratories encoded in typed feature logic, designed to have similar coverage to
the naive HPSG grammar, while avoiding recursive types, having taken the
lessons of Chapter 4 to heart. Its signature is also an example of one that is
not tree-encodable, which means that ProFIT could not be tested on it. It has
a total of 209 types and 27 features. It has only �ve modules, however, with
the largest containing 119 of the types, including 88 meet irreducible types,
but having an optimal encoding of arity 6 | in fact, there is only one join re-
ducible type in it. Another module has 17 of the features, with a 6-colorable
feature graph. This grammar's corpus consists of 100,002 sentences, of which
79,786 are grammatical, with sentence lengths ranging from 2 to 18 words,
and substring table sizes ranging from 14 to 6,342 edges. The sentences are
again presented in ascending order by parse time with optimal encoding plus

198 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

100

1000

10000

0 10000 20000 30000 40000 50000 60000

T
im

e

(m
se

c)

Sentence Number

(a)

(b)

(c)

(d)

(e)

(f)
(g)

(a) library(atts)
(b) lib(atts) + feat. coloring
(c) atts direct
(d) dereferencing
(e) tree encoding
(f) colmerauer
(g) optimal + feat. coloring

Figure 8.7: Evaluation on the ALE HPSG grammar.

feature coloring. A moving average was again used for smoothing, but with
a window of 1000 sentences. In this grammar, optimal type encoding is of
much greater signi�cance | even the direct use of SICStus attributes and
the dereferencing method of ALE 3.2 are better than Colmerauer's method
here. Colmerauer's method failed to allocate enough memory after 78,546
sentences, in fact, because the term encodings were too large. Colmerauer's
method plus feature coloring failed after 79,552 sentences, and optimal term
encoding (without feature coloring) failed after 79,370 sentences.

Memory consumption ranged from 142 MB by the direct use of SICStus
attributes to over 256 MB (the maximum amount that SICStus Prolog's tag-
pointer indexing scheme can allocate) on those alternatives that failed to
complete the test suite. The largest memory consumption by an alternative
to complete the test suite was 160 MB, by optimal encoding plus feature
coloring. SICStus Prolog plus the feature structure compilation, run-time
parsing code and the compiled Bell Labs grammar occupies between 9.3 MB

8.3. EVALUATION 199

100

1000

10000

10000 20000 30000 40000 50000 60000 70000

T
im

e

 (

m
se

c)

Sentence Number

(a)

(b)

(f)

(h)
(c)
(d)

(i) (g)

(a) library(atts)
(b) lib(atts) + feat. coloring
(f) colmerauer
(h) colmerauer + feat. coloring
(c) atts direct
(d) dereferencing
(i) optimal
(g) optimal + feat. coloring

Figure 8.8: Evaluation on the Bell Labs Categorial Grammar.

and 19 MB, and after the corpus has been loaded, between 27 MB and 38
MB.

Among large scale sentences that can be parsed both by the Bell Labs
grammar and naive HPSG, the Bell Labs grammar is approximately 323
times faster than naive HPSG on large-scale (8000 or more edges) parses.
Combined with optimal term encoding, the improved static analysis nec-
essary for term encoding (which is included in all of the alternatives mea-
sured above), and better indexing for parsing, its performance is slightly over
113,000 times faster than naive HPSG running on ALE 3.0, the version of
ALE that served as the starting point for this study.

The question also arises how any Prolog term encoding might compare
with a logic programming language whose abstract machine was designed
speci�cally for typed feature structures. The �rst abstract machine archi-
tecture proposed for an attribute-value logic was described in A��t-Ka�ci and
Di Cosmo, 1993, although the variant of attribute-value logic assumed there

200 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

allowed for in�nite-branching terms.
Several such architectures have also been proposed for fragments of ALE,

beginning with that of Wintner and Francez [1994], which did not support
disjunctive descriptions nor non-statically typable signatures, and whose im-
plementation, AMALIA [Wintner, 1997], did not include Prolog-style SLD
resolution over relational predicates | only bottom-up parsing. Carpen-
ter and Qu [1995] proposed one that does handle disjunctive descriptions
and non-statically typable signatures. Its implementation, LiLFeS [Makino
et al., 1998] includes true SLD resolution, having combined it with a feature-
structure-based re-implementation of Aquarius Prolog based on the Berkeley
Abstract Machine [Van Roy, 1990]. There is, in fact, a small cottage industry
of abstract machines for feature-structure-based natural language processing
now, largely due to the in
uence of these two original ones, abetted by care-
less, inaccurate benchmarking that exaggerated their improvement relative to
Prolog-based systems such as ALE and ProFIT. That includes, for example,
ignoring that di�erent parsing algorithms and/or chart-indexing strategies
were used, using very small test corpora (often fewer than 10 sentences) and
using test sentences of such very small complexities that the initialization
routines are more computationally signi�cant than the parsing routine itself.

Because the naive HPSG grammar makes heavy use of SLD resolution, it
cannot be tested on AMALIA. The naive HPSG grammar has been ported to
LiLFeS, however, and a comparison between LiLFeS 0.88 compact code and
the hybrid Colmerauer/optimal encoding from above in ALE on naive HPSG
is presented in Figure 8.9. There is also a LiLFeS native code compiler for
Pentium processors, which could not be tested at the time that these tests
were made. Obtaining a large number of execution times in LiLFeS is not
quite as simple, so a smaller corpus was used, consisting of eleven classes
of approximately twenty parses each, distributed evenly across the range of
parsing complexities found in the larger corpus above.

For the purposes of the comparison, ALE's parser was rewritten, so that it
is exactly like the one distributed with LiLFeS for its port of naive HPSG. The
LiLFeS port is actually a port of the ProFIT port of the naive HPSG gram-
mar, so it too operates at an advantage because of the absence of polymorphic
lists. At the closest separation, ALE running on SICStus compact code is 2.5
times faster, with LiLFeS's performance slowly degrading to slightly over 10
times slower. The eleventh test class resulted in a memory allocation failure
on LiLFeS because the computer would not allocate over 700 MB of mem-
ory at run-time to the process. In fact, when ProFIT uses the same parsing

8.3. EVALUATION 201

.1

1

10

2 4 6 8 10

T
im

e

 (

se
c)

Sentence Number

malloc
failureALE HPSG parse times

LiLFeS
ALE/SICStus compact

ALE/SICStus native

Figure 8.9: Comparison of LiLFeS and the ALE Colmerauer/optimal encod-
ing on naive HPSG.

algorithm, even ProFIT is slightly faster than LiLFeS.

This test, of course, involves a number of di�erent components: parsing,
SLD resolution, tabulation of asserted predicates (the parsing algorithm was
again a bottom-up chart parser) as well as uni�cation. For a more controlled
test of SLD resolution, LiLFeS was compared to ALE running on SICStus
Prolog on the naive reverse benchmark, in which a non-polymorphic list
(encoded as typed feature structures) of 30 elements is reversed without an
accumulator 10,000 times. This is a standard benchmark of speed on Prolog-
like systems. Table 8.1 shows the results. ALE running on compact code
operates slightly faster, with almost a factor of 10 smaller memory usage. If
lists are declared to be extensional, which allows ALE to use Prolog lists to
encode ALE list-typed feature structures in a manner similar to the internal
encoding used in LiLFeS, then ALE compact code is over 10 times faster.

LiLFeS's slower performance is mostly due to the fact that SICStus's

202 CHAPTER 8. PRACTICAL PROLOG TERM ENCODING

System Time LIPS4 Image Size

LiLFeS compact 34.21s 144,969 55M
ALE/SICStus compact 26.64s 186,186 6.4M
ALE/SICStus native 10.38s 477,842 6.4M

ALE/SICStus compact / list cells 2.61s 1,900,383 6.4M
ALE/SICStus native / list cells 0.42s 11,809,524 6.4M

Table 8.1: Comparison of LiLFeS and ALE on the nrev30x10K benchmark.

memory management and predicate compilation are simply much better.
On the other hand, this is one of the main reasons for using a Prolog-based
implementation to begin with: avoiding redundant problem-solving and uti-
lizing the last sixteen years' worth of research on optimizing the Warren
Abstract Machine. ALE's only challenge was to �nd an encoding of typed
feature structures that allowed for maximal transparency and minimal term
size. That challenge was met through a proper understanding of the algebraic
structure induced by attributed type signatures.

8.4 Summary

Two methods have been presented to encode statically typable type signa-
tures as
at Prolog terms, which provide an improvement in speed over other
general representation methods, including abstract-machine-based ones, and
a competitive performance with tree encoding, in addition to its more general
applicability. A few of the results, such as the graph-coloring reduction and
the selection matrix reduction, are independently of theoretical interest.

What remains now is to �nd heuristic methods that, for linguistically
prevalent type signatures, can constrain the compile-time parametric search
for optimal
at-term type encodings, and hybrids of the encoding strategies
considered here that can provide the best performance to the empirically
realistic processing needs of the knowledge representation and computational
linguistics communities.

4logical inferences per second.

Chapter 9

Conclusion

This dissertation presents formal de�nitions of signature subsumption and
equivalence that have several applications to understanding, extending, and
computing with the logic of typed feature structures. In the process, a bet-
ter abstraction of join-preserving encodings was formulated that encompasses
the classical de�nition as a special case. The di�erence between the two ab-
stractions was critical in �nding a Prolog term encoding of statically typable
attributed type signatures that is robust enough to be used with an extra-
logical relational extension (which is arguably required to be useful at all).

The view of logic programming with typed feature structures that one
can assemble from the results presented here is that it is a task that can be
decomposed into essentially three areas that have already been well-studied:
logic programming with Prolog terms, (sparse) matrix multiplication, and
various graph-theoretic algorithms, such as the graph coloring reduction of
minimum feature position allocation. That reduction has been shown to yield
a signi�cant improvement in both coverage and speed on the two grammars
it was tested with when compared to other Prolog and customized-abstract-
machine-based approaches.

The areas of immediate interest for future research in light of the results
presented here seem to be mostly practical. One is the further development
of the view of encoding as a matrix multiplication problem. The optimal

at-term encoding problem still requires the discovery of a better class of
polynomial-time heuristic methods. Matrices also lie at the heart of the view
of signature speci�cations presented in Chapter 7, which also requires further
development, particularly of sparse algorithms that can exploit the proper
algebraic structure of closed semi-rings.

203

204 CHAPTER 9. CONCLUSION

By far the most compelling open problem suggested by the work pre-
sented here is the use of statistical methods to optimize term encodings.
A practical encoding algorithm would weigh the importance of assigning a
more terse or
atter term to individual types by the likelihood that those
types will be encountered by a uni�cation algorithm in the course of its
use on typical input. An optimal encoding, given these weights, may actu-
ally assign larger term encodings to some types than the method presented
here, but with an overall gain in eÆciency because those types are only
rarely encountered. Preliminary empirical attempts date back to the work
of Sch�oter [1992], who proposed to reorder the arguments of a Prolog term
encoding based on the likelihood that uni�cation of those arguments would
fail. Speci�cally, the arguments should be re-ordered from left-to-right in de-
creasing order of the probability of failure, because this is the order in which
Prolog conventionally uni�es its arguments. Those probabilities, however,
were estimated by a structural analysis of the signature, in which types with
more join-incompatible subtypes were assumed to be more likely to cause a
uni�cation failure than types with fewer. Empirically, the probabilities can
deviate signi�cantly from that estimate | to the extent of preferring the ex-
act opposite ordering. A properly empirical estimation of these probabilities
was attempted in the context of a more general consideration of optimizing
don't-care-non-determinism by Penn [1999b]. Of course, the structure of at-
tributed type signatures is now well-enough understood that it makes sense
to begin to apply statistical methods to the general encoding problem more
globally than by simply reordering arguments, as well as to other problems
such as indexing which can play a very important role in the eÆciency of
large-scale logic programming or parsing systems.

On the more theoretical side, the expressive power of parametric type
signatures have still not been adequately characterized with respect to non-
parametric signatures in terms of true signature equivalence, although the
more practical weak equivalence in the form of symmetric subsumption has
been addressed here. A more �ne-grained analysis of the equivalences that
must certainly exist between bounded unfoldings of recursive features (whose
unfolding was simply written o� here as being in�nite and therefore impossi-
ble) is de�nitely in order. In all likelihood, there is a more elegant category-
theoretic treatment of signature equivalence and subsumption that would
perhaps shed more light on parametric types as well as the other equivalences
treated here in a more classical fashion. One can cite Moshier, 1997a,b as an
initial step in this direction.

Bibliography

N. Ach. Determining tendencies; awareness. In D. Rapaport, editor, Organi-
zation and Pathology of Thought, pages 15{38. Columbia University Press,
1951. English translation of chapter 4 of Ach [1905].

N.K. Ach. �Uber die Willenst�atigkeit und das Denken. Vandenhoeck &
Ruprecht, G�ottingen, 1905.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

H. A��t-Ka�ci. A Lattice-theoretic Approach to Computation based on a Calcu-
lus of Partially Ordered Type Structures. PhD thesis, University of Penn-
sylvania, 1984.

H. A��t-Ka�ci. Warren's Abstract Machine: A Tutorial Reconstruction. MIT
Press, 1991.

H. A��t-Ka�ci, R. Boyer, P. Lincoln, and R. Nasr. EÆcient implementation
of lattice operations. ACM Transactions on Programming Languages and
Systems, 11(1):115{146, 1989.

H. A��t-Ka�ci and R. Di Cosmo. Compiling order-sorted feature term uni�ca-
tion. Technical Report 7, Digital Equipment Corporation Paris Research
Lab (DEC PRL), 1993.

K. Bertet, M. Morvan, and L. Nourine. Lazy completion of a partial order
to the smallest lattice. In Proceedings of the International KRUSE Sympo-
sium: Knowledge Retrieval, Use and Storage for EÆciency, pages 72{81,
1997.

205

206 BIBLIOGRAPHY

L. Bolc, K. Czuba, A. Kup�s�c, M. Marciniak, A. Mykowiecka, and
A. Przepi�orkowski. A survey of systems for implementing HPSG grammars.
Technical Report 814, Institute of Computer Science, Polish Academy of
Sciences, 1996.

A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. Classic:
A structural data model for objects. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, 1989.

R. J. Brachman. A Structural Paradigm for Representing Knowledge. PhD
thesis, Harvard University, 1977.

R. J. Brachman. What IS-A is and isn't: An analysis of taxonomic links in
semantic networks. IEEE Computer, 16(10):30{36, 1983.

R. J. Brachman, R. E. Fikes, and H. J. Levesque. KRYPTON: A func-
tional approach to knowledge representation. IEEE Computer, 16(10):
67{73, 1983.

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171{216, 1985.

J. S. Bruner, J. J. Goodnow, and G. A. Austin. A Study of Thinking. Wiley,
1956.

B. Carpenter. The Logic of Typed Feature Structures. Cambridge, 1992.

B. Carpenter. An attribute-value logic for sets. In Third ASL/LSA Confer-
ence on Logic and Language, Ohio State University, 1993a.

B. Carpenter. Skeptical and credulous uni�cation with applications to lexical
templates and inheritance. In T. Briscoe, A. Copestake, and V. de Paiva,
editors, Default Reasoning and Lexical Organization. Cambridge University
Press, 1993b.

B. Carpenter and P.J. King. The complexity of closed world reasoning in
constraint-based grammar theories. In Fourth Meeting on the Mathematics
of Language, University of Pennsylvania, 1995.

B. Carpenter and G. Penn. Negation vs. inequation and typing
for linguistic applications. Available from Gerald Penn's homepage:
http://www.cs.cmu.edu/�gpenn, 1993.

BIBLIOGRAPHY 207

B. Carpenter and G. Penn. Compiling typed attribute-value logic grammars.
In H. Bunt and M. Tomita, editors, Recent Advances in Parsing Technolo-
gies, pages 145{168. Kluwer, 1996.

B. Carpenter and C. Pollard. Inclusion, disjointness and choice: The logic of
linguistic classi�cation. In Proceedings of the 29th Annual Meeting of the
Association for Computational Linguistics (ACL-91), pages 9{16, 1991.

B. Carpenter and Y. Qu. An abstract machine architecture for typed
attribute-value grammars. In Proceedings of the 4th International Work-
shop on Parsing Technology, 1995.

N. Chomsky and M. Halle. The Sound Pattern of English. Harper & Row,
1968.

A. Colmerauer. Equations and inequations on �nite and in�nite trees. In
Proceedings of the International Conference on Fifth Generation Computer
Systems, pages 85{99, 1984.

A. Colmerauer. Theoretical model of Prolog II. In M. van Canegham and
D. H. Warren, editors, Logic Programming and its Application, pages 1{31.
Ablex, Norwood, New Jersey, 1987.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gression. Journal of Symbolic Computation, 9(3):251{280, 1990. Special
Issue on Computational Algebraic Complexity.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

V. Dahl. Un systeme deductif d'interrogation de banques de donnees en
espagnol. Technical report, Groupe d'Intelligence Arti�cielle, Universit�e
d'Aix-Marseille II, 1977.

V. Dahl. On database systems development through logic. ACM Transactions
on Database Systems, 7(1), 1982.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

208 BIBLIOGRAPHY

R. Dietrich and F. Hagl. A polymorphic type system with subtypes for
Prolog. In Proceedings of the 2nd European Symposium on Programming,
number 300 in LNCS, pages 79{93. Springer, 1988.

M. Dorna. Erweiterung der Constraint-Logiksprache CUF um ein Typsys-
tem. Diplomarbeit, Universit�at Stuttgart, 1992.

C.C Douglas, M.A. Heroux, G. Slishman, and R. Smith. Gemmw: A portable
level 3 blas winograd variant of strassen's matrix-matrix multiply algo-
rithm. Journal of Computational Physics, 110:1{10, 1994.

G. Erbach. Multi-dimensional inheritance. In Proceedings of KONVENS 94.
Springer, 1994.

G. Erbach. ProFIT: Prolog with features, inheritance and templates. In
Proceedings of EACL-95, 1995.

G. Erbach. Bottom-Up Earley Deduction for Preference-Driven Natural Lan-
guage Processing. PhD thesis, Universit�at des Saarlandes, 1996.

S. E. Fahlman. A System for Representing and Using Real-world Knowledge.
PhD thesis, MIT, 1977.

S. E. Fahlman. NETL: A System for Representing and Using Real-World
Knowledge. MIT Press, 1979.

A. Fall. Reasoning with Taxonomies. PhD thesis, Si-
mon Fraser University, 1996. Repaginated as a single-
spaced document with minor corrections, and available from
http://www.cs.sfu.ca/cs/people/GradStudents/fall/personal/
pub/thesis.ps.

D.D. Ganguly, C.K. Mohan, and S. Ranka. A space-and-time-eÆcient coding
algorithm for lattice computations. IEEE Transactions on Knowledge and
Data Engineering, 6(5):819{829, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Co., 1979.

G. Gazdar, E. Klein, G.K. Pullum, and I.A. Sag. Generalized Phrase Struc-
ture Grammar. Basil Blackwell, 1985.

BIBLIOGRAPHY 209

D. Gerdemann. Open and closed world types in NLP. In J. Kilbury and
R. Wiese, editors, Integrative Ans�atze in der Computerlinguistik: Proceed-
ings der 5. Fachtagung der Sektion Computerlinguistik der DGfS, pages
25{30, 1995a.

D. Gerdemann. Term encoding of typed feature structures. In Proceedings
of the 4th International Workshop on Parsing Technologies, pages 89{97,
1995b.

D. Gerdemann and P. J. King. The correct and eÆcient implementation
of appropriateness speci�cations for typed feature structures. In Proceed-
ings of the 15th International Conference on Computational Linguistics
(COLING-94), 1994.

M. Habib and L. Nourine. Bit-vector encoding for partially ordered sets. In
V. Bouchitt�e and M. Morvan, editors, Orders, Algorithms, Applications:
International Workshop ORDAL '94 Proceedings, pages 1{12. Springer-
Verlag, 1994.

P. J. Hayes. The logic of frames. In D. Metzing, editor, Frame Conceptions
and Text Understanding, pages 46{61. Walter de Gruyter and Co., 1979.

R. Henschel. Traversing the labyrinth of feature logics for a declarative
implementation of large scale systemic grammars. In Proceedings of the
1995 Workshop on Computational Logic for Natural Language Processing
(CLNLP-95), 1995.

M. H�ohfeld and G. Smolka. De�nite relations over constraint languages.
LILOG Report 53, IBM Deutschland, 1988.

C. Holzbaur. Speci�cation of Constraint Based Inference Mechanism through
Extended Uni�cation. PhD thesis, University of Vienna, 1990.

C. Holzbaur. Metastructures vs. attributed variables in the context of exten-
sible uni�cation. In M. Bruynooghe and M. Wirsing, editors, Programming
Language Implementation and Logic Programming, number 631 in LNCS,
pages 260{268. Springer Verlag, 1992.

C. I. Hovland. A "communication analysis" of concept learning. Psychological
Review, 59:461{472, 1952.

210 BIBLIOGRAPHY

R. A. Hudson. Systemic generative grammar. In M. A. K. Halliday and
J. R. Martin, editors, Readings in Systemic Linguistics. Batsford Aca-
demic, 1981.

G. Humphrey. Thinking: An Introduction to its Experimental Psychology.
Methuen & Co., 1951.

E.B. Hunt. Concept Learning: An Information Processing Problem. Wiley
and Sons, 1962.

M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI Pub-
lications, 1988.

R. Kaplan and J. Bresnan. Lexical-Functional Grammar: A formal system
for grammatical representation. In J. Bresnan, editor, The Mental Repre-
sentation of Grammatical Relations, pages 173{281. MIT Press, 1982.

R. Kaplan and A. Zaenen. Long-distance dependencies, constituent structure
and functional uncertainty. In M. Baltin and A.S. Kroch, editors, Alterna-
tive Conceptions of Phrase Structure, pages 17{42. University of Chicago
Press, 1986.

L. Karttunen. Features and values. In Proceedings of the Tenth Interna-
tional Conference on Computational Linguistics (COLING-84), pages 28{
33, 1984.

R.T. Kasper. Systemic grammar and Functional Uni�cation Grammar. In
J. Benson and W. Greaves, editors, Proceedings of the Twelfth Interna-
tional Systemics Workshop, 1986.

R.T. Kasper. Feature Structures: A Logical Theory with Application to Lan-
guage Analysis. PhD thesis, University of Michigan, 1987a.

R.T. Kasper. A uni�cation method for disjunctive feature structures. In Pro-
ceedings of the 25th Annual Meeting of the Association for Computational
Linguistics (ACL-87), pages 235{242, 1987b.

R.T. Kasper. An experimental parser for systemic grammars. In Proceed-
ings of the Twelfth International Conference on Computational Linguistics
(COLING-88), 1988.

BIBLIOGRAPHY 211

R.T. Kasper. Uni�cation and classi�cation: An experiment in information-
based parsing. In Proceedings of the First International Workshop on Pars-
ing Technologies (IWPT), pages 1{7, 1989.

R.T. Kasper and W.C. Rounds. A logical semantics for feature structures.
In Proceedings of the 24th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-86), pages 235{242, 1986.

R.T. Kasper and W.C. Rounds. The logic of uni�cation in grammar. Lin-
guistics and Philosophy, 13(1):35{58, 1990.

M. Kay. Functional grammar. In Proceedings of the 5th Annual Meeting of
the Berkeley Linguistics Society, pages 142{158, 1979.

M. Kay. Functional Uni�cation Grammar: A formalism for machine transla-
tion. In Proceedings of the 10th International Conference on Computational
Linguistics, pages 75{78, 1984.

M. Kay. Uni�cation in grammar. In V. Dahl and P. Saint-Dizier, editors,
Natural Language Understanding and Logic Programming, pages 233{240.
Elsevier Science Publishers, 1985.

B. Keller. Feature Logics, In�nitary Descriptions and Grammar. CSLI, 1993.

P.J. King. A Logical Formalism for Head-driven Phrase Structure Grammar.
PhD thesis, University of Manchester, 1989.

P.J. King and T. Goetz. Eliminating the feature introduction condition by
modifying type inference. Technical Report 31, Sonderforschungsbereich
340 (SFB 340), T�ubingen, 1993.

E. Klein. Phonological data types. In S. Bird, editor, Declarative Perspec-
tives on Phonology, number 7 in Edinburgh Working Papers in Cognitive
Science, pages 127{138. University of Edinburgh, 1991.

J.T. Kou, L.J. Stockmeyer, and C.K. Wong. Covering edges by cliques with
regard to keyword con
icts and intersection graphs. Communications of
the ACM, 21(2):135{139, 1978.

R. Kowalski. Predicate logic as a programming language. In Proceedings
of the 1974 Congress of the International Federation for Information Pro-
cessing (IFIP), pages 569{574, 1974.

212 BIBLIOGRAPHY

G. R. Kress, editor. Halliday: System and Function in Language. Oxford,
1976.

A. Lascarides and A. Copestake. Default representation in constraint-based
frameworks. Computational Linguistics, 25(1):55{105, 1999.

H. J. Levesque. A Formal Treatment of Incomplete Knowledge Bases. PhD
thesis, University of Toronto, 1981a.

H. J. Levesque. The interaction with incomplete knowledge bases: A formal
treatment. In Proceedings of the Seventh International Joint Conference
on Arti�cial Intelligence (IJCAI-81), 1981b.

LinGO. The LinGO grammar and lexicon. Available on-line at
http://lingo.stanford.edu, 1999.

R. MacGregor. Using a description classi�er to enhance deductive inference.
In Proceedings of the Seventh IEEE Conference on AI Applications, pages
141{147, 1991.

R. M. MacGregor. A deductive pattern matcher. In Proceedings of AAAI-88,
pages 403{8, 1988.

T. Makino, K. Torisawa, and J. Tsuji. LiLFeS | practical uni�cation-
based programming system for typed feature structures. In Proceedings
of the 36th Annual Meeting of the Association for Computational Linguis-
tics and the 17th International Conference on Computational Linguistics
(COLING/ACL-98), volume 2, pages 807{811, 1998.

S. Manandhar. An attributive logic of set descriptions and set operations.
In Proceedings of the 32nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL-94), pages 255{262, 1994.

W.C. Mann and C.M.I.M. Matthiessen. NIGEL: A systemic grammar for text
generation. Technical Report RR-85-105, Information Sciences Institute,
University of Southern California, 1983.

C. Manning. Ergativity: Argument Structure and Grammatical Relations.
CSLI Publications, 1996.

C. Manning and I. Sag. Argument structure, valence, and binding. Nordic
Journal of Linguistics, 21:107{144, 1998.

BIBLIOGRAPHY 213

J. McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine. Communications of the ACM, 3(4), 1960.

C. Mellish. Implementing systemic classi�cation by uni�cation. Computa-
tional Linguistics, 14(1):40{51, 1988.

C. Mellish. Graph-encodable description spaces. Technical report, Univer-
sity of Edinburgh Department of Arti�cial Intelligence, 1991. DYANA
Deliverable R3.2B.

C. Mellish. Term-encodable description spaces. In D.R. Brough, editor, Logic
Programming: New Frontiers, pages 189{207. Kluwer, 1992.

M. Minsky. A framework for representing knowledge. In P.H. Winston,
editor, The Psychology of Computer Vision, pages 211{277. McGraw-Hill,
1975.

M. A. Moshier. Featureless HPSG. In P. Blackburn and M. de Rijke, editors,
Specifying Syntactic Structures. CSLI Publications, 1997a.

M. A. Moshier. Is HPSG featureless or unprincipled? Linguistics and Phi-
losophy, 20(6):669{695, 1997b.

M. A. Moshier and C. J. Pollard. The domain of set-valued feature structures.
Linguistics and Philosophy, 17:607{631, 1994.

M.A. Moshier. Extensions to Uni�cation Grammar for the Description of
Programming Languages. PhD thesis, University of Michigan, 1988.

M.A. Moshier and W. C. Rounds. A logic for partially speci�ed data struc-
tures. In Proceedings of the 14th ACM Symposium on Principles of Pro-
gramming Languages, pages 156{167, 1987.

A. Newell and J.C. Shaw. Programming the logic theory machine. In Pro-
ceedings of the 1957 Western Joint Computer Conference, 1957.

A. Newell, J.C. Shaw, and H.A. Simon. Chess-playing programs and the
problem of complexity. IBM Journal of Research and Development, 2:
230{335, 1958.

214 BIBLIOGRAPHY

A. Newell and H.A. Simon. The logic theory machine: A complex infor-
mation processing system. Institute of Radio Engineers Transactions on
Information Theory, IT-2(3):61{79, 1956.

P. F. Patel-Schneider, L. A. Resnick, D. L. McGuinness, E. Weixel-
baum, M. K. Abrahams, and A. Borgida. NeoClassic Reference Man-
ual: Version 1.0, July 1998. Available from the NeoClassic Homepage:
http://www.bell-labs.com/project/classic/neo.html.

G. Penn. Parametric types for typed attribute-value logic. Technical Report
D-97-02, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz (DFKI),
1997.

G. Penn. Parametric types for typed attribute-value logic. In Proceedings
of the 17th International Conference on Computational Linguistics and
the 36th Annual Meeting of the Association for Computational Linguistics
(COLING/ACL-98), volume 2, pages 1027{1033, 1998.

G. Penn. An optimised Prolog encoding of typed feature structures. Technical
Report 138, Sonderforschungsbereich 340, T�ubingen, 1999a.

G. Penn. Optimising don't-care non-determinism with statistical infor-
mation. Technical Report 140, Sonderforschungsbereich 340, T�ubingen,
1999b.

G. Penn. An optimized Prolog encoding of typed feature structures. In
Proceedings of the 16th International Conference on Logic Programming
(ICLP-99), pages 124{138, 1999c.

G. Penn. A quasi-ring construction for compiling attributed type signatures.
Technical Report 141, Sonderforschungsbereich 340 (SFB 340), T�ubingen,
1999d.

G. Penn. A quasi-ring construction for compiling attributed type signatures.
In Proceedings of the 6th Meeting on the Mathematics of Language (MOL-
6), pages 105{114, 1999e.

G. Penn and B. Carpenter. ALE for speech: A translation prototype. In Pro-
ceedings of the 6th Conference on Speech Communication and Technology
(EUROSPEECH-99), volume 2, pages 947{950, 1999.

BIBLIOGRAPHY 215

F.C.N. Pereira and S.M. Shieber. The semantics of grammar formalisms seen
as computer languages. In Proceedings of the 10th International Conference
on Computational Linguistics (COLING-84), 1984.

C. Pollard and M.A. Moshier. Unifying partial descriptions of sets. In P. Han-
son, editor, Information, Language and Cognition, volume 1 of Vancouver
Studies in Cognitive Science. University of British Columbia Press, 1990.

C. Pollard and I. Sag. Information-based Syntax and Semantics. Number 13
in CSLI Lecture Notes. CSLI Publications, 1987.

C. Pollard and I. Sag. Head-driven Phrase Structure Grammar. Chicago,
1994.

C.J. Pollard. Sorts in uni�cation-based grammar and what they mean. In
M. Pinkal and B. Gregor, editors, Uni�cation in Natural Language Analy-
sis. MIT Press, 1990.

R. T. Prosser. Applications of Boolean matrices to the analysis of
ow di-
agrams. In Proceedings of the 16th Eastern Joint Computer Conference,
pages 133{138, 1959.

M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Informa-
tion Processing, pages 227{270. MIT Press, 1968.

B. Raphael. A computer program which 'understands'. In Proceedings of
AFIPS Joint Computer Conference, 1964.

B. Raphael. SIR: Semantic information retrieval. In M. Minsky, editor,
Semantic Information Processing, pages 33{145. MIT Press, 1968.

J.C. Reynolds. Transformational systems and the algebraic structure of
atomic formulas. In B. Meltzer and D. Michie, editors, Machine Intel-
ligence 5. Edinburgh, 1970.

F. Richter. A Mathematical Formalism for Linguistic Theories with an Ap-
plication in Head-driven Phrase Structure Grammar and a Fragment of
German. PhD thesis, Universit�at T�ubingen, in prep.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23{41, 1965.

216 BIBLIOGRAPHY

W.C. Rounds and R.T. Kasper. A complete logical calculus for record struc-
tures representing linguistic information. In Proceedings of the 15th Annual
IEEE Symposium on Logic and Computer Science, pages 39{43, 1986.

I. A. Sag. English relative clause constructions. Journal of Linguistics, 33
(2):431{484, 1997.

A. Sch�oter. Term encoding of feature structures. University of Edinburgh,
1992.

L. K. Schubert. Extending the expressive power of semantic networks. Arti-
�cial Intelligence, 7(2):163{198, 1976.

N.K. Simpkins and M. Groenendijk. Multiple inheritance. Technical Report
ALEP-1.3, Cray Systems, August 1994.

G. Smolka. A feature logic with subsorts. Technical Report LILOG Report
33, IBM Germany, Stuttgart, 1988.

G. Smolka. Logic Programming over Polymorphically Order-Sorted Types.
PhD thesis, Universit�at Kaiserslautern, 1989.

K. Steinicke and G. Penn. Compiling feature-based constraints with complex
antecedents. Technical Report 136, Sonderforschungsbereich 340 (SFB
340), T�ubingen, 1999.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14(3):354{356, 1969.

P. Van Roy. Can Logic Programming Execute as Fast as Imperative Program-
ming? PhD thesis, University of California, Berkeley, 1990.

Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9
(1):11{12, January 1962.

P. H. Winston. Learning structural descriptions from examples. In P. H. Win-
ston, editor, The Psychology of Computer Vision, pages 157{209. McGraw-
Hill, 1975.

S. Wintner. An Abstract Machine for Uni�cation Grammars with Applica-
tions to an HPSG Grammar for Hebrew. PhD thesis, Technion, 1997.

BIBLIOGRAPHY 217

S. Wintner and N. Francez. Abstract machine for typed feature structures.
In Proceedings of the Conference on Natural Language Understanding and
Logic Programming, 1994.

S. Wintner and N. Francez. O�-line parsability and the well-foundedness
of subsumption. Journal of Logic, Language and Information, 8(1):1{16,
1999.

W. A. Woods. Parallel algorithms for real time knowledge based systems.
Technical Report 4181, Bolt Beranek and Newman (BBN), 1979.

W. A. Woods and J. G. Schmolze. The KL-ONE family. Technical Report
TR-20-90, Aiken Computer Laboratory, Harvard University, 1990.

E. Yardeni, T. Fr�uwirth, and E. Shapiro. Polymorphically typed logic pro-
grams. In F. Pfenning, editor, Types in Logic Programming, pages 63{90.
MIT Press, 1992.

